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Abstract The parametric identification of a chaotic
system was investigated for a double pendulum. From
recorded experimental response data, the unstable pe-
riodic orbits (UPOs) were extracted and then used in a
harmonic balance identification process. By applying
digital filtering, digital differentiation and linear re-
gression techniques for optimization, the results were
improved. Verification of the related simulation sys-
tem and linearized system also corroborated the suc-
cess of the identification algorithm.

Keywords Parametric identification · Harmonic
balance · Chaotic system · Unstable periodic orbits ·
Double pendulum

1 Introduction

Parametric identification is important for the construc-
tion of mathematical models of vibration systems.
Until now, most of the methods of parametric iden-
tification of nonlinear systems have focused on free
vibration, random excitation or periodically forced
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steady state vibration behavior [1–8]. Kapania [4] used
finite element analysis for identification of dynamic
systems with the assumption of weak nonlinearity.
In [5], Volterra series and higher order frequency re-
sponse functions (FRF) were used for parameter es-
timation of non-chaotic nonlinear systems. Gottlieb
[6] and Feldman [7] investigated the identification of
single- and two-degree-of-freedom systems by means
of the Hilbert transform. In [1], nonlinear resonances
by random excitations were utilized, some of the para-
meters were identified. Meanwhile, since damping and
friction were found hard to estimate, many researchers
[2, 3, 8] investigated methods of identifying those pa-
rameters, many of which are time domain methods.

Recently, the application of chaotic behavior in
parametric identification has begun to be noticed and
some related algorithms were developed. In [9], the
Poincaré section and limit cycles were used for system
identification. Meanwhile, a fundamental property of
deterministic chaos is that the chaotic set of a dynam-
ical system contains an infinite number of unstable
periodic orbits. Furthermore, multiple approximated
periodic orbits can be extracted from a phase space re-
construction [10–13], and can be applied for identifi-
cation purposes, which is an important advantage over
a one-periodic-orbit steady state system, since more
periodic orbits can usually provide more information
about a nonlinear system. The unstable periodic orbits
make the identification in the chaotic world much sim-
pler. Many methods previously used for non-chaotic
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systems can be applied to chaotic systems with knowl-
edge of UPOs. Yasuda et al. [14, 15] introduced an
inverse applied harmonic-balance method to estimate
parameters. Plakhtienko [16, 17] also introduced a
method of a special weight function, by which the sec-
ond order differential equation could be converted to a
series of linear equations if some periodic orbits can be
known a priori. In [16], it is noticeable that if harmonic
functions are applied as weighting functions, the rest
of the procedure is identical to the harmonic balance
method. Ghanem [18] investigated the wavelet-based
method for system identification. Both the wavelet
and harmonic balance methods can be applied to the
identification of chaotic systems. The harmonic bal-
ance method is more feasible for systems with time-
invariant parameters. Based on the harmonic method,
Feeny and Yuan [19] developed a general method for
chaotic systems that extracts unstable periodic orbits
and then exploits the harmonic balance method to pre-
dict the parameters. Furthermore, they [20] applied
this technique to an experimental magneto-elastic os-
cillator; results were accurate and also noise-resistant.
The present study is based upon their algorithm. But
unlike all of these applications, which are single-
degree-of-freedom systems, the purpose of this report
is to apply and examine the algorithm on a multi-
degree-of-freedom system with strong nonlinearity.

The work discussed in this report is a further inves-
tigation and application of harmonic balance to para-
metric excited chaotic systems [19]. It includes a sim-
ulation verification [21] and an experimental study,
which will be introduced in this part of the report.

The experimental work involves a double pendu-
lum system with parametric excitation that is strongly
nonlinear. Since this double pendulum is a multi-
degree-of-freedom one, many new issues showed up
in the experiment. Also, some modifications were ap-
plied to the identification process in order to extend
the theory to the strongly nonlinear, multi-degree of
freedom system. Modifications included digital differ-
entiation and other techniques of error reduction.

In the following parts of the paper, the system con-
figuration and equations of motion will be described
and derived. The method and improvements that were
used in the identification will be described. Then, the
experimental apparatus and configuration will also be
explained. In the last two parts of the report, results
will be presented and discussed, and several conclu-
sions will be drawn.

