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Abstract We investigate the dynamics and control of
a nonlinear oscillator that is described mathematically
by a Variable Order Differential Equation (VODE).
The dynamic problem in question arises from the dy-
namical analysis of a variable viscoelasticity oscilla-
tor. The dynamics of the model and the behavior of
the variable order differintegrals are shown in vari-
able phase space for different parameters. Two dif-
ferent controllers are developed for the VODEs under
study in order to track an arbitrary reference function.
A generalization of the van der Pol equation using the
VODE formulation is analyzed under the light of the
methods introduced in this work.

Keywords Fractional derivatives and integrals ·
Variable order differential equations · Control of
nonlinear oscillators · van der Pol equation

1 Introduction

The subject of fractional order calculus or the mathe-
matical analysis of differentiation and integration to an
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arbitrary noninteger order has attracted much interest
during the past 3 decades. Lately, fractional calculus
has developed significantly and important applications
have been found in a variety of different fields (e.g.,
Oldham and Spanier [1], Miller and Ross [2], Podlubni
[3], Hu [5], Hilfer [4], and Kilbas et al. [6]). Physical
evidence of fractional order behavior has been found
in areas such as fluid mechanics, mechanical systems,
rheology, electromagnetism, electrochemistry, and bi-
ology. Beyond the fact that it provides superior mod-
eling capability of memory-intense and delay systems,
fractional modeling has been associated with the exact
description of complex transport phenomena. For ex-
ample, Coimbra et al. [7] and L’Esperance et al. [8]
provide definitive experimental evidence of fractional
history effects in the unsteady viscous motion of small
particles in suspension.

Several authors have utilized fractional order cal-
culus to analyze the dynamics and control of physical
systems [9–11]. Charef et al. [12] developed a method
of singularity function to represent fractional slopes
on the log-log Bode plot. The concept of fractional or-
der PIλDμ controller is discussed in Podlubny [13].
Petras [14] developed a controller for fractional-order
Chua’s circuit, which exhibits chaotic behavior with
total order less than three. Hwang et al. [15] described
two numerical methods for inverting fractional-order
Laplace transforms that generate accurate solutions
for Fractional Differential Equations (FDEs). The dy-
namics and control of initialized fractional-order sys-
tems was analyzed by Hartley and Lorenzo [16]. In
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their paper, the initialization process is described in
order to account for the history effects of fractional
order systems. Also, the stability properties of these
systems were presented using the complex w-plane,
which is a transformation of the s-plane. Ahmad et
al. [17] described the stabilization of three different
types of chaotic fractional order systems, Cao et al.
[18] presented an optimization method based on ge-
netic algorithms for the design of a PIλDδ controller,
and fractional adaptive control is described by Ladaci
and Charef [19]. Fractional order derivatives have also
been applied to the analysis of the van der Pol equation
[20, 21]. Finally, several schemes for the solution of
multi-order fractional differential equations have been
proposed [22, 23].

Compared to fractional order systems, the study of
systems for which the order of the derivative changes
with respect to either the dependent or the indepen-
dent variables has not received much attention. From
the mathematical point of view, interest in this area
started with the studies by Samko, Ross, and collabo-
rators [24, 25]. These pioneering publications focused
on mathematical properties of possible candidates for
a Variable-Order (VO) differintegral operator. Accord-
ing to Ref. [24], “To the best knowledge of the(se) au-
thors, no one has published any work on this topic,
possibly because there are as yet no applications. This
work is stimulated by intellectual curiosity”. Until re-
cently, this first set of publications by Samko and
collaborators seemed to have escaped the attention
of other authors that independently developed similar
concepts from a more physical standpoint (e.g., [26,
28–31]).

Ingman et al. [26] expanded an existing fractional
constitutive model by means of a differintegral opera-
tor of time-dependent order (variable order on the in-
dependent variable) to describe an elastoplastic inden-
tation problem. Ingman and Suzdalnitsky [27] studied
the vibrations of a one-degree-of-freedom oscillator
with a differential operator of variable order. Lorenzo
and Hartley [28] analyzed mathematically some im-
portant properties of candidate VO operators (invari-
ance, memory retentiveness, adherence to the expo-
nent rule, etc.), essentially within the same spirit that
motivated the work of Samko and Ross. Coimbra [30]
described the mechanics of an oscillating mass sub-
jected to a variable viscoelasticity damper and a lin-
ear spring, a physical problem that yields a VODE
on the dependent variable (position). In [30], a con-

