
Nonlinear Dyn (2008) 54: 395–408
DOI 10.1007/s11071-008-9338-2

O R I G I NA L PA P E R

Exact solution and stability of postbuckling configurations
of beams

Ali H. Nayfeh · Samir A. Emam

Received: 17 March 2006 / Accepted: 2 January 2008 / Published online: 23 February 2008
© Springer Science+Business Media B.V. 2008

Abstract We present an exact solution for the post-
buckling configurations of beams with fixed–fixed,
fixed–hinged, and hinged–hinged boundary condi-
tions. We take into account the geometric nonlinear-
ity arising from midplane stretching, and as a result,
the governing equation exhibits a cubic nonlinearity.
We solve the nonlinear buckling problem and obtain
a closed-form solution for the postbuckling configu-
rations in terms of the applied axial load. The criti-
cal buckling loads and their associated mode shapes,
which are the only outcome of solving the linear buck-
ling problem, are obtained as a byproduct. We inves-
tigate the dynamic stability of the obtained postbuck-
ling configurations and find out that the first buckled
shape is a stable equilibrium position for all boundary
conditions. However, we find out that buckled con-
figurations beyond the first buckling mode are unsta-
ble equilibrium positions. We present the natural fre-
quencies of the lowest vibration modes around each
of the first three buckled configurations. The results
show that many internal resonances might be activated
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among the vibration modes around the same as well as
different buckled configurations. We present prelimi-
nary results of the dynamic response of a fixed–fixed
beam in the case of a one-to-one internal resonance
between the first vibration mode around the first buck-
led configuration and the first vibration mode around
the second buckled configuration.
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1 Background

Buckling is a static instability of structures due to in-
plane loading. Buckling was first introduced by Euler
more than two centuries ago. Since then, the main con-
cern of the investigations of buckling problems was
to find the critical buckling loads and their associated
mode shapes. When the geometric nonlinearity, which
accounts for midplane stretching, is taken into consid-
eration, one obtains the nonlinear buckling problem.
Solving the nonlinear buckling problem for a given
axial load results in the postbuckling configurations.
Numerical solutions for the nonlinear buckling prob-
lem are available in the literature. In this study, an ex-
act solution for the postbuckling problem is presented.
The critical buckling loads and their associated mode
shapes are obtained as a byproduct.

There is a large number of papers dealing with the
analysis of buckling problems, however, to the best of
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the authors’ knowledge, there is no exact solution for
the postbuckling of beams loaded by axial loads be-
yond the critical buckling loads. Numerical solutions
for the postbuckling problem are available in the litera-
ture. For a detailed review of the vibrations of buckled
beams, we refer the reader to Emam [1] and Nayfeh
and Pai [2]. The objectives of the present paper are
four folds. The first is to obtain a closed-form solu-
tion for the postbuckling configurations as a function
of the applied axial load. The second is to investigate
the stability of the higher postbuckling configurations.
The third is to determine the natural frequencies of vi-
brations around the buckled configurations. The fourth
is to present preliminary results for the nonlinear in-
teraction between modes of vibration around different
buckled configurations. Next, we discuss two of the
publications related to the objectives of this paper.

Fang and Wickert [3] investigated the static de-
formation of micromachined beams in the prebuck-
ling, transition, and postbuckling states under pre-
scribed inplane compressive stresses using analytical
and experimental means. They developed the govern-
ing equation of a geometrically nonlinear imperfect
beam. They assumed a shape for the postbuckled con-
figuration in the form of the first buckling mode and
obtained the amplitude of the postbuckling configura-
tion. Li and Zhou [4] investigated free vibrations of a
thermally buckled beam taking into account the geo-
metric nonlinearity in the prebuckling and postbuck-
ling ranges. They used a shooting method to solve for
the postbuckling configurations and the linear vibra-
tion modes of prebuckled and postbuckled beams.

In this paper, we present the governing equation
and boundary conditions of fixed–fixed, fixed–hinged,
and hinged–hinged laterally deflected beams taking
into account the geometrical nonlinearity. We solve the
nonlinear postbuckling problem and obtain a closed-
form solution for the buckled configurations as a func-
tion of the applied axial load. To show the onset of
buckling, we plot the static deflection against the ap-
plied axial load.