2 Description of the double pendulum system

A schematic diagram of the double pendulum is shown
in Fig. 1. The first arm (central arm) has mass m1,
centroid offset e1, arm length l1, and angular inertia
Jc1 based upon the arm centroid point. The second
arm (small arm) has mass m2, centroid offset e2, arm
length l2, and angular inertia Jc2. θ1 is the absolute
angular displacement of the first arm and θ2 is the rel-
ative angular displacement of the second arm. The pin
O undergoes a vertical sinusoidal imposed displace-
ment y(t).

The two arms of the pendulum are supported and
connected by low friction bearings. The bearings are
assumed to have two types of friction: dry Coulomb
friction and viscous damping. In the specific double
pendulum that was used in the experiment, isolated
free vibration tests indicated that the first arm bear-
ings had dominantly Coulomb friction because of no
oil lubrication, and the second arm bearings had domi-
nantly viscous friction due to full oil lubrication. With
these known properties, we can then obtain the non-
dimensional governing differential equations of this
system:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ̈1 + b11φ̈2 cos (φ2 − φ1) − b11φ̇
2
2 sin (φ2 − φ1)

+ b12 sinφ1 + b13 sinφ1ÿ + c11f (φ̇1)

− c12(φ̇2 − φ̇1) = 0,

φ̈2 + b21φ̈1 cos (φ2 − φ1) + b21φ̇
2
1 sin (φ2 − φ1)

+ b22 sinφ2 + b23 sinφ2ÿ

+ c2(φ̇2 − φ̇1) = 0,

(1)

Fig. 1 A sketch of the double pendulum
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where φ1 = θ1 and φ2 = θ1 + θ2 are absolute angular
deflections, b11 = m2e2l1

Jo1
, b12 = g(m1e1+m2l1)

Jo1
, b13 =

(m1e1+m2l1)
Jo1

, b21 = m2e2l1
Jo2

, b22 = gm2e2
Jo2

, b23 = m2e2
Jo2

,

c12 = cr2
Jo1

, c2 = cr2
Jo2

, Jo1 = Jc1 + m1e
2
1 + m2l

2
1 , and

Jo2 = Jc2 + m2e
2
2; y is the excitation displacement of

the support with known frequency fe; and

f (x) = sign(x) =
{1, x > 0,

0, x = 0,
−1, x < 0

is a sign function representing Coulomb friction.
Function f (x) is valid if there are no sticks. For con-
venience of the analysis, a nondimensional form of
the governing differential equation is desired. By let-
ting τ = 2πfet and Ω = 2πfe, then, d

dt
= d

dτ
· dτ

dt
=

2πfe
d
dτ

= Ω d
dτ

. Under a sinusoidal excitation y =
E1 cos τ + F1 sin τ , a =

√

E2
1 + F 2

1 , where a is the
excitation amplitude, (1) can be expressed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B11φ2
′′ cos (φ2 − φ1) − B11φ2

′2 sin (φ2 − φ1)

+ B12 sinφ1 + B ′
13 sinφ1 cos τ

+ B ′
14 sinφ1 sin τ + C11f (φ1

′)
− C12(φ2

′ − φ1
′) = −φ1

′′,
B21φ1

′′ cos (φ2 − φ1) + B21φ1
′2 sin (φ2 − φ1)

+ B22 sinφ2 + B ′
23 sinφ2 cos τ

+ B ′
24 sinφ1 sin τ + C2(φ2

′ − φ1
′) = −φ2

′′,

(2)

where φi
′ = dφi

dτ
, Bi1 = bi1, Bi2 = bi2/Ω

2, Bi3 =
−bi3E1, Bi4 = −bi3F1, C11 = c11/Ω

2, C12 = c12/Ω ,
C2 = c2/ω, for i=1, 2. Equation (2) is then the desired
form for identification.

3 Method

The identification process is similar to the one used
in the simulation system of the parametrically excited
single pendulum [21], which contains data acquisition/
post-processing, phase plane reconstruction/extracting
unstable periodic orbits, formation of the identifica-
tion matrix and the solution by the least mean square
method. Some signal noise occurred during digitiza-
tion. Therefore certain digital filtering techniques were
applied to the acquired signals. Other modifications
are also applied to the double pendulum system for
improved identification.

