
Nonlinear Dyn (2008) 53: 89–106
DOI 10.1007/s11071-007-9298-y

O R I G I NA L PA P E R

Nonlinear vibration of shallow cables with semiactive tuned
mass damper

Fabio Casciati · Filippo Ubertini

Received: 18 December 2006 / Accepted: 23 August 2007 / Published online: 29 September 2007
© Springer Science+Business Media B.V. 2007

Abstract The nonlinear vibration of shallow cables,
equipped with a semiactive control device is consid-
ered in this paper. The control device is represented
by a tuned mass damper with a variable out-of-plane
inclination. A suitable control algorithm is designed
in order to regulate the inclination of the device and
to dampen the spatial cable vibrations. Numerical
simulations are conducted under free spatial oscilla-
tions through a nonlinear finite element model, solved
in two different computational environments. A har-
monic analysis, in the region of the primary resonance,
is also performed through a control-oriented nonlinear
Galerkin model, including detuning effects due to the
cable slackening.
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Abbreviations
x, y, z, s Reference axes and curvilinear

abscissa
t , τ , χ Time, normalized time and
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C0, C1 Cable static and varied

configurations
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u, v, w Cable displacements functions
d , l Cable sag and cable span
E, S Elastic modulus and cross section
H Cable horizontal reaction
μ, cv , cw Mass and damping coefficients per

unit length
py , pz Distributed in-plane and

out-of-plane loads
ē Constant Lagrangian measure of

strain
ωiv , ωiw In-plane and out-of-plane natural

circular frequencies
piv , piw, Ω Normalized modal loads and

circular frequency
qv
i , qw

i In-plane and out-of-plane modal
coordinates

nv , nw Number of in-plane and
out-of-plane modes retained in the
Galerkin models

a0ij , a1i , a2j Coefficients of the Galerkin models
a3i , b1j , b2ij , b3k Coefficients of the Galerkin models
ξv
i , ξw

i Damping coefficients in the
Galerkin models

U, �U Vectors of nodal displacements in
FEM models

σ, σ̃ Error and error tolerance in the
FEM procedure

n Number of unconstrained nodes in
the FEM models

m, c, k Mass, damping coefficient and
stiffness of the TMD
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ξd , ωd Damping ratio and circular
frequency of the TMD

ι, ω Imaginary unit and complex
circular frequency

β Fundamental complex eigenvalue
ω0 First in-plane circular frequency of

a cable without sag
α, ε In-plane and out-of-plane TMD

inclinations
x0, r Position and local axis of the TMD
R Length of the TMD
η0, V Cable and TMD displacements
ξ , ζ Control forces
γ Mass ratio of the cable-TMD

system
α̃ Scalar parameter of the time

integration scheme
gε1, gε2 Control gains
ψ , ν, λ2 Nondimensional cable parameters
f v

i , f w
i Cable natural frequencies

vm, wm Cable mid-span displacements
v1q , w3q Cable observed displacements
αC , βC Rayleigh damping matrix

parameters
q̄w

1 , q̄w
2 Estimates of the first two

out-of-plane modal amplitudes

1 Introduction

Steel cables are structural elements adopted in sev-
eral engineering applications, such as suspension and
cable-stayed bridges, off-shore platforms, transmis-
sion power lines and other cable-supported structures.
Environmental excitations, such as wind, bridge traf-
fic, rain-wind interaction, etc., may result in large am-
plitude cable vibrations, since the cables show mod-
est damping properties. Vibrations can also result in
cable or connection failures due to fatigue, as well
as in a damaging of the corrosion protection system.
Such vibrations mainly involve the first in-plane and
out-of-plane modes. Nevertheless, modal interactions
and coupling phenomena may also involve higher or-
der modes, due to quadratic and cubic nonlinearities
in the equations of motion. These aspects were widely
investigated in the literature and were summarized in
two recent review articles by Rega [1, 2]. The former
[1] is mainly focused on cable dynamics modeling,
while the latter [2] deals with deterministic nonlinear

phenomena that arise in the cable motion. The well-
known bifurcation of the first in-plane mode into a
bi-modal spatial oscillation was analyzed in the paper
by Larsen and Nielsen [3], while multi-modal inter-
actions under parametric external excitation were in-
vestigated by Perkins [4]. When internal resonances
occur, those nonlinear phenomena are even enhanced,
as pointed out by Nayfeh et al. [5] and by Benedettini
et al. [6].

The behavior of an arbitrarily sagged cable can
be modeled as a prestressed mono-dimensional lin-
early elastic continuum with no flexural, torsional or
shear stiffness, as early outlined by Luongo et al. [7].
Different elastic cable theories were developed refer-
ring to either small-sag or large-sag cables. In the for-
mer case, the analytical continuum formulation is sim-
plified by the parabolic assumption, as outlined by
Benedettini et al. [6], while in the latter case discrete
formulations and numerical methods are mostly used.
Nearly all of the cable discrete models available in
the literature were formulated through a space dis-
cretization based on the Galerkin approach. This is-
sue is addressed by expanding the displacement func-
tions in the space of the linear eigenfunctions, early
obtained in the paper by Irvine and Caughey [8]. By
retaining a finite number of degrees of freedom (modal
amplitudes), the cable dynamics are thus described by
a system of nonlinear ordinary differential equations
(ODEs). The approximations contained in such proce-
dures can be anyway in conflict with the complex phe-
nomena under study. A fairly systematic analysis of
the influence of the number of modes retained in the
discrete model on the accuracy of the predicted non-
linear response was carried out by Arafat and Nayfeh
[9]. Among the numerical approaches, many papers
focused on the finite element method (FEM) applied
to cable modeling in the framework of large displace-
ments (e.g., Desai et al. [10, 11]). A comparison be-
tween the analytical Galerkin models and the com-
putational approach based on FEM models, was con-
ducted by Gattulli et al. [12], by adopting the FEM ca-
ble representation proposed by Desai [10]. This com-
parison showed the ability of the FEM procedure to
capture most of the coupling and bifurcation phenom-
ena occurring in the cable response. In Ref. [12], it was
also underlined that a richer FEM model could even
be adopted to verify the basic hypotheses and the suit-
able dimension of the reduced analytical model. The
use of finite element cable models also proved to be
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effective in reproducing the experimental behavior of
wind-excited suspended cables [13, 14].

In order to study an effective control strategy to re-
duce the cables vibrations, a particular attention has
to be devoted to nonlinear phenomena. In particular,
an additional damping in the first out-of-plane mode is
of extreme importance in order to prevent out-of-plane
bifurcations from occurring. This issue was deeply an-
alyzed in the literature (e.g., [15–22]), albeit many pa-
pers limited to the case of planar vibrations control
(e.g., [23–27]). A very promising active control solu-
tion, able to reduce both in-plane and out-of-plane vi-
brations, is based on the motion of one cable support.
It was proposed by Susumpow and Fujino [16] and
was investigated in more recent papers [17–19]. Less
expensive solutions are represented by passive and
semi-active strategies. Among those, passive dampers
mounted transversely to the cable represent probably
the most applied solution to dampen in-plane vibra-
tions. References on this topic may be found in [20, 21,
25–27]. The two papers by Xu and Yu [20, 21], in par-
ticular, focused on nonplanar vibrations control, while
the paper by Abdel–Rohman and Spencer [27] dealt
with the mitigation of vertical cable vibrations due
to wind-induced galloping. Passive viscous dampers
were also applied to many cable stays, although the
damper location was typically restricted to the area
close to the bridge deck, and this actually reduced the
damping effect. A way to increase the control effec-
tiveness, when the damper is close to one anchor, is
represented by the use of semiactive dampers. This is-
sue was addressed by Zhou et al. [22] in the case of
spatial cable vibrations. Passive tuned mass dampers
(TMDs), attached transversely to the cable, were early
introduced by Claren and Diana [23]. References to
more recent papers on this issue are given in [24, 28–
31]. Those devices represent a valid control solution
from many points of view. First of all, the position of
the devices is not restricted to be close to the anchors.
Moreover, their cost is very low if compared to any
one of the semiactive or active solutions. On the other