We follow Nayfeh et al. [5] and obtain an exact so-
lution for the free vibration problem around the buck-
led configurations. We calculate the lowest frequen-
cies of vibration around each of the buckled configu-
rations. We find out that the first buckled configuration
is a stable equilibrium position for all boundary condi-
tions. However, buckled shapes beyond the first buck-
ling shape are found to be unstable. We plot the lowest

natural frequencies for the prebuckled and postbuck-
led configurations. The fundamental natural frequency
in the prebuckled configuration decreases as the ap-
plied axial load is increased. At the onset of buckling,
the fundamental frequency vanishes. However, as the
beam buckles, its fundamental natural frequency in-
creases as the applied load is increased. Moreover, we
find many possible internal resonances among vibra-
tion modes around the same buckled configuration as
well as vibration modes around different buckled con-
figurations. We note that for axial loads beyond the
second critical load, the dynamics of the postbuckled
beam are rich and complex. We present preliminary re-
sults of the nonlinear coupling via a one-to-one inter-
nal resonance between the first vibration mode around
the first buckled configuration and the first vibration
mode around the second buckled configuration. This
investigation opens the door for more theoretical and
experimental investigations of the dynamics of buck-
led beams.

2 Problem formulation

The problem governing the transverse vibration of
beams accounting for midplane stretching is given by
[1, 2]

m
∂2ŵ

∂t̂2
+ P̂

∂2ŵ

∂x̂2
+ EI

∂4ŵ

∂x̂4
+ μ̂

∂ŵ

∂t̂

= EA

2�

∂2ŵ

∂x̂2

∫ �

0

(
∂ŵ

∂x̂

)2

dx̂ + F̂ (x̂) cos Ω̂t̂ (1)

subject to the boundary conditions

ŵ = 0 and
∂ŵ

∂x̂
= 0 at x̂ = 0, � (2)

for fixed–fixed beams,

ŵ = 0 and
∂2ŵ

∂x̂2
= 0 at x̂ = 0, � (3)

for hinged–hinged beams, and

ŵ = 0 and
∂ŵ

∂x̂
= 0 at x̂ = 0, (4a)

ŵ = 0 and
∂2ŵ

∂x̂2
= 0 at x̂ = � (4b)

for fixed–hinged beams. Here, m is the mass per unit
undeformed length; ŵ(x̂, t̂ ) is the transverse displace-
ment at position x̂ and time t̂ ; E is Young’s modulus;
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A and I are the area and moment of inertia of the cross
section, respectively; � is the undeformed length of the
beam; P̂ is the axial load; μ̂ is the damping coefficient;
F̂ is the spatial distribution of the transverse load; and
Ω̂ is its frequency. For convenience, we use the fol-
lowing nondimensional variables:

x = x̂

�
, w = ŵ

r
, t = t̂

√
EI

m�4
,

Ω = Ω̂

√
m�4

EI

where r = √
I/A is the radius of gyration of the cross

section. As a result, we rewrite (1)–(4) as

ẅ + wiv + Pw′′ + μẇ − 1

2
w′′

∫ 1

0
w′2 dx

= F(x) cosΩt. (5)

w = 0 and w′ = 0 at x = 0,1, (6)

w = 0 and w′′ = 0 at x = 0,1, (7)

w = 0 and w′ = 0 at x = 0, (8a)

w = 0 and w′′ = 0 at x = 1 (8b)

where the overdot indicates the derivative with respect
to t , the prime indicates the derivative with respect to
x, and

P = P̂ �2

EI
, μ = μ̂�2

√
mEI

, F = F̂ �4

rEI

are nondimensional quantities.

3 Buckling problem

In the case of fixed–fixed beams, the buckling problem
can be obtained from (5) and (6) by dropping the time-
dependent, damping, and forcing terms and denoting
the buckled configuration by ψ(x). The result is

ψiv + Pψ ′′ − 1

2
ψ ′′

∫ 1

0
ψ ′2 dx = 0, (9)

ψ = 0 and ψ ′ = 0 at x = 0,1. (10)

We note that the integral in (9) is a constant for a
given ψ(x). Hence, we let

Γ = 1

2

∫ 1

0
ψ ′2 dx (11)

where Γ is a constant. As a result, (9) reduces to

ψiv + λ2ψ ′′ = 0 (12)

where λ2 = P − Γ is a constant that represents a crit-
ical buckling load. Equation (12) is a fourth-order
ordinary-differential equation with constant coeffi-
cients whose general solution is given by