Due to the complexity of the nonlinearity of the
double pendulum equation (2), our unknown parame-
ters contain only those coefficients of terms of the
differential equations which will greatly simplify the
identification matrix. There are totally 11 unknown
parameters in the two differential equations, namely,
B11, B12, . . . , B24, C11, C12 and C2. Similar to the
case in [21], the angular displacement θ1 and θ2 are
variables in S1 (one-dimensional sphere space). How-
ever, the angular velocities, accelerations and sinφi

(i = 1,2) belong to R1 (one-dimensional continuous
real space). Hence, for any period k orbit (there may
be multiple orbits of same periodicity k, the Fourier
series expressions are

φ1,k,l(t) ≈ Ω1,k,l t + a0,k,l

2
+

m∑

j=1

(

aj,k,l cos
jωt

k

+ bj,k,l sin
jωt

k

)

(3)

and

φ2,k,l(t) ≈ Ω2,k,l t + c0,k,l

2
+

m∑

j=1

(

cj,k,l cos
jωt

k

+ dj,k,l sin
jωt

k

)

, (4)

where Ωi,k,l , is the average rotation speed per cycle
for the lth orbit of period k. Thus,

φ̇1,k,l(t) ≈ Ω1,k,l +
m∑

j=1

jω

k

(

−aj,k,l cos
jωt

k

+ bj,k,l sin
jωt

k

)

, (5)

φ̇2,k,l(t) ≈ Ω2,k,l +
m∑

j=1

jω

k

(

−cj,k,l cos
jωt

k

+ dj,k,l sin
jωt

k

)

, (6)

where k = 1,2, . . . ,K , is the corresponding period of
the orbit; K is the maximum periodicity. Likewise,
the Fourier series of other terms in the equation can
be expressed. Meanwhile, for the nondimensional
differential equations, time t here is actually τ in
equation (2), and the fundamental frequency is 1.
If incremental encoders are used to sense the angu-
lar displacements, then the velocity and acceleration
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are not directly measured. But, their Fourier trans-
formations can be handily generated by using the
Fourier transformation of the displacement. However,
for noise-contaminated displacement signals, noisy er-
rors may be amplified in the obtained Fourier spectrum
of velocity and acceleration. Also, Fourier series ex-
pansions of some terms in the differential equations,
such as φ̇2

i,k sin (φ2,k − φ1,k), are not obtained by di-
rect Fourier series expansion of their time domain sig-
nal, but by convolution of known Fourier expansion
components with a low-pass filter applied in the fre-
quency domain (see Sect. 5.4). The purpose of apply-
ing a low-pass filter to each signal component before
convolution is to avoid noise amplification. Substitut-
ing (3–6) and the rest of the Fourier series of the non-
linear terms into (2), and equating the coefficients of
terms with identical harmonic order, we obtain two
matrix equations:

A1 �x1 = �q1 (7)

and

A2 �x2 = �q2, (8)

where �x1 and �x2 are vectors of unknown parameters
and the rows of A1 and A2 are the Fourier coefficients
of the corresponding harmonics that multiply the un-
known parameters. Given a set of periodic orbits, it
is adequate to equate the coefficients of the first sev-
eral orders of subharmonics since they are usually the
major components of the periodic orbits and less con-
taminated by noise. We then truncate the Fourier se-
ries expansion, and take the first M orders, such that
M ·K > Nc, where Nc is the number of unknown coef-
ficients in �x1 or �x2. With these conditions satisfied, the
two equations can be solved by the least mean square
method:

�̂x1 = (
AT

1 A1
)−1

AT
1 �q1 (9)

and

�̂x2 = (
AT

2 A2
)−1

AT
2 �q2. (10)

After the nondimensional parameters are identified,
the physical properties can then be restored according
to the nondimensional parameters’ definition if part of
the physical parameters can be known prior to iden-
tification. In the experiment, m2, e2, l1 were treated
as known since these physical properties were easily
evaluated.

3.1 Extraction of unstable periodic orbits

We used the reconstructed phase plane to extract un-
stable periodic orbits (UPO) [11]. Suppose the sam-
pled signal is si(t) = [θi(t)θi(t + Td)] for i=1, 2, and
Td is the time delay for embedding dimensions. An
approximated UPO with error tolerance e is extracted
if
∥
∥si(t) − si(t + kT )

∥
∥ < ei, i = 1,2, (11)

where T is the excitation period, and k is the period-
icity of the recurrence. Then, for example, for a given
k = 4, if inequality (11) is satisfied, a period 4 orbit is
then said to be extracted.

3.2 Uncertainty and error reduction

3.2.1 Friction issues

Previous research [19, 20] indicated that small fric-
tion parameters were more difficult to identify accu-
rately than other parameters in experiments for a sin-
gle degree of freedom system. The inaccuracy can re-
sult from several reasons:

1. experimental noise in the sampled data;
2. inadequate sensor sensitivity (the resulting error

can also be treated as a noise component);
3. inaccurate model of friction, e.g., viscous friction,

dry friction, or their combination;
4. recurrence errors of the extracted UPOs;
5. strong nonlinearity of the investigated system.