side, a single passive TMD device does not exert out-
of-plane forces: this does not allow to introduce addi-
tional damping in the out-of-plane direction. Besides,
the TMD is particularly effective only when the cable
vibrates with a well-defined frequency, which usually
is the one of the first mode. In order to circumvent
these limitations and to enlarge the frequency spec-
trum of control effectiveness, semiactive TMDs were
proposed in the literature [32]. Within this framework,
the concept of variable inclination TMD was intro-
duced, in Ref. [33], to reduce the spatial cable vibra-
tions under the action of a turbulent wind.

In this paper, the well-known passive control solu-
tion, based on the use of in-plane TMDs, is extended to
mitigate the spatial vibrations of shallow cables. This
is obtained by adopting a variable out-of-plane inclina-
tion TMD attached transversely to the cable at an inter-
mediate point. A simple control algorithm is adopted
to regulate the out-of-plane inclination of the TMD.
The effectiveness of the proposed control strategy is
analyzed by means of numerical simulations, through
a FEM formulation and a reduced discrete control-
oriented analytical model. Results of both free and har-
monically forced vibrations are presented. A detuning
analysis toward the first crossover, is also carried out
in order to investigate the robustness of the proposed
approach against cable slackening.

2 Governing relations

2.1 Uncontrolled equations of motion

The nonlinear motion of a suspended cable hanging
in the vertical plane Oxy is considered (see Fig. 1).
This problem is very well known in the technical liter-
ature, since a lot of papers exist that discuss the non-
linear cable dynamics. Therefore, only a brief intro-
duction to such a problem is given here. The cable is
modeled as a mono-dimensional linearly elastic con-
tinuum with no flexural, torsional or shear rigidities.

Fig. 1 Cable static and
dynamic varied
configurations
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The supports are placed at the same vertical level and
a small sag d to span l ratio is assumed. Under these
hypotheses, the infinitesimal curvilinear abscissa el-
ement ds can be approximated by dx and the sta-
tic configuration C0, described by the function Y(x),
assumes the well-known parabolic profile. The dis-
placements u(x, t), v(x, t) and w(x, t), in the coordi-
nate directions, describe the dynamic varied configura-
tion C1. The equations of motion are thus represented
by three partial differential equations in the unknown
functions u(x, t), v(x, t) and w(x, t), as early outlined
by Benedettini et al. [6]. A further well-known simpli-
fication can be made by eliminating the longitudinal
component u(x, t), as described in the review paper
by Rega [1]. In such a case, a constant strain measure
ē(t) is defined, which is obtained by integrating along
the cable the second-order truncation of the elonga-
tion. The cable dynamics are thus governed by the fol-
lowing condensed system of two integral-differential
equations:

μv̈ + cvv̇ − [
Hv′ + ES(Y ′ + v′)ē

]′ = py(x, t),

μẅ + cwẇ − [Hw′ + ESw′ē]′ = pz(x, t)
(1)

where E is the Young modulus, S is the cable cross
section, H is the horizontal reaction at the two ends, μ,
cv , cw are the mass and damping coefficients per unit
length, and py(x, t) and pz(x, t) are the distributed in-
plane and out-of-plane loads, respectively. In (1), a dot
and a prime denote derivatives with respect to the time
t and to the abscissa x, respectively. The model is com-
pleted by homogeneous boundary conditions at x = 0
and x = l.

2.2 Reduced analytical cable model

At a first stage of investigation, a reduced nonlinear
model can be derived from (1) through the standard
Galerkin procedure. This is achieved by expanding
the cable displacements v and w in the space of the
in-plane and out-of-plane modal shapes, respectively.
The normalized time τ = t

ω1v
and abscissa χ = x

l
are

introduced, where ω1v is the natural circular frequency
of the first in-plane mode, calculated as described in
Ref. [8]. The modal coordinates qv

i and qw
k , normal-

ized with respect to the cable span l, are introduced to
write:

v(χ, τ)

l
=

∞∑

i=1

ṽi (χ)qv
i (τ ),

w(χ, τ)

l
=

∞∑

k=1

w̃k(χ)qw
k (τ )

(2)

where ṽi and w̃k are the i-th and k-th in-plane and
out-of-plane linear cable eigenfunctions, respectively.
A system of nonlinear ordinary differential equations
(ODEs) is then written by retaining a certain number
of modes (nv in-plane and nw out-of-plane modes), by
introducing the out-of-plane circular frequencies ωiw

and a suitable number of coefficients a0ij , a1i and a2ij :

q̈i
v + ξv

i q̇i
v +

nv∑

j=1

a0ij q
v
j

+
(

a1i +
nv∑

j=1

a2ij q
v
j

)

ē = piv, (3)

q̈i
w + ξw

i q̇i
w + ω2

iwqw
i + a3iq

w
i ē = piw.

The constant elongation term ē, in (3), is given by:

ē =
nv∑

j=1

b1j q
v
j +

nv∑

i=1,j=1

b2ij q
v
i qv

j +
nw∑

k=1

b3kq
w
k

2 (4)

and the in-plane cable circular frequencies can be ob-
tained as ω2

iv = (a0ii + a1ib1i ). The expressions of the
coefficients a0ij , a1i , a2ij , a3i , b1j , b2ij , b3k and of
the normalized modal loads piv and piw can be found
in Ref. [12]. As well known in the linear part of sys-
tem (3), off-diagonal terms a0ij + a1ib1j vanish due
to the orthogonality of the eigenfunctions. Neverthe-
less, modal couplings arise in the nonlinear part, due to
quadratic and cubic nonlinearities. Thus, as expected,
the modal coordinates introduced in (2) have a differ-
ent meaning with respect to the modes of linear mod-
els. Nevertheless, the modal coordinates are still fea-
tures of interest in describing the motion and can be
employed in a control algorithm to reduce the overall
cable vibration.
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3 Control strategy

3.1 Suspended cable with variable inclination TMD

The vibration of cables is mainly described by a few
modes. The cable motion is, therefore, controllable
when additional damping is introduced by a control
action in those modes. In linear systems, this would
require that the control force has a significant nonzero
modal component in all of those modes. In cables,
on the contrary, if the first modes (in-plane and out-
of-plane) are reduced by the control action, nonlinear
coupling terms increase the additional damping of the
higher modes. From this point of view, passive TMDs
represent a valid control solution, also thanks to their
low cost if compared to active solutions.