ψ(x) = c1 + c2 x + c3 cosλx + c4 sinλx (13)

where the ci are constants. Satisfying the boundary
conditions by substituting (13) into (10) yields the fol-
lowing four algebraic equations:

c1 + c3 = 0, (14)

c2 + λc4 = 0, (15)

c1 + c2 + c3 cosλ + c4 sinλ = 0, (16)

c2 − λc3 sinλ + c4 λ cosλ = 0. (17)

Equations (14)–(17) represent an eigenvalue problem
for λ. Demanding that the determinant of the coeffi-
cient matrix equals zero, we obtain the following char-
acteristic equation for λ:

2 − 2 cosλ − λ sinλ = 0. (18)

Solving (18) for λ yields 2π , 8.9868, 4π, and
15.4505 as the first four eigenvalues. Then, it follows
from (14)–(17) that the corresponding mode shapes
ψ(x) are given by

ψ(x) = c

[
1 − λ(1 − cosλ)

λ − sinλ
x − cosλx

+ 1 − cosλ

λ − sinλ
sinλx

]
(19)

where c is a constant to be determined. The expres-
sion ψ(x) governs both symmetric and antisymmetric
buckling shapes. Next, we give separate expressions
for symmetric and antisymmetric modes.

We manipulate (18) using trigonometric identities
as follows:
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2 − 2 cosλ − λ sinλ

= 4 sin2 λ

2
− 2λ sin

λ

2
cos

λ

2

= 4 sin
λ

2

(
sin

λ

2
− λ

2
cos

λ

2

)
= 0. (20)

It follows from (20) that there are two cases. First,

sin
λ

2
= 0 or λ = 2mπ where m = 1,2, . . . (21)

and (19) yields the symmetric mode shapes

ψ(x) = c
[
1 − cos(2mπx)

]
. (22)

Second,

tan
λ

2
= λ

2
(23)

and (19) yields the antisymmetric mode shapes

ψ(x) = c

[
1 − 2x − cosλx + 2

λ
sinλx

]
(24)

because

1 − cosλ

λ − sinλ
= 2 sin2 λ

2

2 tan λ
2 − 2 sin λ

2 cos λ
2

= sin λ
2 cos λ

2

1 − cos2 λ
2

= cot
λ

2
= 2

λ
.

To this point, the buckled configuration ψ(x) satis-
fies the boundary conditions, but there is a condition
that has not been satisfied yet; that is, the relation

λ2 = P − Γ = P − 1

2

∫ 1

0
ψ ′2 dx. (25)

Substituting (19) into (25), making use of (18), and
using trigonometric identities, we obtain

λ2 = P − 1

4
c2λ2 or c = ±2

√
P

λ2
− 1. (26)

Thus, for a given axial load P , the constant c cor-
responding to any eigenvalue λ can be determined,
and hence its corresponding buckled shape can be ob-
tained. To show a numerical example, let P = 10π2

that is beyond the second critical buckling load, the
constant c corresponding to the first and second buck-
led shapes is given by ±2.4495 and ±0.4924, respec-
tively. The corresponding buckled shapes can then be

expressed as

ψ1(x) = ±2.4495(1 − cos 2πx),

ψ2(x) = ±0.9424

(
1 − 2x − cosλ2x + 2

λ2
sinλ2x

)

where λ2 = 8.9868.
We show in Appendix A that the buckled mode

shapes satisfy the orthogonality condition

∫ 1

0
ψ ′

1ψ
′
2 dx = 0 (27)

where ψ1 and ψ2 are two mode shapes corresponding
to the different eigenvalues λ1 and λ2, respectively.
This orthogonality condition holds for all boundary
conditions treated in this paper.

In the case of fixed–hinged beams, (10) is replaced
with

ψ = 0 and ψ ′ = 0 at x = 0, (28)

ψ = 0 and ψ ′′ = 0 at x = 1. (29)

It follows from (13), (28), and (29) that

ψ(x) = c

[
1 − x − cosλx + sinλx

sinλ

]
(30)

where

sinλ − λ cosλ = 0. (31)

Again, substituting (30) into (25) and using (31)
yields (26).