Furthermore, if the damping factors are much smaller
than other parameters, and the least mean square solu-
tion is used, an error deemed small for other parame-
ters can cause relatively large errors for the damping
terms.

On the other hand, if the friction coefficients can
be determined prior to identification, the identification
could likely be improved. In the previous study [20],
the friction errors had little influence on other identi-
fied parameters in a lightly damped single-degree-of-
freedom pendulum system.

3.2.2 Noise contamination in the extracted unstable
periodic orbits

In the previous application of the chaotic system iden-
tification process [19–21] in which single-degree-of-
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freedom systems were examined, the identification al-
gorithm was noise-resistant. However, a similar hy-
pothesis could not be applied to the present two-
degree-of-freedom system. The reason is simply due
to the strong nonlinearity of the double pendulum, and
it can be explained by differences in the governing dif-
ferential equations.

The governing equation of a horizontally excited
single pendulum (examined in [21]) is

θ̈ + c/rθ̇ + 1/r2 sin θ − f sin t cos θ = 0. (12)

Although the parametric excitation term is nonlinear,
the θ̇ and θ̈ terms are, on the other hand, linear. The
sin θ term in (12) can also be regarded as linear in
terms of harmonic functions. Suppose the contami-
nated signal is composed of the real signal and noise
n(t): θ(t) = θt (t) + n(t). The angular velocities and
accelerations of the periodic orbits can be obtained by
equations similar to (5) and (6). Hence, the noise in
the obtained speed and acceleration kth subharmonic
is actually amplified by k, though n(t) is rather small
in the displacement signal. The overall signals of ve-
locity and acceleration are then considered to be conta-
minated mainly by high frequency noise. Apparently,
to the system (12), where the speed and acceleration
terms are all linear, the high frequency noise whose
frequency is larger than (K + 1)th harmonic term will
be automatically filtered out, since only the first K

terms of harmonic order are used in the identification
matrix.This explains why the identification process is
noise-resistant for systems like (12).

However, in the double pendulum system (2), the
identification process appears to be less noise-resistant
than the previous examples since velocities and accel-
erations do not appear linearly in differential equa-
tions. Specifically, it is the (φi

′)2 sin (φ2 − φ1) and
φi

′′ cos (φ2 − φ1) terms that contribute most to the
noise inaccuracy of the result. Other high-order terms
also have a similar problem of noise amplification. It
can be explained by the following FFT equation

F
[
φ̇2

i sin (φ2 − φ1)
] = F(φ̇i )

2 ⊗F
[
sin (φ2 − φ1)

]
,

(13)

where F(x) represents the Fourier transform of x, and
operator ⊗ represents convolution. The convolution
operation can be expressed by

F(ω) ⊗ G(ω) =
∫ +∞

−∞
F(σ)G(σ − ω)dσ, (14)

where F(σ) and G(σ) are two integrable functions.
By convolution, the high frequency noise in each com-
ponent is, therefore, mixed into the final result by
convolution since convolution involves the integration
of the product between two signals. Furthermore, it
actually amplifies the noisy influence of the angular
displacement, e.g., high frequency noise, since in the
algorithm the frequency components of θ̇i and θ̈i are
obtained by (5) and (6). Hence, the truncation of the
first K harmonic terms could not reduce the distur-
bance of the noise. Low-pass filters have to be applied
to the signals before the convolution to avoid noise
convolution.

3.2.3 Digital differentiation for reduction of the
recurrence error

Recurrence error results from the error tolerance of
UPO extraction. It is a major source of noise in the
identification process. An impulse caused by differen-
tiation through the recurrence error occurred in the pe-
riodic velocity and acceleration curves, which is not
true for the real periodic orbits. If we look at the ve-
locity curve, it can be expressed as

˙̂
θ(t) = θ̇ (t) + αδ(t − tc) + η(t), (15)

where ˙̂
θ(t) is the calculated velocity curve, θ̇ (t) is the

real velocity curve, αδ(t − tc) is the impulse with am-
plitude α proportional to the recurrence error, tc is time
delay, and η(t) is noise other than the recurrence error,
which is considered to be small. Thus, after digital fil-
tering, and applying Fourier transform, we obtain

F(θ̇) ∼= F(
˙̂
θ) + αe−j tcω,

where α is the expression of the impulse function in
frequency domain and is a white noise. Furthermore,
this noise contaminates all the subharmonics of the ve-
locity curve, which could not be eliminated by the low-
pass digital filter and could hence generate large error
in the identification result.