A transverse TMD is applied here to reduce the
in-plane cable vibrations (see Fig. 2a). The device is
tuned on the frequency of the first mode and the damp-
ing coefficient is set to the optimum value. The posi-
tion of the device is selected at x0 = l/4, where both
the first symmetric and the first anti-symmetric modes
have a nonzero modal component. The control device

is designed to have a variable inclination ε in the Oyz

plane (see Fig. 2b). In this way, the TMD exerts on the
cable a force that has, in general, an in-plane compo-
nent ξ and an out-of-plane one ζ . The inclination ε is
then regulated by a semiactive strategy, as explained
in the following. The axis r of the TMD is adopted
as the local reference system (see Fig. 2b). The angle
between r and the vertical axis y in the Oxy plane is
denoted by α. The relative displacement V between
the mass m and the cable node is aligned with r . As
shown in Fig. 2b, it is positive when the mass and the
cable node approach each to the other. The initial dis-
tance (V = 0) between the mass and the cable is de-
noted by R. Thus R − V is the distance at the general
configuration (V �= 0).

3.2 Controlled equations of motion

Under the hypothesis of small-sagged cable, it is pos-
sible to assume cos(α) ∼= 1 and sin(α) ∼= 0. Conse-
quently, the horizontal in-plane component of the con-

Fig. 2 Cable equipped
with a semiactive TMD (a);
plane projections of the
TMD device with local
reference system (b)
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Fig. 3 Accelerations of the
TMD (a); control forces (b)

trol force is negligible, while the (vertical) in-plane
and out-of-plane control forces read as:

ξ(t) = [kV + cV̇ ] cos(ε),

ζ(t) = [kV + cV̇ ] sin(ε).
(5)

The forces ξ and ζ can thus be introduced in the
condensed model, by means of the Dirac δ-function
δ(x − x0), leading to the following equations of mo-
tion:

μv̈ + cvv̇ − [
Hv′ + ES(Y ′ + v′)ē

]′

= py(x, t) + ξ(t)δ(x − x0),
(6)

μẅ + cwẇ − [Hw′ + ESw′ē ]′
= pw(x, t) + ζ(t)δ(x − x0)

with homogeneous boundary conditions at x = 0 and
x = l. As mentioned previously, x0 = l/4 is the TMD
position.

The main effect of the TMD is to exert a force along
the r direction. The motion of m along such a direction
is represented in Fig. 3a, where the local acceleration
V̈ is summed with the transport acceleration η̈0 of the
node at x = x0, projected along the r direction. The
motion of m is then described by the following equa-
tion (see Fig. 3b):

m
(
V̈ + η̈0 + (R − V )ε̇2) = −cV̇ − kV (7)

where the right-hand side represents the total control
force along r . Equation (7) is written under the only
hypothesis that the weight of the small mass is negligi-
ble with respect to the other forces involved, as usually
assumed in the literature concerning TMD dampers on
cables (see, for example, [24, 29–31] among others).
As expected, this assumption is valid for very small

m and rather taut cables. It is verified in Sect. 4.2 for
the case study. The term V ε̇2 in (7) may also be ne-
glected, as a higher order term with respect to Rε̇2.
This hypothesis is assumed in the following develop-
ments and verified in Sect. 4.2.

3.3 Reduced analytical and FEM models of the
controlled cable

The presence of the control force produces a change
in the natural frequencies and in the modal shapes ṽi

and w̃i calculated by Irvine’s theory [8]. The problem
is analyzed in the Appendix, where the free in-plane
vibrations of a general cable with a passive TMD, an-
chored at x = x0, are considered. As shown there, the
modification introduced in the system is small when
the ratio γ = m

μl
between the mass of the TMD and

the mass of the overall cable tends to zero. Never-
theless, a significant change in the modal shape and
modal frequency of the first mode (to which the TMD
is tuned) should be expected, even with small γ , as x0

approaches the value l/2.

3.3.1 Reduced analytical model

The modification introduced by the TMD in the sys-
tem must be taken into account in the reduced Galerkin
model, in order to get a high numerical accuracy. To
this end, the modal shapes and the natural frequen-
cies, modified by the presence of the TMD, are con-
sidered to expand v and w. A control-oriented ana-
lytical model is thus obtained, in which four in-plane
and four out-of-plane modes are retained. The control
forces are introduced in the system by means of their
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modal components:

q̈i
v + ξv

i q̇i
v +

nv∑

j=1

a0ij q
v
j +

(

a1i +
nv∑

j=1

a2ij q
v
j

)

ē

= piv + cv
i ξ(τ ), (8)

q̈i
w + ξw

i q̇i
w + ω2

iwqw
i + a3iq

w
i ē = piw + cw

i ζ(τ )

where the coefficients cv
i and cw

i are calculated as:

cv
i = 1

μlω2
1v

∫ 1
0 δ(χ − χ0)φi(χ)dχ

∫ 1
0 φ2

1(χ)d(χ)

= 1

μlω2
1v

φi(χ0)
∫ 1

0 φ2
1(χ)dχ

,

cw
i = 1

μlω2
1v

∫ 1
0 δ(χ − χ0)ψi(χ)dχ

∫ 1
0 φ2

1(χ)dχ

= 1

μlω2
1v

ψi(χ0)
∫ 1

0 φ2
1(χ)dχ

(9)

and χ0 = x0/l. The analytical model described by (8)
is utilized in Sects. 4.4 and 4.5 to investigate the damp-
ing effect of the proposed control strategy under forced
harmonic vibrations and to analyze detuning effects.

3.3.2 FEM model

As discussed in Sect. 2.2, reduced Galerkin models ap-
ply to shallow cables for which the condensation hy-
pothesis can be made. A way to circumvent such a
limitation is represented by the FEM method, which
applies to arbitrarily sagged cables, even when sub-
jected to horizontal external forces. Within this paper,
the FEM approach described by Cluni et al. [13] is
adopted and the cable is described by a finite number
n of three-dimensional nonlinear trusses. By denoting
with U = (u1, v1,w1, . . . , un, vn,wn)

T ∈ R
3(n+1) the

vector of nodal displacements, the well-known equa-
tions of motion are derived following the classical up-
dated Lagrangian approach, in the framework of large
displacements and small strains. A Rayleigh damping
matrix is assumed in those equations, with mass coeffi-
cient αC and stiffness coefficient βC . The time integra-
tion of the system of ODEs is carried out through the
Hilber–Hughes–Taylor algorithm [36] and the numer-
ical solution at the generic time t + �t is calculated
through the Newton–Raphson scheme, with a linear
initial estimate of the vector of restoring forces. The

vector of displacement increments �U(t +�t) is thus
calculated iteratively until the error σk at the k-th iter-
ation satisfies:

σk =
√∣

∣∣∣
δUkT

δUk

UkT Uk

∣
∣∣∣ < σ̃ (10)

where �U(t + �t) = ∑k
i=1 δUi and σ̃ is a given tol-

erance. The above described method is second order
accurate and the conditions for its stability are given
in Ref. [36].

Two finite element models are implemented within
this paper, following the steps described above. The
former is written in the Ansys CivilFem environ-
ment [34] (ACF model) and considers the only in-
plane TMD (ε(t) = 0), reproduced through a specific
visco-elastic element without neglecting the weight of
the mass m. Since the variable inclination TMD can
hardly be implemented in a commercial environment,
a FEM model of controlled cable is also written in the
MatLab environment [35] (MTL model), with no re-
strictions on the device inclination ε. In such a model,
the motion of the small mass m is calculated through
a second order finite difference discretization of (7),
under the hypothesis of neglecting the term V ε̇2:

V (t + �t)

=
(

1 + c�t

2m
+ k�t2

m

)−1(
2V (t) +

(
c�t

2m
− 1

)

× V (t − �t)

− �t2
(

η̈0 + R

(
ε(t + �t) − ε(t − �t)

2�t

)2))
.