In the case of hinged–hinged beams, (10) is re-
placed with

ψ = 0 and ψ ′′ = 0 at x = 0,1. (32)

Then the characteristic equation becomes

sinλ = 0 (33)

yielding the critical buckling loads m2π2, where m is
an integer. Hence, the mode shapes are given by

ψ(x) = c sin(mπx). (34)

Substituting (34) into (25) yields the same postbuck-
ling relation given by (26). Surprisingly, the constant
c for all of the boundary conditions is related to the
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Table 1 Critical buckling loads for various boundary conditions

Boundary conditions Fixed–Fixed Fixed–Hinged Hinged–Hinged

Characteristic equation 2 − 2 cosλ − λ sinλ = 0 λ cosλ − sinλ = 0 sinλ = 0

λ2/π2 4,8.18,16,24.19 2.05,6.05,12.05,20.05 1,4,9,16

Fig. 1 Bifurcation diagram
for the static deflection of a
fixed–fixed beam at
x = 0.25 with the axial load
showing the first three
buckled configurations

applied axial load P by the same relation, (26). In Ta-
ble 1, we list the lowest four critical buckling loads
and the corresponding characteristic equations.

In Fig. 1, we show the static bifurcation diagram
for the first three buckled configurations of a fixed–
fixed beam, where we plot the deflection at one-fourth
of the span against the axial load. As the axial load
exceeds the first critical buckling load, P1 = 4π2, the
straight position loses stability and the beam buckles.
As the axial load is increased beyond the second crit-
ical buckling load, P2 = 8.18π2, the beam has three
equilibria: the straight configuration, which is unsta-
ble, and two others corresponding to the first and sec-
ond buckled configurations. The stability of the lat-
ter equilibria are determined in the next section. We
emphasize that these buckled configurations are exact.
As the axial load is increased beyond the third criti-
cal buckling load, P3 = 16π2, the beam exhibits three
nontrivial equilibria corresponding to the three buck-
led configurations as shown in Fig. 1.

To relate the critical buckling load to the frequen-
cies of vibrations around the undeflected position, we
solve the linear vibration problem given by (5) and
(6), where the damping, forcing, and nonlinear terms
are neglected. Figure 2 shows variation of the lowest

three natural frequencies with the axial load. We note
that as the axial load reaches the first critical buckling
value, the first natural frequency approaches zero, and
hence the undeflected position becomes unstable. Be-
yond this critical buckling load, the straight configura-
tion loses stability and the beam acquires another sta-
ble equilibrium positions, which are the buckled con-
figurations. Similar trends are obtained for the higher
buckling modes. This result is well known in the litera-
ture; however, we present it here to eliminate any con-
fusion that might arise when we present the frequen-
cies of vibration around the buckled configurations. In
the latter case, the vibration frequencies increase as the
axial load is increased, as shown in the next section.

4 Stability of buckled configurations

To investigate the dynamic stability of a buckled con-
figuration, we introduce a small disturbance and de-
termine the time evolution of that disturbance. To this
end, we let

w(x, t) = ψ(x) + v(x, t) (35)
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Fig. 2 Variation of the
lowest three natural
frequencies around the
undeflected position with
the axial load for a
fixed–fixed beam

where v(x, t) is a small dynamic disturbance around
the buckled configuration ψ(x). Substituting (35) into
(5) and (6) and using (9) and (10), we obtain for fixed–
fixed beams

v̈ + viv + λ2v′′ + μv̇

= ψ ′′
∫ 1

0
ψ ′v′ dx + 1

2
ψ ′′

∫ 1

0
v′2 dx

+ v′′
∫ 1

0
ψ ′v′ dx + 1

2
v′′

∫ 1

0
v′2 dx

+ F cosΩt, (36)

v = 0 and v′ = 0 at x = 0,1. (37)

The linear free vibration problem can be obtained
by dropping the nonlinear, damping, and forcing terms
from (36); the result is

v̈ + viv + λ2v′′ = ψ ′′
∫ 1

0
ψ ′v′ dx. (38)

We let

v(x, t) = φ(x)eiωt (39)

where ω is a natural frequency and φ(x) is its corre-
sponding mode shape. Substituting (39) into (38) and
(37), we obtain

φiv + λ2φ′′ − ω2φ = ψ ′′
∫ 1

0
ψ ′φ′ dx, (40)