Hence, a five-point differentiation algorithm was
applied to obtain the digital derivatives and double
derivatives of angular displacements:

ḟ (x) = {
8
[
f (x + h) − f (x − h)

]

− f (x + 2h) + f (x − 2h)
}[12h]−1

+ o
(
h4) (16)
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and

f̈ (x) = {
16

[
f (x + h) + f (x − h) − 2f (x)

]

− f (x + 2h) − f (x − 2h)

+ 2f (x)
}[

12h2]−1 + o
(
h4). (17)

The errors of these algorithms can be reduced with a
smaller time interval h. The five-point algorithm can
also reduce the influence of high frequency noise.

3.2.4 Optimized choice of harmonics and
subharmonics

The identification result can vary when a different
choice of subharmonics was applied. The problem was
not so troublesome in previous applications of the har-
monic balance method [19–21] where the nonlinearity
was simple and not so strong as the double pendulum
case. However, in the present experiment, different
subharmonic sets lead to variations in the estimated
parameters. It is then necessary for us to seek some
general rules for evaluating the result.

In (7) and (8), the choice of the first M subhar-
monics of each UPO (subharmonics are functions of
sin ( ix

k
) or cos ( ix

k
) where i and k represents the ith

term in Fourier series of a period k orbit) remains
an issue. In our pendulum system a periodic orbit
whose period is a multiple k of the excitation period,
if M ≤ k, i.e., subharmonic frequencies less than or
equal to the driving frequency, would tend to be the
best for identification. One reason is that these sub-
harmonics consist of a large part of the displacement
signals’ energy, and hence contain a relatively small
portion of the noise contamination (see Fig. 6). Also,
the noise components in the velocity and acceleration
signals are reduced according to (5) and (6).

The remaining question is whether it is possible to
measure the identification error and use it as an indica-
tor of how ‘true’ the identification is. To quantify the
identification error, we refer to linear regression tech-
niques, borrow some concepts in statistics, and trans-
form (7–10) into

�ei = Ai
�̂xi − �qi, i = 1,2, (18)

where �ei is the residue vector. Then, we can define the
identification error εi as

εi = ‖�ei‖∞
‖�̂qi‖∞

,

where �̂qi = Ai
�̂xi is the predicted vector of �qi . With

the identification error defined, the rule of thumb for
judging a good identification is εi < εc , where εc is
the positive critical value. εc = 10% was used in the
experiment.

Our problem is now how to optimize the identifica-
tion process so as to improve the accuracy, i.e., mini-
mize the identification error. From the statistics point
of view, we have a good linear regression curve if the
resulting residues are distributed evenly and randomly
around the predicted values. For this purpose, an opti-
mization algorithm was developed to exclude the sub-
harmonic terms which result in large residues, and re-
tain the good terms, which consist of most of the sub-
harmonics and should have small residues. It involves
the following steps:

1. Given the set of subharmonics, do the identification
process and find out the maximum absolute residue
value emax.

2. For a level of significance β , which is a small
value, remove from the subharmonics set those
subharmonics whose corresponding residue e >

(1 − β)emax.
3. Repeat the first step by using the remaining subhar-

monics, and compute the identification error εi .
4. If εi < 10%, then stop the optimization process and

assume that the desired result has been obtained; if
not, go back to step 1 with the remaining subhar-
monics set and repeat the optimization process.

4 Experiment description

Figure 1 shows a sketch of the double pendulum that
was used in the experiment. Two optical encoders (US
Digital) were separately attached to the central arm
(US Digital H5S-1024-157H) and the second arm (US
Digital H5S-1024) to measure the relative angular dis-
placements θ1 and θ2. Both of the encoders had a res-
olution of 1024 per cycle, capable of detecting a mini-
mum angular difference of 0.3516°. The two encoders
sent out TTL square waves, which are noise-resistant.
The TTL signals were then sent to two EDAC (En-
coder Digital to Analog Converter) units, which trans-
formed the TTL waves into an analogue signal. After
that, a data acquisition terminal translated all the sig-
nals into computer-acceptable digital signals.