(11)

As already observed in the case of (7), (11) is writ-
ten under the assumption that the weight of the small
mass m is negligible with respect to the other forces
involved. Such an assumption is verified in Sect. 4.2
for the case study, by means of a comparison with the
ACF model. The inclination ε(t +�t) is calculated, at
any time step, according to the feedback control law
introduced in Sect. 3.4 and the control forces are cal-
culated as described by (5). It is worth noting that all
the three components of the control forces are consid-
ered either in the ACF or in the MTL models, since the
hypothesis of small angle α is not required in the FEM
formulation.

A total number n = 11 of unconstrained nodes is
considered to discretize the cable, leading to a 33 de-
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grees of freedom system. The initial static configura-
tion C0 (reference condition) is achieved by assign-
ing the self-weight to the nodes in a quasi-static way,
starting from a parabolic shape. The ACF and MTL
models give almost similar results, as briefly discussed
in Sect. 4.2. The former is adopted in order to com-
pare the (numerical) natural frequencies of the cable-
TMD system with those analytically obtained in Ap-
pendix. The latter approach (MTL) is then utilized, in
Sect. 4.3, in order to show the damping properties of
the proposed control strategy under free spatial vibra-
tions.

3.4 Control law

A inner in-plane TMD is considered herein in order
to investigate its behavior when the out-of-plane in-
clination is regulated. In-plane control of cable vibra-
tions, utilizing passive TMDs, has been deeply inves-
tigated in the literature and its effectiveness is shown
in Refs. [21, 24, 28–31]. The small degradation of the
in-plane control performance, due to the out-of-plane
inclination, is pointed out in Sect. 4 and justifies the
use of the linear TMD. A mass ratio γ < 2% is as-
sumed, in order to have a small modification of the
dynamic properties of the system. The effectiveness
of the TMD is, therefore, maximum for the first mode
and decreases as the modal order increases. Neverthe-
less, a damping increment is expected even in higher
modes.

As already specified, the variable inclination ε is
employed to control the out-of-plane vibrations, by
means of the control force ζ(t) = [kV (ε) + cV̇ (ε)] ×
sin(ε). The dependence of V and its derivatives on ε

is expressed by (7). The following linear velocity feed-
back is here considered in order to regulate ε:

ε = gε1 · ˙̄qw

1 + gε2 · ˙̄qw

2 (12)

where gε1 and gε2 are user-defined control gains and
q̄w

1 and q̄w
2 represent two estimates of the first and the

second out-of-plane modal amplitudes, as defined in
the following. The interval 0 < ε(t) < π has to be con-
sidered to limit the values of ε. By substituting (7) into
the expression of ζ one obtains:

ζ(t) = −m
(
V̈ (ε, t) + η̈0(ε, t) + (R − V )ε̇2) sin(ε).

(13)

In order to justify the damping capability of (13), let
us consider its expression for small ε, by adopting the

approximation sin ε ∼= ε and by assuming that the first
order approximations of V̈ and η̈0 do not depend on ε:

ζ ∼= −m
(
V̈ + η̈0 + (R − V )ε̇2)ε + O

(
ε3). (14)

Putting (12) into (14), one obtains:

ζ ∼= −m
(
V̈ + η̈0 + (R − V )

(
gε1 · ¨̄qw

1 + gε2 · ¨̄qw

2

)2)

× (
gε1 · ˙̄qw

1 + gε2 · ˙̄qw

2

)
. (15)

Equation (15) represents the feedback out-of-plane
control force, evaluated for small ε. It contains the
derivative terms ˙̄qw

1 and ˙̄qw

2 , which can have a well-
known damping effect [16, 17]. Nevertheless, even
when ε is small, (15) is nonlinear due to the presence
of quadratic terms in the modal accelerations. More-
over, when ε is large, nonlinearity of the control ac-
tion is enhanced by the dependence of V̈ and η̈0 on
ε and the approximation sin(ε) ∼= ε becomes inade-
quate. These considerations allow to classify ζ as gen-
erated by a nonlinear velocity feedback. Within this
framework, polynomial control laws were applied and
discussed in Ref. [19], where the effectiveness of a
nonlinear velocity feedback is shown for out-of-plane
cable vibrations mitigation, through longitudinal con-
trol.

Within the semiactive strategy described by (12),
two monitored points are here considered. A proper
positioning of such nodes is required so as to have
the first two out-of-plane modes observable. The mon-
itored points are placed at x = l/4 and x = 3l/4 and
the corresponding out-of-plane displacements w1q and
w3q are observed. Their expression in terms of nor-
malized modal amplitudes is given by (2). By trun-
cating this expression at the second order out-of-plane
mode, one obtains:

w1q
∼= l · (w̃1(1/4)q̄w

1 + w̃2(1/4)q̄w
2

)
,

w3q
∼= l · (w̃1(3/4)q̄w

1 + w̃2(3/4)q̄w
2

)
.

(16)

In the uncontrolled case, the following relations hold
true between the out-of-plane mode shapes: w̃1(1/4) =
w̃1(3/4) and w̃2(1/4) = −w̃2(3/4). Since the control
device produces no modifications on w̃1 and w̃2, those
assumptions are true also in the controlled case. The
estimates q̄w

1 and q̄w
2 can thus be obtained by sum-
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mation and subtraction of the two equations (16), as
outlined in Ref. [18]:

q̄w
1

∼= w1q + w3q

l · (w̃1(1/4) + w̃1(3/4))
,

q̄w
2

∼= w1q − w3q

l · (w̃2(1/4) − w̃2(3/4))
.

(17)

4 Numerical example

4.1 The case study

The results described in Sects. 4.2, 4.3, 4.4 and 4.5
are referred to a sample cable C1 with the nondi-
mensional parameters: ψ = EA/H = 10970 and ν =
d/l = 0.0064. These values of the parameters ψ and ν

correspond to a value of the stiffness nondimensional
Irvine parameter λ2 = 2.76π2. Since λ2 < 4π2, the
cable C1 is on the left of the first crossover point. This
means that the first in-plane symmetric mode has a fre-
quency f v

1 that is lower than the frequency of the first
antisymmetric mode f v

2 and that the cable remains
in tension for any amplitude of vibration. A mass ra-
tio γ = 0.018 is assumed to design the TMD device,
which is tuned on the first in-plane cable frequency.

The presence of the passive in-plane TMD pro-
duces a small change in the first two in-plane modal

shapes, as described in the Appendix, while higher or-
der eigenfunctions are practically identical either with
or without the passive TMD. The difference between
the first two in-plane controlled and uncontrolled
eigenfunctions, normalized to the absolute maximum
value, is shown in Figs. 4a and b. The Rayleigh damp-
ing matrix of the cable C1 is calculated with the values
αC = 0.027 and βC = 0.0004, which correspond to
the modal damping ratios ξi summarized in Table 1.
In the following developments, the results refer to vm

and wm, which are the mid-span vertical and out-of-
plane cable displacements, respectively.

4.2 Models validation

In order to verify the correspondence of the adopted
models, the results of some preliminary checks are
reported for the uncontrolled and controlled cases.
A comparison between the analytic and numeric nat-
ural frequencies of the cable is first performed to eval-
uate the adequateness of the mesh refinement of the
FEM models. Afterwards, the assumptions made in
Sect. 3.2 are validated to some extent.