sistent VO differential operator for mechanical sys-
tems was proposed, and a comparison of the VODE
behavior with an interpolative solution of a nonlin-
ear fixed-order differential equation is provided. Soon
et al. [31] extended the work developed in [30] by
proposing a second-order accurate method for the so-
lution of a number of initial value problems arising
from modeling a variable viscoelasticity oscillator. As
far as the present authors know, these more physically-
oriented works were developed independently of the
mathematically-oriented publications referred earlier.
Ingman and Suzdalnitsky [29] later developed the
technique described in [26] to describe the behavior of
a polymeric material. Finally, Ramirez and Coimbra
[32] recently developed a statistical mechanics model
that yields a macroscopic constitutive relation for a
viscoelastic composite material undergoing compres-
sion at varying strain rates. The physical model pre-
sented in [32] adds a new layer of motivation for the
study of VODEs since the statistical mechanics formu-
lation results in a much simpler constitutive equation
that is intrinsically of variable order.

In the present paper, we extend the analysis of the
nonlinear dynamics of a VO system [30, 31] in order
to design two different controllers for tracking a refer-
ence function for a nonlinear VODE oscillator. A gen-
eralization of the van der Pol equation using a master
VODE is also presented.

2 Choice of variable order operator

It is well known that there are different ways of defin-
ing a fractional differential operator [22, 35], and this
means that there are even more options for defining a
variable order differential operator (for example, plac-
ing the Gamma function term inside or outside of the
integral sign in the equation below is immaterial for
fractional operators, as opposed to the case of variable
order operators). In the present work, we use the vari-
able order operator defined by Coimbra [30]:

Dq(x(t))x(t)

= 1

�(1 − q(x(t)))

∫ t

0+
(t − σ)−q(x(t))D1x(σ )dσ

+ (x(0+) − x(0−))t−q(x(t))

�(1 − q(x(t)))
, (1)

which is valid for q(x(t)) < 1.
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The operator defined above returns the correct
value of the zeroth order derivative (x(0)) when
q(x(t)) = 0 and approaches the correct values of the
first derivative when q(x(t)) → 1. Also, the operator
returns the p-th derivative of x(t) when q(x(t)) = p,
a necessary property for dynamical modeling that is
often overlooked when the focus is placed on math-
ematical properties that resemble fixed order differ-
ential operators (for example, whether the operators
abide by the exponent rule, etc.) Also of great impor-
tance to dynamic modeling is the fact that Coimbra’s
operator is dynamically consistent with causal behav-
ior in the initial conditions. In other words, when x(t)

is a true constant from −∞ to the initial time (t = 0+),
the operator in Eq. 1 returns zero for all values of
q(x(t)). However, if x(t) is not continuous between
t = 0− and t = 0+, the operator returns the appro-
priate Heaviside contribution to the integral value of
Dq(x(t))x(t). In accordance with this causal definition,
we take the value of the physical variable x(t) to be
identically null from −∞ to 0− as a representation
of dynamic equilibrium. A nonzero initial condition
is treated as a Heaviside function at t = 0, and, there-
fore, included in the second term of the definition of
the operator (Eq. 1).

3 Model description

The physical model we analyze corresponds to an os-
cillating mass on a guide that is covered with a nonuni-
form viscoelastic film such that there is a continuous
variation of the order of the frictional force as the
mass translates from the viscous (order 1) to the purely
half-order viscoelastic (order 1/2) portion of the guide
[30]. A nondimensional version of the model oscillator
is given in [30, 31]:

D2x(t) + D(1+x2)/2x(t) + D0x(t) = u(t), (2)

where |x| < 1 is the nondimensional position of the
mass given by x = X/L. L corresponds to half of the
displacement of the guide and X is the dimensional
position of the mass. The variable t is the dimension-
less time and u(t) corresponds to the dimensionless
forcing acceleration (the forcing function divided by
the mass). The initial value problem is made consis-
tent by application of Newtonian initial conditions to
the equation, so that x(0) = 0 and D1x(0) = 0.