For validation purposes, Table 1 lists all the phys-
ical properties of the double pendulum. The asterisks
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Table 1 Physical properties of the double pendulum

m1 (kg) 0.1362 m2 (kg) 0.040

e1 (m) 0.0127 e2 (m) 0.0267

l1 (m) 0.0635 l2 (m) 0.0534

J1 (kg m2)* 5.99 × 10−4 J2 (kg m2)* 4.033 × 10−5

C11* 1.01 × 10−3 C1* 0.0485

C2* 0.00366 – –

Table 2 Experimental settings

Sampling rate (fs ) 500 Hz Base freq. (fe) 5 Hz

Cut-off freq. (fc) 80 KHz Amplitude (a) 1.15 cm

in the table denote that some properties are not directly
measured, but estimated from other dynamic methods,
which implies that those parameters could have small
errors. To estimate the mass moment of inertia, a small
amplitude free vibration was tested on the double pen-
dulum. By evaluating the two natural frequencies of
the system through the FFT, the mass moment of in-
ertia values were calculated. Some parameters related
to sampling and experimental setting are listed in Ta-
ble 2.

With all these settings, the acquired chaotic data
was obtained during a 3-hour-long chaotic vibration.
The data section lasted 22 minutes.

5 Result band validation

5.1 Phase plane reconstruction & UPO extraction

The embedding dimension was chosen to be eight by
the false nearest neighbors method [13]. Mutual infor-
mation [13] of the signal was used for choosing ade-
quate time delay Td .

It can be seen from Fig. 2 that there are weak min-
ima of I (dt) at dt = 5, 15, 18 and 24. But Td = 24 in
a driving period of 100 samples is somewhat close to a
quarter period, the ideal delay for a sinusoidal signal.
The reconstructed phase portrait is plotted in Fig. 3
with Td = 24. The portrait shows that the central arm
represented by θ1 oscillated in small angles most of
the time with occasional large angle whirling, which
implies relatively larger noise in θ1 signal due to the
limitation of the optical encoders, whereas, the second
arm displacement, represented by θ2, consisted mainly
of whirling vibration.

For the given experimental settings, fs = 500 Hz,
fe = 5 Hz, T = fs/fe = 100. One data set of 670 000
points was used in analysis. Since there are two angles
involved, each with different characteristics, the error
tolerance of UPO extraction e was chosen as 5%. For
a 5% tolerance, 6 distinct orbits were extracted.

Figure 4 shows an example of the extracted UPOs.
We also extracted UPOs up to period 15. In all of the
cases, the small arm whirled. In Fig. 4, the central arm
whirled, whereas in other cases, the central arm oscil-
lated without whirling.

Compared to [19, 20], the extracted UPOs in this
double pendulum system are much fewer than the
extracted UPOs in the single-degree-of-freedom sys-
tems, which even had tolerance error smaller than 5%.
This is because recurrences are less frequent in higher
dimensional spaces for small periodicity k. Suppose
the number of boxes of size r needed to cover an at-
tractor of dimension α is N1 ∼ A1r

α, where A1 some
constant determined by the chaotic attractor. Roughly
assuming evenly distributed data over an chaotic at-
tractor, the probability of recurrently hitting a given
box p1 is p1 ∼ 1/N1 ∼ 1/A1r

−α . Comparing this
with another chaotic attractor of dimension β , we have

p1

p2
∼ A2

A1
rβ−α,

which implies that the higher the dimension of a
chaotic attractor, the smaller the probability of finding
a UPO with tolerance of error r .

5.2 Identified parameters

Table 3 lists all of the identified parameters by Fourier
series expansion of UPOs, applying the harmonic bal-
ance method with modifications discussed in Sect. 3:
low-pass filter, FFT convolution and optimization. The
effects of these modifications are examined below.
Friction was treated as unknown.

The friction coefficients correspond to negative
friction, or to energy generation, which is not phys-
ically realistic and therefore deemed inaccurate. How-
ever, despite the friction factors inaccuracy, most of
other parameters match with the actual values within
an error range of 10%, which is generally satisfying
for experimental data.