The first 8 natural frequencies of the cable C1 are
obtained numerically, by eigenvalue analysis, in both
MTL and ACF models, at the static configuration C0.
Those values are compared to the analytical ones, cal-
culated by Irvine’s theory [8], in Table 1. The first

Fig. 4 Uncontrolled (solid
line) vs. controlled (dashed
line) eigenfunctions of the
cable C1

Table 1 Natural
frequencies of the cable C1

with and without the
passive in-plane TMD: f v

i

and f w
i denote the i-th

in-plane and out-of-plane
natural frequencies,
respectively

Mode ξi Without TMD With TMD

Analytical MTL ACF Analytical ACF

f v
1 0.0110 3.910 3.945 3.932 3.679 3.600

f v
2 0.0122 4.416 4.464 4.446 4.560 4.694

f v
3 0.0180 6.747 6.916 6.884 6.739 6.982

f v
4 0.0237 8.832 9.232 9.197 8.832 9.263

f w
1 0.0075 2.208 2.213 2.204 2.208 2.220

f w
2 0.0122 4.416 4.463 4.446 4.416 4.478

f w
3 0.0177 6.624 6.791 6.765 6.624 6.813

f w
4 0.0237 8.832 9.232 9.198 8.832 9.263
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Fig. 5 In-plane controlled
free vibrations with MTL
(black line) and ACF (grey
line) models: time domain
comparison (a), frequency
domain comparison (b);
comparison of in-plane and
out-of-plane mid-span
displacements under forced
harmonic in-plane
vibrations, by neglecting
(grey line) or retaining
(black dots) the term V ε̇2

in (7): (c), (d)

8 natural frequencies of the cable with the passive
in-plane TMD are also calculated in the ACF model.
The obtained values are compared to those analytically
given in the Appendix. A small change in the first two
in-plane natural frequencies is caused by the presence
of the TMD. Higher frequencies are practically identi-
cal between the uncontrolled and controlled cases. The
good agreement between numeric and analytical val-
ues, indicates that the adopted number of elements is
sufficient to describe the dynamics of the cable with
high accuracy.

The hypothesis of neglecting the weight of the
mass m in (7) has proved to be valid for the case un-
der study. As previously observed, such a weight is
neglected in the MTL model, while it is retained in
the ACF model. Nevertheless, the two approaches give
practically identical results, as shown, for instance, in
Figs. 5a and b, for a sample case of free in-plane os-
cillations. Both time domain and frequency domain
comparisons are reported in such a figure to confirm
the equivalence of the two models. The power spec-
tral density (PSD) function of vm is considered in the
frequency domain comparison. The term V ε̇2, that ap-
pears in (7) has also proved to be negligible for the

studied case. As an example, the relevance of such a
term is analyzed in Figs. 5c and d for a special case of
forced harmonic vibrations, in resonance with the first
in-plane mode. The forcing load has the shape of the
first in-plane mode and modal amplitude p1v = 0.001.
As better discussed in Sect. 4.4, a bifurcated spatial
motion occurs in the considered case, and thus the cen-
trifugal term in (7) plays a fundamental role in the sys-
tem dynamics. From Figs. 5c and d, one sees that ne-
glecting the term V ε̇ in (7) does not produce signifi-
cant differences in the results. Thus, in the following
investigations, such a term is neglected. In order to ver-
ify the suitable dimension of the reduced model, the
results of the FEM models and of the Galerkin ones
were also compared. The use of four in-plane and four
out-of-plane modes has proved to be sufficient to de-
scribe the cable dynamics with a good approximation.
As an example, the results of two free uncontrolled vi-
brations are compared in Figs. 6a and b.

4.3 Controlled free vibrations

The free nonplanar vibrations of the cable C1 are con-
sidered here in the controlled and uncontrolled cases.
The simulations are performed through the MTL FEM
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Fig. 6 Mid-span
uncontrolled free in-plane
and out-of-plane vibrations
with MTL (solid line) and
Galerkin (dashed line)
models: (a), (b)

Table 2 Analysis cases for nonlinear free vibrations

Case qv
1 (0) × 10−3 qv

2 (0) × 10−3 qw
1 (0) × 10−3

A 2.8 −0.4 0.0

B 4.8 −0.7 0.0

C 0.0 0.0 −2.4

D 2.7 −0.4 −1.4

model described in Sect. 3.3.2. Four different cases of
free vibrations are considered, with the modal initial
conditions reported in Table 2. In-plane initial condi-
tions are considered in cases A and B . In particular,
these initial conditions are such that a planar motion
occurs in case A, while a bifurcated out-of-plane mo-
tion occurs in case B . Case C considers the free vi-
brations of the first out-of-plane mode, with a small
participation of the other modes. Finally, in case D,
initial conditions are given to both in-plane and out-
of-plane modes, leading to a free spatial motion. It is
worth noting that in all the considered cases, the am-
plitudes of vibrations are large enough that nonlinear
phenomena govern the motion.

Figure 7 shows the most significant controlled and
uncontrolled mid-span displacements in the cases re-
assumed in Table 2. The vertical and out-of-plane dis-
placements, vm and wm, are normalized with respect
to the cable span l. The results show that the con-
trol strategy introduces a significant additional damp-
ing in both in-plane and out-of-plane modes. The out-
of-plane control effectiveness is of particular inter-
est. First of all, bifurcated out-of-plane oscillations, in
case B , are significantly reduced by the control strat-
egy. Moreover, case D shows that the variable inclina-
tion TMD is able to control a spatial motion, occurring
starting from in-plane and out-of-plane nonzero initial

conditions. Out-of-plane bifurcation is not observed in
case A, while in case C out-of-plane displacements
prevail on the in-plane ones. The angle ε(t) in case C,
regulated by (12), is also represented in Fig. 8.

4.4 Harmonic analysis

The control-oriented Galerkin model described in
Sect. 3.3.1 is here adopted in order to analyze the ef-
fectiveness of the semiactive TMD under harmonic
in-plane excitation. The cable is subjected to a sinu-
soidal load, with the shape of the first in-plane mode
and a modal amplitude p1v = 0.001. The circular fre-
quency Ω of such a load, normalized to the natural
circular frequency of the first in-plane mode w1v , is
varied around the primary resonance. It is worth not-
ing that the value of w1v , to which Ω is normalized,
changes in the controlled and uncontrolled cases. Four
in-plane and four out-of-plane modes are considered
in the model. The modal shapes and natural frequen-
cies of the system composed by the cable and the pas-
sive TMD are considered to derive the model in the
controlled case, as described in the Appendix.

The results of the harmonic analysis are rep-
resented in Figs. 9a and b, by means of uncon-
trolled and controlled frequency response curves qv

1
vs. Ω and qw

1 vs. Ω . In order to detect softening
and hardening branches, as well as dynamic equi-
librium bifurcation points, the periodic solutions are
evaluated, in the MatLab environment through a
sequential continuation with sweeping variation of
the frequency. This means that once the solution
(qv

1 , qw
1 , . . . , qv

4 , qw
4 , q̇v

1 , q̇w
1 , . . . , q̇v

4 , q̇w
4 ) at a given

frequency Ω is known, the response at an increased
frequency Ω + �Ω is evaluated by integrating the
equations of motion in time with initial conditions
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Fig. 7 Nonlinear free
vibrations (uncontrolled in
grey, controlled in black)

(qv
1 , qw

1 , . . . , qv
4 , qw

4 , q̇v
1 , q̇w

1 , . . . , q̇v
4 , q̇w

4 ). A Runge–
Kutta method of order 4, with a global error tolerance
of 10−6, is assumed for the time integration of the
system of ODEs, since it revealed to be a good com-
promise between computational efficiency and numer-
ical accuracy (the global error is governed by the step
size to the power of 5). A suitable predictor-corrector
method is coded to modify the initial conditions until
they coincide with the periodic amplitudes. Only sta-
ble solutions can be detected with such an approach.
The results show that the control strategy highly re-
duces the in-plane modal amplitudes qv