4 Dynamics of the oscillator

In order to solve the VO differential equation given by
Eq. 2, we discretize the variable order derivative with a
second-to-first (2 − q) order approximation calculated
by the algorithm proposed by [31] (which follows the
quadrature method proposed in [33, 34]):

Dqxn = �t1−q

�(3 − q)

n∑
i=0

ai,nD1xi

+ (x0+ − x0−)(tn)
−q

�(1 − q)
, (3)

with quadrature weights given by

ai,n =

⎧⎪⎪⎨
⎪⎪⎩

(n − 1)2−q − n1−q(n + q − 2), if i = 0,

(n − i − 1)2−q − 2(n − i)2−q

+ (n − i + 1)2−q, if 0 < i < n,

1, if i = n,

(4)

and the integer order derivatives with a second-order
Runge–Kutta method [31].

The discretized equation for the oscillator is then
simply constructed as [30]:

xn+2 = (�t)2[u(t) − Dqxn − xn

] + 2xn+1 − xn, (5)

where �t is the increment in dimensionless time and
n is the time step.

Figure 1 shows the dynamic behavior of the
viscous-viscoelastic oscillator due to different values
of the forcing function u(t). The dashed line corre-
sponds to u(t) = 0.5 sin(t), the dotted line corresponds
to u(t) = sin(2t), and the solid line corresponds to
u(t) = 5 sin(10t). The order of differentiation varies
with the function q(x(t)) = (1 + x2)/2.

Figure 2(a) shows the variation of the value of the
variable order derivative with respect to the position,
x(t), for u(t) = sin(2t) and q(x(t)) = (1 + x2)/2. For
this forcing function, the system does not reach the
ends of the guide (|x(t)| < 1), and the solution shows
a bounded oscillatory behavior. Figure 2(b) shows the
variation of the value of the VO derivative with respect
to the order of the derivative, q(x(t)). Since the or-
der of the derivative is a function of the position and
the position does not reach the ends of the guide, the
value of q(x(t)) is kept under unity at all times, with
values restricted to the viscoelastic-viscous range of
0.5≤ q ≤1. Figure 3 shows the magnitude of the VO
derivative together with the value of the position, x(t),
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Fig. 1 Dynamic behavior
of the viscous-viscoelastic
oscillator given by Eq. 2.
- - u(t) = 0.5 sin(t),
... u(t) = sin(2t),
— u(t) = 5 sin(10t).
q(x(t)) = (1 + x2)/2

Fig. 2 Dynamics of VOD
system. (a) Variation of VO
derivative, Dq(x(t))x(t),
with respect to position,
x(t), (b) order of derivative,
q(x(t)), for u(t) = sin(2t)

and q(x(t)) = (1 + x2)/2

as a function of time. More information about the dy-
namics of variable order oscillators can be found in
[30, 31].

5 Control of the oscillator

In this section, we make use of the dimensionless forc-
ing function u(t) as a control variable. Equation 2 is

rewritten as follows:

d2x

dt2
+ x = u − 1

�(1 − q)

∫ t

0+
(t − σ)−q dx(σ )

dσ
dσ

− (x(0+) − x(0−))t−q

�(1 − q
. (6)
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Fig. 3 Position (x(t) =
—) and VO derivative
(Dq(x(t))x(t) = ...) versus
time for u(t) = sin(2t) and
q(x(t)) = (1 + x2)/2

After imposing Newtonian initial conditions, Eq. 6
is simplified to:

ẋ0 = x1, (7)

ẋ1 = −x0 + u − D(1+x2
0 )/2x0, (8)

which can be written in matrix form as:

ẋ = Ax + Bu −
[

0
1

]
Dqx0

=
[

0 1
−1 0

]
x +

[
0
1

]
u −

[
0
1

]
D(1+x2

0 )/2x0 (9)

with output values

y = Cx = [1 0]x. (10)

Equation 9 represents a quasi-linear integrodiffer-
ential equation for which sufficient conditions for lo-
cal controllability in Banach spaces have been estab-
lished in [36]. Linear controllers for quasi-linear equa-
tions with bounded state-dependent nonlinear distur-
bances have been studied recently [37–39]. Recogniz-
ing that the last (nonlinear) term in Eq. 9 is bounded,
we develop a linear controller by choosing the location
of the close-loop system eigenvalues considering only
the linear part of the problem. The effectiveness of this
linearization is illustrated in the following subsections.