φ = 0 and φ′ = 0 at x = 0,1. (41)

Equation (40) is a nonhomogeneous fourth-order
ordinary-differential equation with constant coeffi-
cients whose general solution can be expressed as

φ(x) = φh(x) + φp(x) (42)

where the homogeneous solution φh is governed by

φiv
h + λ2φ′′

h − ω2φh = 0 (43)

and the particular solution φp is governed by

φiv
p + λ2φ′′

p − ω2φp

= ψ ′′
∫ 1

0
ψ ′φ′

h dx + ψ ′′
∫ 1

0
ψ ′φ′

p dx. (44)

The general solution of (43) can be expressed as

φh(x) = d1 sin s1x + d2 cos s1x + d3 sinh s2x

+ d4 cosh s2x (45)

where the di are constants and

s1,2 =
[
±1

2
λ2 + 1

2

√
λ4 + 4ω2

] 1
2

. (46)

Because the second integral on the right-hand side of
(44) is constant for given ψ(x) and φp(x), a particular
solution of (44) has the form

φp(x) = d5ψ
′′. (47)
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Substituting (47) into (44) yields

d5
(
ψvi + λ2ψiv

) − d5ω
2ψ ′′

= ψ ′′Λ + d5ψ
′′
∫ 1

0
ψ ′ψ ′′′ dx (48)

where

Λ =
∫ 1

0
ψ ′φ′

h dx (49)

is a constant.
We note that the term between the parenthesis on

the left-hand side of (48) vanishes identically by virtue
of (12). As a result, (48) reduces to

Λ + d5

(
ω2 +

∫ 1

0
ψ ′ψ ′′′ dx

)
= 0. (50)

There are two possibilities: either Λ = 0 or Λ �= 0.
In the first case, the derivative of the buckling mode
shape is orthogonal to the derivative of the vibration
mode shape, and hence (50) yields either

d5 = 0 (51)

or

ω2 = −
∫ 1

0
ψ ′ψ ′′′ dx =

∫ 1

0
ψψiv dx

= −λ2
∫ 1

0
ψψ ′′ dx = λ2

∫ 1

0
ψ ′2 dx

= 1

2
λ4c2 = 2λ4

(
P

λ2
− 1

)
. (52)

When d5 = 0, the vibration mode shapes are given by
only the homogeneous solution. These are called the
even modes; they do not depend on the applied axial
load as shown below. When Λ �= 0, (50) provides an
extra equation for the constants di . We note this possi-
bility holds for all boundary conditions since it is de-
rived from the equation of motion.

The general solution of (40) can be expressed as
follows:

φ(x) = d1 sin s1x + d2 cos s1x

+ d3 sinh s2x + d4 cosh s2x + d5ψ
′′. (53)

Applying the boundary conditions, given by (41), we
obtain

d2 + d4 + d5cλ
2 = 0, (54)

s1 d1 + s2 d3 − d5cλ
2
[
λ(1 − cosλ)

λ − sinλ

]
= 0, (55)

d1 sin s1 + d2 cos s1 + d3 sinh s2

+ d4 cosh s2 + d5cλ
2
[

cosλ − sinλ
1 − cosλ

λ − sinλ

]
= 0,

(56)

d1 s1 cos s1 − d2 s1 sin s1

+ d3 s2 cosh s2 + d4 s2 sinh s2

− d5cλ
2
[
λ sinλ + λ

cosλ − cos2 λ

λ − sinλ

]
= 0. (57)

Equations (54)–(57) and either (50) or (51) consti-
tute a system of five homogeneous algebraic equa-
tions for the constants di . We emphasize that this
system of equations applies for both symmetric and
antisymmetric buckling configurations. Solving this
eigenvalue problem, we obtain the natural frequencies
ω and their corresponding vibration mode shapes φ

around a buckled configuration ψ(x) due to a given
axial load P .

For a stable buckled configuration, ω2 must be pos-
itive, and hence ω is real. Therefore, to examine the
stability of the buckled configurations, we calculated
variation of the vibration frequencies with the axial
load for the three cases of fixed–fixed, fixed–hinged,
and hinged–hinged boundary conditions.