Meanwhile, as we have mentioned before, some of
the ‘true’ values (marked with ‘*’) listed in Table 3
were obtained by indirect dynamical methods, e.g.,
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Fig. 2 Mutual information
I (dt)

Fig. 3 Phase portrait of
experimental data with
dt = 24,
(a) θ1(t)–θ1(t + dt),
(b) θ1(t)–θ2(t),
(c) θ2(t)–θ2(t + dt); θ

is represented by ‘theta’
in the figure

small angle free vibration, and thus those ‘true’ phys-
ical parameters and related nondimensional parame-

ters may also have some error. Thus, more verification

methods were examined (see Sect. 5.6).
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Fig. 4 A period 9 UPO

Table 3 Identified parameters by applying low-pass filter, FFT
convolution, Fourier series expansion of UPOs, optimization,
harmonic balance method with subharmonics whose frequen-
cies are ≤ excitation frequency fe = 5 Hz, and subharmonics
optimization

ID values Settings Error

B11 0.1167 0.1131 3.2%

B12 0.0781 0.0711 9.8%

B13 0.0809 – –

B14 0.0264 – –

B15 0.0849 0.0820 3.6%

=
√

B2
13 + B2

14

B21 1.6149 1.6816 4.0%

B22 0.2562 0.2630 3.6%

B23 0.2777 – –

B24 0.0715 – –

B25 0.2868 0.2913 1.6%

=
√

B2
23 + B2

24

C11 * 0.0001 1.02×10−3 –

C12 * 0.0007 0.00366 –

C2 * 0.0106 0.0485 –

Jo1 (kg m2)* 5.8113 × 10−4 5.99 × 10−4 2.0%

Jo2 (kg m2)* 4.1995 × 10−5 4.033 × 10−5 3.9%

a (cm) 1.18 1.15 2.6%

m1e1 (kg m) 1.73×10−3 1.60×10−3 8.5%

5.3 The friction issue

Our first result has showed that friction coefficients
may not be precisely identified due to their small val-
ues. The presence of noise decreases the accuracy
of the extracted UPOs. Due to reasons mentioned in
Sect. 3.2.1, the identified friction coefficients are erro-

Table 4 Identified nondimensional parameters using low-pass
filter, FFT convolution and optimization, provided that the fric-
tion coefficients are known

ID values True values Error

B11 0.1178 0.1131 4.2%

B12 0.0774 0.0711 8.8%

B13 0.0829 – –

B14 0.0185 – –

B15 =
√

B2
13 + B2

14 0.0852 0.0820 3.9%

B21 1.6040 1.6816 4.6%

B22 0.2646 0.2630 0.6%

B23 0.2840 – –

B24 0.0483 – –

B25 =
√

B2
23 + B2

24 0.2880 0.2913 1.2%

neous, whereas other estimated parameters show only
small discrepancies from the real values.

We can assume that the friction parameters are al-
ready known, and then identify the other parameters
in our harmonic balance method. In this work, we de-
termined the friction in each pendulum bearing by a
small amplitude free vibration method. The free vi-
bration test indicated that in the central arm, solely
Coulomb friction was involved, and in the second arm,
solely viscous friction was involved. The nondimen-
sional form of the friction parameters are listed in Ta-
ble 1. As such, the friction parameters were estimated
by using free vibration decrements. Hence, we applied
the identification algorithm with known friction coef-
ficients.

The result in Table 4 shows that the friction para-
meters, due to their relatively small values (less than
1/5 of other parameters), have little influence on the
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Fig. 5 Phase portrait of the
simulated system with
C11 = 1.02 × 10−3,
C11 = 0.0366 and
C2 = 0.0485; dt = 24

overall result (the same as happened in [20]). This also
implies that the small errors in other parameters can
cause a large percent error in the friction terms. Hence,
the first result in Table 3 is believed to be reliable for
the coefficients of conservative and parametric excita-
tion terms.

For further verification, a simulation of the dou-
ble pendulum system based on (2) and the identified
parameters was examined. However, despite the ro-
bustness of the identification process, simulated dou-
ble pendulum system is extremely sensitive to para-
meters, e.g., friction coefficients. The simulation was
done with Matlab by digital integration. The simula-
tion result was obtained (shown in Fig. 5) with C11 =
1.02 × 10−3, C11 = 0.00366 and C2 = 0.0485 and
other parameters set as the identified values in Table 3.

5.4 High frequency noise in unstable periodic orbits

Next we address noise contamination issues of
Sect. 3.2.2. One way to avoid noise contamination is
to filter out the high frequency noise of the signal after
UPO extraction and before convolution. This idea was
incorporated in the identification process, and it turned
out to be effective. Suppose y = (

dφi

dτ
)2 sin (φ2 − φ1).