We close the loop by choosing a controller of the
form

u = −Kx + Gr = −k0x0 − k1x1 + Gr, (11)

where K = [k0 k1] and k0, k1 are constants that are
used for the location of the desired values of the
closed-loop eigenvalues and G is the feedforward gain
for the reference, r . Thus, the closed-loop system is
represented as follows:

ẋ =
[

0 1
−1 − k0 −k1

]
x +

[
0
1

]
Gr

−
[

0
1

]
D(1+x2

0 )/2x0, (12)

y = Cx. (13)

Since the linear system (A, B) is controllable [37–
39] we locate the eigenvalues of the closed-loop sys-
tem by equating the characteristic polynomial with an
arbitrary polynomial that has eigenvalues located at a
desired location. We choose a polynomial with eigen-
values located at λ = −5.

|λI − A + BK| =
∣∣∣∣ λ −1
1 + k0 λ + k1

∣∣∣∣
= (λ + 5)(λ + 5). (14)

Thus, k0 = 24 and k1 = 10.
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Fig. 4 Steady state
tracking. (a) Tracking of
reference r with
q(x(t)) = (1 + x2)/2 for
λ1,2 = −5, (b) control
variable u

To obtain the value of the feedforward gain, we
match closed-loop dc gain HCL(0) = −C(A −
BK)−1BG with the open-loop dc gain HOL(0) =
−CA−1B [40]. For the open-loop case, HOL(0) = 1.
For the closed-loop, HCL(0) = 1

25G. Thus, to match
the dc gains, we choose G = 25 as the value of the
gain associated with the reference.

5.1 Steady-state tracking

Here, we describe the steady-state tracking of an ar-
bitrary reference, r , for the VO system described by
Eqs. 12 and 13 . The reference is varied according to
Eq. 15.

r =
⎧⎨
⎩

0, if t < 10,

1, if 10 ≤ t < 20.

0, if t ≥ 20.

(15)

Figure 4(a) shows the controlled variable x tracking
reference r . Figure 4(b) shows the value of the control
variable u for the process shown in Fig. 4(a).

The closed loop system becomes unstable if the
closed-loop eigenvalues are chosen to be located on
the positive real axis of the complex plane. To show
this, we find new values of k0 and k1 so that the closed-
loop eigenvalues are located at arbitrary location cho-
sen as λ1,2 = 0.5. Figure 5(a) shows the behavior of
the VO system with unstable closed-loop eigenvalues

for the same sequence of values of the reference r

shown in Fig. 4. Figure 5(b) shows the control vari-
able u for this case.

5.2 Oscillatory reference

We test the controller developed in Sect. 5 with an os-
cillatory reference similar in shape to the forcing func-
tions used in Fig. 1. Figure 6(a) shows the performance
of the controller for reference r(t) = 0.5 sin(t). The
controlled variable, x(t), lags reference r(t) and has
a slightly lower amplitude of oscillation. Figure 6(b)
depicts the oscillatory character of the control ac-
tion, u(t). Simulations using reference functions with
higher frequency values, such as r(t) = sin(2t), show
that the performance of this controller deteriorates as
the frequency of reference r(t) is increased. To im-
prove the performance of the controller, we increase
the magnitude of the closed-loop eigenvalues. Fig-
ure 7(a) shows the improved performance of the con-
troller for r(t) = 0.5 sin(t). The control action u(t),
for this case, is shown in Fig. 7(c). Phase and am-
plitude are matched by the controlled variable. Fig-
ures 7(b) and (d) depict the performance of the con-
troller for r(t) = sin(2t) and its control action, re-
spectively. An error of 1% between the maximum
value of the reference with respect to the controlled
variable, x(t), has been chosen for these simulations.
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Fig. 5 Unstable
closed-loop. (a) Tracking of
reference r with
q(x(t)) = (1 + x2)/2 for
λ1,2 = 0.5, (b) control
variable u

Fig. 6 Oscillatory
reference. (a) Tracking of
reference r with
q(x(t)) = (1 + x2)/2,
r = 0.5 sin(t), (b) control
variable u. Note that the
controller with λ1,2 = −5
does not track r(t)

accurately. Compare this
performance with the
controller in Fig. 7(a)

This performance was obtained with λ1,2 = −20 for
r(t) = sin(2t).

5.3 Optimal control

In this section, we apply optimal tracking control to
the same dynamical system analyzed in the previous
section.

Consider a linear system of the form:

ẋ + Dqx = Ax + Bu,

(16)
y = Cx.