For a fixed–fixed beam, we let P = 1.0025P1,
which results in only the first bucked shape, and cal-
culated the numerical values of ω2 in two ranges:
−10,000 ≤ ω2 ≤ 0 and ω2 > 0. Searching for roots
in the first range yields only one root that is given by
ω2 = −389.636. Solving the eigenvalue problem for
its corresponding mode shape, we find out that this
negative root corresponds to a nonphysical shape; in
other words, it corresponds to a vanishing mode shape.
In the second range, the first three positive roots are
given by 2.597,1968.05, and 10,711, respectively. We
find out that all of the positive roots correspond to
physical mode shapes. As a result, we conclude that
the first buckled configuration is a stable equilibrium
position.

To investigate the stability of the second buckled
shape, we let P = 1.0025P2, which ensures the ex-
istence of the second buckled shape. In the range
−10,000 ≤ ω2 ≤ 0, we detect two negative roots:
ω2 = −581.416 and ω2 = −1630.66. Investigating
their corresponding mode shapes, we find out that
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the second negative root corresponds to a vanishing
mode shape and the first negative root corresponds to
a physical buckled shape. Therefore, the second buck-
led shape is an unstable equilibrium position.

Repeating the same procedure for the third buckled
shape, we obtain two negative roots: ω2 = −3931.52
and ω2 = −6234.18. The first root yields a physical
mode shape and as a result, the third buckled shape is
an unstable equilibrium position.

In Fig. 3(a), we show variation of the lowest four
vibration frequencies around the first buckled config-
uration with the axial load. Solid lines indicate odd
vibration modes and dotted lines indicate even ones.
For vibrations around higher-buckling modes, we note
that odd modes are not always symmetric and even
modes are not always antisymmetric. This is because
the first vibration mode around a buckling configura-
tion is similar in shape to that buckled configuration;
that is, the first vibration mode around the first buck-
led configuration is symmetric and the first vibration
mode around the second buckled configuration is anti-
symmetric. This is expected since we deal with small
vibrations, which are close to the buckled configura-
tion they vibrate around.

Figures 3(b) and 3(c) show variation of the low-
est vibration frequencies around the second and third
buckled configurations with the axial load.
Figures 3(a), 3(b), and 3(c) show that internal res-
onances, such as one-to-one, two-to-one, and three-
to-one, might be activated between vibration modes
around the same buckled configuration. To investigate
the possibility of activating internal resonances be-
tween vibration modes around different buckled con-
figurations, we plot all natural frequencies, as shown
in Fig. 3(d). We note that nonlinear interactions are
possible not only among vibration modes around the
same buckled configuration, but also around different
buckled configurations. This means that we are deal-
ing with a nonlinear system having stable and unstable
equilibrium positions that might be coupled via inter-
nal resonances. This indicates that the beam exhibits
rich dynamics as the axial load exceeds the second
buckling load.

In what follows, we use two indices to identify
the natural frequencies and their corresponding mode
shapes. For example, ωij denotes the natural fre-
quency of the ith vibration mode around the j th buck-
led configuration. A quick inspection of Fig. 3 indi-
cates that a one-to-one internal resonance might be ac-
tivated between φ11 and φ12 at P = 9.5π2.

For a fixed–hinged beam, we use the same proce-
dure used for fixed–fixed beams. Demanding that the
mode shapes φ(x) satisfy the fixed–hinged boundary
conditions yields the following four equations:

d2 + d4 + c d5λ
2 = 0, (58)

d1 sin s1 + d2 cos s1 + d3 sinh s2 + d4 cosh s2 = 0,

(59)

d1s1 + d3s2 − c d5λ
2 = 0, (60)

d1s
2
1 sin s1 + d2s

2
1 cos s1

− d3s
2
2 sinh s2 − d4s

2
2 cosh s2 = 0. (61)

These equations along with either (50) or (51) con-
stitute an eigenvalue problem for the natural frequen-
cies of vibration around the buckled configurations of
fixed–hinged beams.