1 in the region
of the primary resonance. A strong 1 : 2 (Ω = 0.5) res-

onant peak is also observed in the uncontrolled case
that is completely damped out by the control action.
The modal amplitude p1v is selected in such a way
that a strong out-of-plane bifurcation occurs in the un-
controlled case, in all the considered frequency do-
main. As it can be observed, the control action is able
to highly control such a motion. Moreover, the bifur-
cation appears with small amplitudes, only in the re-
gion which can roughly be identified with the interval
0.4 < Ω < 1.1. Figures 9c and d show the behavior of
the antisymmetric in-plane and out-of-plane modes.
These figures show that the stable harmonic modal
amplitudes qv

2 and qw
2 are significantly smaller than
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qv
1 and qw

1 . Nevertheless, the participation of the anti-
symmetric modes is a little enhanced by the control ac-
tion, in both in-plane and out-of-plane vibrations. This
is due to the introduction of the modal components
cv

2ξ(t) and cw
2 ζ(t) in (8). In the out-of-plane motion,

in particular, the antisymmetric mode qw
2 is kept small

by the second term of (12). Without such a term, in-
stability of qw

2 would easily arise. The bifurcation of
the third in-plane mode is observed in Fig. 9e, in the

Fig. 8 Variable inclination ε(t) in case C

uncontrolled case, around the primary resonance. The
participation of qv

3 is practically damped out by the
control action, thus confirming the capability of the
TMD to introduce additional damping even in higher
modes.

Four state-space projections of the stable periodic
orbits, evaluated at Ω = 0.4 and Ω = 1.0, are repre-
sented in Fig. 10. The control strategy significantly
reduces the amplitudes of the stable limit cycles. In
the case Ω = 0.4, the vicinity of the 1 : 2 resonance
is clearly evident in the uncontrolled case. The same
resonance is not visible in the controlled case. Out-of-
plane bifurcation is prevented by the control action for
Ω = 0.4. At Ω = 1.0, such a bifurcation appears also
in the controlled case but with considerably lower am-
plitudes with respect to the uncontrolled solution.

4.5 Detuning analysis

Steel cables are subjected, in structural applications,
to slackening, which causes the progressive increment

Fig. 9 Harmonic analysis
with sequential
continuation: the dots
represent the stable
solutions (uncontrolled in
grey, controlled in black)
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Fig. 10 Phase plane
projections of significant
harmonic solutions
(uncontrolled in grey,
controlled in black)

of the sag, with consequent growth of the Irvine pa-
rameter λ2. This aspect is significant in control appli-
cations for two fundamental reasons. The former rea-
son is that a variation of λ2 determines a modification
of the natural frequencies and mode shapes of the ca-
ble. When the cable is placed on the left of the first
crossover point, this leads to a migration toward the in-
ternal resonance between the first two in-plane modes
and the second out-of-plane mode. It is well known
(see, for example, [1–6] among others) that internal
resonance conditions produce a richness of modal in-
stabilities that could reduce the effectiveness of the
control strategy. The latter reason is that the in-plane
TMD is usually tuned on the frequency of the first in-
plane mode. A change in such a frequency produces,
therefore, a detuning of the device, which reduces its
damping capability.

In order to investigate the robustness of the pro-
posed control strategy to slight variations of the Irvine
parameter and consequent detuning of the control de-
vice, the slackening of the cable C1 is considered
herein. An increment of 5%, 10% and 12% of the sag
d makes λ2 assume the values 3.20π2, 3.68π2 and

Table 3 Cases of detuning analysis

λ2/π2 Without TMD With TMD

ω2v/ω1v ω2w/ω1v ω2v/ω1v ω2w/ω1v

2.76 1.129 1.129 1.239 1.129

3.20 1.077 1.077 1.194 1.153

3.68 1.028 1.028 1.141 1.103

3.89 1.009 1.009 1.063 1.034

3.89π2, respectively. The ratios between the circular
frequencies of the second in-plane and out-of-plane
modes and the circular frequency of the first in-plane
mode (ω2v/ω1v and ω2w/ω1v) are reported in Table 3
for the considered values of the Irvine parameter. Such
a table shows that the cable C1, in the uncontrolled
case (λ2 = 2.76π2), is not far from the internal reso-
nances occurring at the first crossover (ω2v/ω1v = 1,
ω2w/ω1v = 1). The presence of the TMD causes an
increment of the ratio ω2v/ω1v and slightly withdraws
the cable from those resonances. The considered cases
of slackening are such that, as the sag is increased,
the ratios ω2v/ω1v and ω2w/ω1v migrate towards the
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Fig. 11 Controlled
frequency response curves
by varying the Irvine
parameter of the cable

value 1 and thus the cable C1 is brought closer to
the internal resonance conditions occurring at the first
crossover.

The controlled frequency response curves qv
1 vs. Ω

and qw
1 vs. Ω , evaluated in the cases reported in Ta-

ble 3, are represented in Fig. 11. Figures 11a and b,
in particular, represent the stable harmonic solutions
without detuning, while Figs. 11c, d, e, f, g and h
report the solutions with detuning. From those fig-
ures, the robustness of the out-of-plane control strat-
egy, with respect to variations of λ2, is clearly pointed
out. The frequency response curves qw

1 vs. Ω remain,
in fact, substantially equivalent as λ2 increases. In-
plane control, as expected, is a little more sensitive to
detuning effects. Even if the peak values do not sensi-
bly increase when detuning occurs, a 5% increment of
sag (λ2 = 3.20π2) produces a clear hardening behav-
ior of qv

1 around the primary resonance, which causes
well-known jump phenomena. This behavior is even
more evident when 10% and 12% increments of sag
are considered (λ2 = 3.68π2 and λ2 = 3.89π2). Be-

sides, the 2 : 1 resonant peak (Ω = 2.0), that is repre-
sented by a softening stable branch with no detuning,
assumes a softening-hardening aspect for λ2 = 3.20π2

and becomes completely hardening for λ2 = 3.68π2

and λ2 = 3.89π2. This, in particular, produces a strong
resonant peak, in the case λ2 = 3.20π2, which is even
larger than the 1 : 1 peak (Ω = 1.0) and represents a
region of poor control performance.

5 Conclusions and future developments

In this paper, the well-known passive control solution,
based on the use of tuned mass dampers to reduce
the in-plane vibrations of cables, is extended to miti-
gate also the out-of-plane oscillations. This is achieved
by adopting a variable out-of-plane inclination TMD
attached transversely to the cable at an intermediate
point. A linear velocity feedback, based on the obser-
vation of two points, is designed aiming at regulating
the out-of-plane inclination of the TMD.
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A geometric nonlinear finite element model of con-
trolled cable is coded in two different environments.
A control-oriented analytical Galerkin model is also
derived. The sinusoidal eigenfunctions and eigenfre-
quencies of the cable equipped with the passive in-
plane TMD are evaluated in closed form and are
adopted in the Galerkin model. Numerical simula-
tions are performed through the FEM model under
spatial free oscillations. A harmonic analysis is also
performed in the region of the primary resonance
through the Galerkin model. The control action re-
veals to be capable to introduce a significant additional
damping in the first two modes, in both free and har-
monically forced oscillations. A high reduction of the
first in-plane periodic modal amplitudes is observed
in the vicinity of the primary resonance and in cor-
respondence of the 1 : 2 resonance. The bifurcation
of the first in-plane mode into a spatial oscillations is
strongly reduced by the out-of-plane control action.