We transform this system by using x̃ = x − x̄ and ũ =
u− ū, where x̄ and ū are the values of x and u at steady
state, respectively. For a reference value, r , we assume
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Fig. 7 Tracking of
oscillatory reference r with
q(x(t)) = (1 + x2)/2 and
closed-loop eigenvalues at
λ1,2 = −20.
(a) r = 0.5 sin(t),
(b) r = sin(2t), (c) u(t) for
r = 0.5 sin(t), and (d) u(t)

for r = sin(2t)

that in steady state ȳ = r so that

x̄ = −A−1Bū, (17)

ū = −[
CA−1B

]−1
r. (18)

We find the linear optimal tracker that minimizes
the performance index

J = 1

2

∫ ∞

0
(x̃′Qx̃ + ũ′Rũ)dt, (19)

where Q ≥ 0 and R > 0. The control law becomes ũ =
−Kx̃, where K is given by

K = R−1B ′S, (20)

and S is the solution to the algebraic Riccati equation

SA + A′S − SBR−1B ′S + Q = 0. (21)

Using the definitions of x̃ and ũ, we obtain u =
−K(x − x̄)+ ū. We then substitute the values of x̄ and
ū from Eqs. 17 and 18 to arrive at u = −Kx + Krr ,
where Kr = [KA−1B − I ][CA−1B]−1.

5.4 Performance of the tracking optimal controller

In this section, we describe the steady-state tracking of
an arbitrary reference, r , for the VO system described
by Eq. 16 using the optimal controller. The reference

is varied in the same way as in Sect. 5.1, i.e., r follows
the behavior described by Eq. 15. Figure 8(a) shows
the controlled variable x tracking reference r for the
VO system with q(x(t)) = (1 + x2)/2. Matrices Q

and R have been chosen to obtain a one percent over-
shoot for the VO system with q(x(t)) = (1 + x2)/2.
The same controller can be used for a similar system
for which the variable order derivative, q(x(t)), be-
haves as a different function of the position. Figure
8(b) shows the performance of the controller in the
viscous-viscoelastic range with q(x(t)) = (2 − x2)/2.

6 VODE formulation of the van der Pol equation

The methodologies employed in the previous sections
can be utilized to generate a variable order version of
the van der Pol equation [41]. Equation 2 resembles
the forced van der Pol oscillator equation, which is
given by:

D2y(t) + α
(
y2 − 1

)
D1y(t) + D0y(t) = u(t). (22)

Equation 2 is then rewritten as follows,

D2x(t) + α
(
βDq(x(t))x(t)

) + D0x(t) = u(t), (23)

where β is a binary coefficient that can only take the
values −1 or +1. It is possible to satisfy Eq. 23 by de-
termining the value of the variable order q(x(t)) that
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Fig. 8 Tracking optimal
control. (a)
q(x(t)) = (1 + x2)/2,
(b) q(x(t)) = (2 − x2)/2

matches the solution of Eq. 22 at the same instant in
time, t . We employ a minimization algorithm for a
single-variable nonlinear-function that finds the value
of q(x(t)) while solving the identity equation
(
y2 − 1

)
D1y(t) = βDq(x(t))x(t), (24)

where the variable y is used to denote the numeri-
cal solution of the standard van der Pol equation, and
the variable x denotes the numerical solution of the
VODE.

Because the highest order of the van der Pol equa-
tion is higher than one, we modify our numerical al-
gorithm for evaluation of Coimbra’s operator to allow
for covering a wider range of values of q(t), namely
q(t) < 2. Thus, we modify Eq. (3) as:

Dqxn = �t2−q

�(4 − q)

n∑
i=0

ai,nD2xi

+ x0+(1 − q)(tn)
−q + D1x(0+)(tn)

1−q

�(2 − q)
,

(25)

with quadrature weights given by

ai,n =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(3 − q)n2−q − n3−q + (n − 1)3−q,

if i = 0,

(n − i − 1)3−q − 2(n − i)3−q

+ (n − i + 1)3−q, if 0 < i < n.

1, if i = n,

(26)

where it is implied that both x(t) and D1x(t) are iden-
tically null for the time interval between −∞ and
0− (for the reasons given in the discussion following
Eq. 1), and where q = q(t).