To investigate the stability of buckled configura-
tions of fixed–hinged beams, we let P = 1.0025P1,
and investigate the stability of the first buckled shape.
We find only one negative root that is given by ω2 =
−101.92. However, this negative root corresponds to a
vanishing mode shape. All positive roots correspond to
physical mode shapes, and as a result the first buckled
configuration is a stable equilibrium position. To in-
vestigate the stability of the second and third buckled
configurations, we increase the axial load and compute
the natural frequency ω2. In each case, we find a neg-
ative root that corresponds to a physical mode shape,
and hence the second and third buckled shapes are un-
stable equilibrium positions. Figure 4 presents varia-
tion of the natural frequencies of vibration around the
first, second, and third buckled configurations. Many
internal resonances might be activated among vibra-
tion modes around the same buckled configuration as
well as around different buckled configurations. An in-
teresting one-to-one internal resonance among three
modes, namely φ21, φ12, and φ13, of a fixed–hinged
buckled beam might be activated at P ≈ 14.6π2, as
shown in Fig. 4(d).

Similarly, the four equations satisfying the bound-
ary conditions of hinged–hinged beams are given by

d2 + d4 = 0, (62)

d2s
2
1 − d4s

2
2 = 0, (63)

d1 sin s1 + d2 cos s1 + d3 sinh s2

+ d4 cosh s2 = 0, (64)
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Fig. 3 Variation of the natural frequencies of vibration around the lowest three buckled configurations of a fixed–fixed beam

d1s
2
1 sin s1 + d2s

2
1 cos s1

− d3s
2
2 sinh s2 − d4s

2
2 cosh s2 = 0. (65)

Equations (62)–(65) along with either (50) or (51)

represent an eigenvalue problem for the vibration

of hinged–hinged buckled beams. For this particular
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Fig. 4 Variation of the natural frequencies of vibration around the lowest three buckled configurations of a fixed–hinged beam

case, the eigenvalue problem yields simple formulas

for the natural frequencies and mode shapes of even

and odd modes as presented next.

For odd modes, where (50) holds, the characteristic

equation governing the natural frequency of the only

odd mode is given by
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ω2 = 1

2
c2λ4 or ω2 = 2λ4

(
P

λ2
− 1

)
. (66)

We note that ω2 is always positive because P is greater
than λ2 in the postbuckling domain. Solving for the
corresponding mode shape, we obtain

φ(x) = ψ ′′ or φ(x) = sinmπx, m = 1,2,3, . . . .

(67)

For even modes, where (51) holds, the equation
governing the natural frequencies can be obtained by
demanding that the determinant of the coefficient ma-
trix of (62)–(65) equals to zero. The result is

(
ω2 + 4λ4) sin s1 sinh s2 = 0. (68)

There are three possibilities: the first yields a negative
root that is given by

ω2 + 4λ4 = 0 or ω2 = −1

4
λ4. (69)

The second yields

sin s1 = 0 or s1 = nπ. (70)

And the third yields

sinh s2 = 0 or s2 = inπ. (71)

Substituting (70) and (71) into (46), using the fact that
λ = mπ , and solving for ω, we obtain

ω2 = n2π4(n2 − m2) (72)

where n and m are two integers denoting the vibration
mode and the buckling mode, respectively. When n >

m, ω2 is positive and (70) holds. When n < m, ω2 is
negative and (71) holds.

Solving the eigenvalue problem for the constants di

yields

d2 = d4 = 0 and d1 = − sinh s2

sin s1
d3. (73)

As a result, the mode shapes can be expressed as fol-
lows:

φ(x) = d3

(− sinh s2

sin s1
sin s1x + sinh s2x

)
. (74)

To investigate the stability of buckled configura-
tions of hinged–hinged beams, we solve for the mode

shapes corresponding to negative eigenvalues and de-
termine whether they are physical or not. For the first
case, where ω is given by (69), we obtain

s1 = 1

2
λ and s2 = 1

2
iλ (75)

where i = √−1. Substituting (75) into (74), we obtain

φ(x) = 0

which implies that this negative root corresponds to a
vanishing mode shape. For the third case, we substitute
(71) into (74) and obtain

φ(x) = sinnπx

which is physical, and hence the second and higher-
order buckling modes are unstable.

Figure 5 presents variation of the natural frequen-
cies of vibration around the first, second, and third
buckled shapes with the applied axial load for hinged–
hinged beams. Many internal resonances might be
activated among vibration modes around the same
buckled configuration and different buckled configu-
rations. A one-to-one internal resonance among the
three modes φ31, φ12, and φ13 might be activated at
P ≈ 13π2, as shown in Fig. 5(d).