Detuning effects have also been considered in the
harmonic analysis, by varying the sag and conse-
quently the Irvine parameter of the uncontrolled cable.
The proposed control strategy is seen to be rather ro-
bust to detuning effects, especially in the out-of-plane
case. A small reduction in the in-plane control effec-
tiveness is observed, as expected, with a progressive
detuning of the TMD. Nevertheless, the sensitivity of
the frequency response curve of the first in-plane mode
to detuning effects is small and does not impair the
overall control performance.

The variable inclination TMD is, therefore, an ef-
fective tool in reducing the spatial vibrations of steel
cables, with considerable low cost. Some aspects are
of particular interest about this topic and will be in-
vestigated with higher details in future developments.
A comparison of different feedback control laws will
be of great importance, also considering TMDs with
variable features and nonlinear feedback control laws.
Out-of-plane loading, such as harmonic excitation or
wind action, is another worth research topic toward
a better comprehension of the damping capability of
the device. Finally, it will be of interest to path-follow
both stable and unstable periodic solutions through an
arclength approach implemented in bifurcation codes
(as, for example, the software AUTO [37]).
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Appendix

The hyperbolic eigenfunctions and eigenfrequencies
of a cable with a passive in-plane TMD have been
found by Cai et al. [29]. The sinusoidal eigenfunction
are here derived to be used in the reduced Galerkin
models.

The equation of motion of the free in-plane vibra-
tions of a shallow cable of sag d and length l, with a
passive TMD anchored at x = x0, can be derived by
neglecting the nonlinear terms and the external action
in the in-plane equation of system (6) and by assum-
ing that the axis of the TMD is parallel to the vertical
direction (ε = 0):

Hv′′ + 8d

l2
h = μv̈ + (kV + cV̇ )δ(x − x0). (18)

In (18), the hypothesis of small sag to span ratio is as-
sumed and the static C0 configuration is expressed by

the parabola Y(x) = μgl
2H

(x2

l
− x). The term h in (18)

is the tension increment due to the motion, which is
given by the compatibility [8]:

h = −8ESd

l2Le

∫ l

0
v dx (19)

where Le = ∫ l

0 ( ds
dx

)3 dx ∼= [1 + 8( d
l
)2]l, ds being

the infinitesimal curvilinear abscissa element defined
along the cable.

The presence of the Dirac δ-function in (18) indi-
cates that the control force produces a jump (first order
discontinuity) in the spatial derivative v′ at x = x0. In
particular, the following condition holds:

v′|x=x+
0

− v′|x=x−
0

= (kV + cV̇ )/H (20)

while the motion of the mass m of the TMD is regu-
lated by the following equation:

V̈ + v̈(x0) + 2ξdωdV̇ + ω2
dV = 0 (21)

where ωd = ( k
m

)1/2 and ξd = c
2mωd

. Let us assume a
solution of the following type:

v(t) = Re
[
ṽ(x)eιωt

]
,

h(t) = Re
[
h̃(x)eιωt

]
, (22)

V (t) = Re
[
Ṽ (r)eιωt

]

where ι is the imaginary unit and ω is a complex nat-
ural eigenfrequency. By inserting (22) into (18), one
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can obtain the modal shapes of the cable ṽi (x) as func-
tions of ωi . It holds in particular:

ṽ(x) = ṽ(x0)
sin(βx)

sin(βx0)

+ h̃

H

8d

(βL)2

×
[

sin(β(x0 − x)) + sin(βx)

sin(βx0)
− 1

]
,

if x < x0,
(23)

ṽ(x) = ṽ(x0)
sin(β(l − x))

sin(β(l − x0))

+ h̃

H

8d

(βL)2

×
[

sin(β(x − x0)) + sin(β(l − x))

sin(β(l − x0))
− 1

]
,

if x > x0

where βi = (
μ
H

)1/2ωi and h̃ is defined in (22). The
imaginary part of ωi represents the modal damping in-
troduced by the TMD, while its modulus is the natural
angular frequency of the ith mode.

The link between the modal displacement ṽ(x0)

and the relative modal displacement Ṽ between the
mass of the TMD and the cable is also obtained as:

Ṽ = ω2
√

(ω2
d − ω2)2 + (2ξdωdω)2

ṽ(x0). (24)

By using (23) into (19), one obtains:

ṽ(x0)

[
1 − cos(βx0)

sin(βx0)
+ 1 − cos(β(l − x0))

sin(β(l − x0))

]

+ h̃

H

8d

(βL)2

[
2 − 2 cos(βx0)

sin(βx0)

+ 2 − 2 cos(β(l − x0))

sin(β(l − x0))

− βl + β3l3

λ2

]
= 0 (25)

where λ2 is the nondimensional Irvine parameter of
the cable. Finally, by inserting (23) and (24) into (20),
the following relation holds true:

ṽ(x0)

[
cos(βx0)

sin(βx0)
+ cos(β(l − x0))

sin(β(l − x0))

+ γβl

√√√√ ω4
d + (2ξdωdβl

ω0
π

)2

(ω2
d − (βl

ω0
π

)2)2 + (2ξdωdβl
ω0
π

)2

]

+ h̃

H

8d

(βL)2

[
cos(βx0) − 1

sin(βx0)

+ cos(β(l − x0)) − 1

sin(β(l − x0))

]
= 0 (26)

where ω0 = π
l
(H

μ
)1/2 and γ = m

μl
. Equations (25)

and (26) give a nontrivial solution if the following con-
dition is satisfied:

sin

(
βl

2

)[
sin

(
βl

2

)
− cos

(
βl

2

)(
βl

2
− 4

λ2

βl

2

3)]

= γβl

√√√√ ω4
d + (2ξdωdβl

ω0
π

)2

(ω2
d − (βl

ω0
π

)2)2 + (2ξdωdβl
ω0
π

)2

× sin

(
βx0

2

)
sin

(
β(l − x0)

2

)

×
[

sin

(
βl

2

)
− cos

(
βx0

2

)
cos

(
β(l − x0)

2

)

×
(

βl

2
− 4

λ2

βl

2

3)]
. (27)

The frequencies of a suspended cable without a control
TMD device, calculated by Irvine’s theory [8], are ob-
tained from (27) when the right-hand side is zero. The
presence of the TMD produces a change in the nat-
ural frequencies that tends quickly to zero as γ tends
to zero. For a small value of the ratio γ, such a dif-
ference is negligible and the natural frequencies and
modal shapes of the cable without the TMD could be
assumed as a good approximation of the frequencies
and modal shapes of the cable with the TMD.