We test the algorithm to verify that it calculates the
correct values of D0x(t), D1x(t) , and D2x(t). Fig-
ure 9 shows the results of the simulations for the case
u(t) = sin(t) and α = 5 with a step size �t = 0.002.
Values of Dqx(t) for fractional orders q = 1.5 and
1.75 are also shown in the figure. It is observed that
D0x(t) matches y(t), D1x(t) matches dy

dt
, and D2x(t)

approximates d2y

dt2 accurately. We used q = 1.999 to
approximate the second derivative. It is also seen that

the fractional-order derivatives approach d2y

dt2 as q(t)

increases from 1.5 to 1.75 and then to 2.
We run simulations for a base case where u(t) =

sin(t), α = 5, and �t = 0.002 and for t in the range
[0,20]. The value of q(x(t)) is allowed to vary be-
tween −2 to 2. The algorithm developed for obtaining
the solution of Eq. 24 obtains the value of Dqx(t) at
a number of points within the range of q . Single solu-
tions, shown in Fig. 10(a) for t = 4.5, or multiple solu-
tions, shown in Fig. 10(b) for t = 11, can be obtained.
The solid line represents the value of (y2 − 1)

dy
dt

that
needs to be matched and the dashdot line represents
the values of βDqx(t) for -2< q <2. The circle indi-
cates the chosen solution. For multiple solutions, we
consider the value of q(t) that is closer to q(t −�t) to
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Fig. 9 Fractional order
derivatives for q(t) = 0, 1,
1.5, 1.75, and 2, compared

to y, dy
dt

, and d2y

dt2

Fig. 10 Single or multiple
solutions obtained for
Eq. 24. (a) Single solution
at t = 4.5, (b) Multiple
solutions at t = 11. The
circle denotes the chosen
solution

minimize sharp changes in the order of the derivative
as a function of time.

Figure 11 shows the results obtained using the
matching algorithm developed to solve Eq. 24, where
the horizontal axis corresponds to the nondimensional
time. The solid line denotes (y2 − 1)

dy
dt

and the dash-
dot line corresponds to βDq(x(t))x(t). The results

show that appropriate values of q that solve Eq. 24
exactly are always found for the time intervals un-
der consideration. Figure 12 shows the comparison
between the results for the numerical solution of the
standard van der Pol equation and the VODE. Figure
12(a) shows that there is excellent agreement between
x and y. This is also true in Fig. 12(b) for dy

dt
and dx

dt
,
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Fig. 11 Solution of the
matching algorithm for Eq.
24. — = (y2 − 1)

dy
dt

, and

-.- = β dqx
dtq

Fig. 12 Comparison
between the numerical
solution of the VODE and
the standard van der Pol
equation. (a) y, x, (b) dy

dt
,

dx
dt

, (c) d2y

dt2 , d2x
dt2 , (d) u(t),

(e) q(x(t)), and (f) β
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Fig. 13 Comparison of
phase diagrams.
(a) Standard van der Pol
equation, (b) VODE van
der Pol equation

and for d2y

dt2 and d2x

dt2 shown in Fig. 12(c). As a refer-
ence, Fig. 12(d) shows the forcing function u(t), and
Fig. 12(e) shows the corresponding values of q(x(t))

that solve Eq. 24. Large variations in the value of

q(x(t)) are observed during fluctuations of d2x

dt2 and
dx
dt

. The values of the coefficient β are shown in Fig.
12(f) where it is seen that only a portion of the in-
terval studied finds solutions for which β = +1. This
explains the opposite behavior of q(x(t)) compared to
d2x

dt2 during sharp changes of the latter.
The comparison of the results between the VODE

and standard van der Pol equation is also shown with
phase diagrams in Fig. 13. Figure 13(a) shows dy

dt
ver-

sus y and Fig. 13(b) shows dx
dt

versus x. It is seen that
the results are identical.

7 Conclusions

Traditional applications of control theory involve dif-
ferential equations of constant integer or fractional or-
der. Over the past few decades, there has been a grow-
ing interest in fractional order controllers, which allow
for the representation of memory-laden systems (e.g.,
viscoelastic behavior). The present work expands on
previous contributions in control theory by consider-
ing a controller for a dynamical system represented by

a Variable-Order Differential Equation (VODE). The
dynamical behavior of a viscous-viscoelastic oscillator
[30, 31] is discussed and two different control schemes
are applied for tracking a step and oscillatory reference
function. A variable order formulation of the van der
Pol oscillator is also discussed. The value of the vari-
able order derivative, q(x(t)), that matches the numer-
ical solution of the standard forced van der Pol equa-
tion exactly is obtained.
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