5 Preliminary dynamic results

We present preliminary results for the nonlinear inter-
action between the vibration modes around the first
and second buckled configurations. As can be seen
from Fig. 3, there is a possibility of activating a one-
to-one internal resonance between the lowest vibration
modes around the first and second buckled configura-
tions at P = 9.5π2. We consider the case in which the
beam is excited with a uniform lateral harmonic force
having a frequency close to ω11; that is, the lowest
natural frequency around the first buckled configura-
tion. We found three different responses: (1) a local
attractor around the first buckled configuration, (2) a
chaotic snap-through motion among all buckled con-
figurations, including the second one, and (3) a snap-
through motion between the two second buckled con-
figurations. Snap shots of these motions are shown in
Fig. 6. We emphasize that antisymmetric modes can-
not be excited directly by the external uniform load
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Fig. 5 Variation of the natural frequencies of vibration around the lowest three buckled configurations for a hinged–hinged beam

because its projections onto these modes are zero. The

only way to excite these modes is via internal res-

onance. Therefore, these preliminary results demon-

strate the possibility of the interaction between vibra-

tion modes around different buckled configurations.

These results open the door for more theoretical and
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Fig. 6 Snap shots of the dynamic displacement w(x, t) showing the interaction between vibration modes around different buckled
configurations

experimental exploration of the complex and rich dy-
namics of buckled beams.

6 Conclusions

We presented an exact solution for the postbuckling of
fixed–fixed, fixed–hinged, and hinged–hinged beams

taking into account the geometric nonlinearity arising

from midplane stretching. A closed-form expression is

obtained for the postbuckling configuration as a func-

tion of the applied axial load. The critical buckling

loads and their associated mode shapes are obtained

as a byproduct.
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We investigated the dynamic stability of the buck-
ling modes of beams with various boundary condi-
tions. We found out that the first buckling mode is
a stable equilibrium position for all boundary condi-
tions. Buckled configurations beyond the first bucking
mode of fixed–fixed, fixed–hinged, and hinged–hinged
beams are found to be unstable equilibrium positions.
As a result, when the applied axial load goes beyond
the second buckling load, the beam exhibits stable and
unstable equilibrium positions, and hence it has a rich
and complex dynamics. We calculated the lowest nat-
ural frequencies of vibration around each of the first
three buckled configurations. We found out that many
internal resonances might be activated among vibra-
tion modes not only around the same buckled con-
figuration, but also around different buckled configu-
rations. We presented preliminary results for the dy-
namic response in the case of a one-to-one internal
resonance between the first vibration modes around
the first and second buckled configurations of a fixed–
fixed beam. The results demonstrate that energy is
being continuously exchanged between these coupled
modes. These results open the door for further investi-
gations into the rich and complex dynamics of buckled
beams.
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Appendix A: Orthogonality condition for the
buckling problem

We derive the orthogonality condition for the buckling
problem. We let ψ1 and ψ2 be the two buckled mode
shapes corresponding to the two buckling eigenvalues
λ1 and λ2, respectively. Then it follows from (12) that

ψiv
1 + λ2

1ψ
′′
1 = 0, (76)

ψiv
2 + λ2

2ψ
′′
2 = 0. (77)

Multiplying (76) with ψ2 and (77) with ψ1, subtract-
ing the results, and integrating the outcome over the
domain, we obtain

∫ 1

0

(
ψ2ψ

iv
1 + λ2

1ψ2ψ
′′
1 − ψ1ψ

iv
2 − λ2

2ψ1ψ
′′
2

)
dx = 0.

(78)
Integrating (78) by parts, we have

[
ψ2ψ

′′′
1 − ψ ′

2ψ
′′
1 − ψ1ψ

′′′
2 + ψ ′

1ψ
′′
2 + λ2

1ψ2ψ
′
1

− λ2
2ψ1ψ

′
2

]1
0 + (

λ2
2 − λ2

1

)∫ 1

0
ψ ′

1ψ
′
2 dx = 0. (79)

The term in brackets vanishes for boundary conditions
of the fixed–fixed, fixed–hinged, and hinged–hinged
beams. Hence,

(
λ2

2 − λ2
1

)∫ 1

0
ψ ′

1ψ
′
2 dx = 0. (80)

When λ2 �= λ1, (80) yields the orthogonality condition

∫ 1

0
ψ ′

1ψ
′
2 dx = 0. (81)
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