References

1. Rega, G.: Nonlinear vibrations of suspended cables, part I:
modeling and analysis. Appl. Mech. Rev. 57, 443–478
(2004)

2. Rega, G.: Nonlinear vibrations of suspended cables, part II:
deterministic phenomena. Appl. Mech. Rev. 57, 479–514
(2004)

3. Larsen, J.W., Nielsen, S.R.K.: Non-linear stochastic re-
sponse of a shallow cable. Int. J. Non-Linear Mech. 41,
327–344 (2004)



106 F. Casciati, F. Ubertini

4. Perkins, N.C.: Modal interactions in the non-linear re-
sponse of elastic cables under parametric/external excita-
tion. Int. J. Non-Linear Mech. 27, 233–250 (1992)

5. Nayfeh, A.H., Arafat, H.N., Chin, C.M., Lacarbonara, W.:
Multimode interactions in suspended cables. J. Vib. Control
8, 337–387 (2002)

6. Benedettini, F., Rega, G., Alaggio, R.: Nonlinear oscilla-
tions of a four-degree of freedom model of a suspended ca-
ble under multiple internal resonance conditions. J. Sound
Vib. 182, 775–798 (1995)

7. Luongo, A., Rega, G., Vestroni, F.: Parametric analysis of
large amplitude free vibrations of a suspended cable. Int. J.
Solids Struct. 20, 95–105 (1984)

8. Irvine, H.M., Caughey, T.K.: The linear theory of free vi-
brations of suspended cables. Proc. R. Soc. Lond. 341, 299–
315 (1974)

9. Arafat, H.N., Nayfeh, A.H.: Nonlinear responses of sus-
pended cables to primary resonance excitations. J. Sound
Vib. 266, 325–354 (2003)

10. Desai, Y.M., Popplewell, N., Shah, A.H., Buragohain,
D.N.: Geometric nonlinear analysis of cable supported
structures. Comput. Struct. 29(6), 1001–1006 (1988)

11. Desai, Y.M., Popplewell, N., Shah, A.H.: Finite element
modeling of transmission line galloping. Comput. Struct.
57, 407–420 (1995)

12. Gattulli, V., Martinelli, L., Perotti, F., Vestroni, F.: Nonlin-
ear oscillations of cables under harmonic loading using an-
alytical and finite element models. Comput. Methods Appl.
Mech. Eng. 193, 69–85 (2004)

13. Cluni, F.: Studio del comportamento dinamico dei cavi
strutturali: modelli numerici e prove sperimentali. Disser-
tation, University of Perugia (2004) (in Italian)

14. Cluni, F., Gusella, V., Ubertini, F.: A parametric investiga-
tion of wind-induced cable fatigue. Eng. Struct. (2007). doi:
10.1016/j.engstruct.2007.02.010

15. Canbolat, H., Dawson, D., Rahn, C.D., Nagarkatti, S.:
Adaptive boundary control of out-of-plane cable vibration.
ASME J. Appl. Mech. 65, 963–969 (1998)

16. Susumpow, T., Fujino, Y.: Active control of multimodal ca-
ble vibrations by axial support motion. Earthq. Eng. Struct.
Dyn. 5, 283–292 (1995)

17. Gattulli, V., Pasca, M., Vestroni, F.: Nonlinear oscillations
of a nonresonant cable under in-plane excitation with a lon-
gitudinal control. Nonlinear Dyn. 14(2), 139–156 (1997)

18. Alaggio, R., Gattulli, V., Potenza, F.: Experimental valida-
tion of longitudinal active control strategy for cable oscil-
lations. In: Proceedings of the 9th Italian Conference on
Wind Engineering (INVENTO), Pescara (2006)

19. Gattuli, V., Vestroni, F.: Nonlinear strategies for longitudi-
nal control in the stabilization of an oscillating suspended
cable. Dyn. Control 10(4), 359–374 (2000)

20. Xu, Y.L., Yu, Z.: Non-linear vibration of cable-damper sys-
tem, part I: formulation. J. Sound Vib. 225, 447–463 (1999)

21. Xu, Y.L., Yu, Z.: Non-linear vibration of cable-damper sys-
tem, part II: application and verification. J. Sound Vib. 225,
465–481 (1999)

22. Zhou, Q., Nielsen, S.R.K., Qu, W.L.: Semi-active control
of three-dimensional vibrations of an inclined sag cable
with magnetorheological dampers. J. Sound Vib. 296, 1–22
(2006)

23. Claren, R., Diana, G.: Vibrazioni dei conduttori. Energ.
Elettr. 11, 677–688 (1966) (in Italian)

24. Gattulli, V., Lepidi, M., Luongo, A.: Controllo con una
massa accordata dell’instabilità aeroelastica di un cavo
sospeso. In: Proceedings of the 16th Italian Conference on
Theoretic and Applied Mechanics (AIMETA) (2003) (in
Italian)

25. Pacheko, B.M., Fujino, Y., Sulekh, A.: Estimation curve for
modal damping in stay cables with viscous dampers. ASCE
J. Struct. Eng. 119(6), 1961–1979 (1990)

26. Wu, W.J., Cai, C.S.: Experimental study of magnetorheo-
logical dampers and application to cable vibration control.
J. Vib. Control 12(1), 67–82 (2006)

27. Abdel-Rohman, M., Spencer, B.F.: Control of wind-
induced nonlinear oscillations in suspended cables. Non-
linear Dyn. 37, 341–355 (2004)

28. Markiewikz, M.: Optimum dynamic characteristics of
stockbridge dampers for dead-end spans. J. Sound Vib. 188,
243–256 (1995)

29. Cai, C.S., Wu, W.J., Shi, X.M.: Cable vibration reduc-
tion with a hung-on TMD system, part I: theoretical study.
J. Vib. Control 12(7), 801–814 (2006)

30. Cai, C.S., Wu, W.J., Shi, X.M.: Cable vibration reduction
with a hung-on TMD system, part II: parametric study.
J. Vib. Control 12(8), 881–899 (2006)

31. Wu, W.J., Cai, C.S.: Cable vibration control with a mag-
netorheological fluid based tuned mass damper. In: Pro-
ceedings of the 10th Biennial ASCE Aerospace Divi-
sion International Conference on Engineering, Construc-
tion, and Operations in Challenging Environments, League
City/Houston, TX, USA, 5–8 March 2006

32. Casciati, F., Magonette, G., Marazzi, F.: Technology of
Semiactive Devices and Applications in Vibration Mitiga-
tion. Wiley, Chichester (2006)

33. Casciati, F., Ubertini, F.: Control of cables nonlinear vibra-
tions under turbulent wind action. In: Deodatis G., Spanos
P. (eds.) Computational stochastic mechanics, 5th Interna-
tional Conference on Computational Stochastic Mechan-
ics, Rodos, June 2006, pp. 169–178. Millpress, Rotterdam
(2007)

34. ANSYS Inc.: ANSYS and CivilFEM 9.0 User Manual.
Madrid (2005)

35. The Mathworks Inc.: Matlab and Simulink. Natick (2002)
36. Hilber, H.M., Hughes, T.J.R., Taylor, R.L.: Improved nu-

merical dissipation for time integration algorithms in struc-
tural dynamics. Earthq. Eng. Struct. Dyn. 5, 283–292
(1977)

37. Doedel, E.J., Paffenroth, R.C., Champneys, A.R., Fair-
grieve, T.F., Kuznetsov, Y.A., Oldeman, B.E., Sandstede,
B., Wang, X.: AUTO2000: continuation and bifurcation
software for ordinary differential equations. Available on-
line from http://indy.cs.concordia.ca/auto/

http://dx.doi.org/10.1016/j.engstruct.2007.02.010
http://indy.cs.concordia.ca/auto/

	Nonlinear vibration of shallow cables with semiactive tuned mass damper
	Abstract
	Introduction
	Governing relations
	Uncontrolled equations of motion
	Reduced analytical cable model

	Control strategy
	Suspended cable with variable inclination TMD
	Controlled equations of motion
	Reduced analytical and FEM models of the controlled cable
	Reduced analytical model
	FEM model

	Control law

	Numerical example
	The case study
	Models validation
	Controlled free vibrations
	Harmonic analysis
	Detuning analysis

	Conclusions and future developments
	Acknowledgements
	Appendix
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