Table 5 Comparison of F(y) with and without filter added

i Coefficients of cos (ix) Coefficients of sin (ix)

without filter with filter without filter with filter

1 −3.2486 −0.3087 0.0328 0.0000

2 −34.0713 −27.1330 17.7370 17.7403

3 −15.6946 −8.6732 −23.6908 −23.2652

4 −31.2079 −24.1696 −10.2571 −10.6034

Table 5 compares the difference of the first 4 orders
of Fourier series coefficients of y with low pass filter-
ing before convolution and without filtering (shown in
Fig. 4). The cut-off frequency was set to be 1/5fs Hz.
Figure 6 shows the velocity and acceleration fre-
quency spectra of θ1. It can be seen that the accelera-
tion’s high frequency noise is quite intolerable, and
even with the low pass filter of 1/5fs cut-off fre-
quency, there is still considerable noise remaining.

Displayed in Fig. 7 are also signals with and with-
out the low-pass filter for the period-9 UPO. The low-
pass filtered signals are smoother and assumed to be
closer to real angular displacements. Meanwhile, an
identification process without any filtering was exam-
ined by utilizing the same periodic orbits extracted.
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Fig. 6 FFT amplitude of
the θ̇1 and θ̈1 with and
without low-pass filter
applied; the continuous line
is FFT of signals with filter
of 1/5fs cut-off frequency;
the dotted line is FFT of
signals without filter; k is
the order of Fourier
harmonics

Fig. 7 Signals without and
with low-pass filter applied;
(a) and (b) are θ̇1 without
and with filter; (c) and (d)
are y without and with filter
applied to each convolution
components; k is the kth
sampled point of the orbit

Listed in Table 6 are the identified parameters. B21

displays a larger error because of the strong nonlinear-
ity of the related term and the relatively larger noise
contamination level (due to θ1’s small oscillation am-
plitude and sensitivity of optical encoders).

5.5 Digital differentiation and error reduction

5.5.1 Recurrence tolerance

Due to the limited length of the experimental data, not
many periodic orbits were extracted by setting a small
extraction error tolerance, e.g., less than 5% in the
present experiment. Thus, one would naturally tend

to increase the error tolerance such that more periodic
orbits can be extracted. However, with the increased
error tolerance and hence more plentiful, but less ac-
curate, periodic orbits, the identification results turned
out to get worse for the double pendulum system. Fig-
ure 8(a) and (b) display the calculated angular veloc-
ity and acceleration curves of a period-9 (Fig. 4) orbit
by means of Fourier series expansion method. Obvi-
ously, at the location of the recurrence error (k ≈ 800
as shown in the figure), a large impulse noise gener-
ated due to the recurrence error (see Sect. 3.2.3). The
noise contamination is even worse for the acceleration
signal.
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Fig. 8 θ̇1 and θ̈1 orbits
obtained by the Fourier
Series method (a) and (b),
and by the digital
differentiation method (c)
and (d); the recurrence
impulses occur at k = 800
in (a) and (b); k is the kth
sampled point in the orbit

Table 6 Optimized identification with no digital filter and other
methods same as Table 3

Parameters ID values True values Error

B11 0.1125 0.1131 0.5%

B12 0.0790 0.0711 11.1%

B15 0.0825 0.0820 0.6%

B21 1.1611 1.6816 31.0%

B22 0.2553 0.2630 3.0%

B25 0.2564 0.2913 12.0%

C11 0.0003 1.02×10−3 −
C12 −0.0002 0.00366 −
C2 0.0164 0.0485 −

Table 7 lists the identified parameters (Fourier
series method) with 8% error tolerance of extrac-
tion (in this case, 58 different orbits extracted), and
showed large errors. For the present system, the co-
efficients B11 and B21 are parameters of strong non-
linear terms, and therefore identification of these two
parameters are usually less stable and more prone to
error.

Table 7 Comparison of calculated values by Fourier Series
(FS) method and Digital Differentiation (DD) method when er-
ror tolerance is set as 8% and other methods same as Table 3

FS ID FS error DD ID DD error

B11 0.0126 88.5% 0.1224 8.2%

B12 0.0730 2.7% 0.0760 6.9%

B15 0.0908 10.7% 0.0908 10.7%

B21 1.4703 12.6% 1.6103 4.3%

B22 0.2607 0.9% 0.2559 3.7%

B25 0.2851 2.1% 0.2772 4.8%

C11 0.0014 − −0.0003 −
C12 0.0005 − 0.0016 −
C2 0.0053 − 0.0093 −

5.5.2 Digital differentiation

Through the previous analysis, for large recurrence er-
ror one would naturally consider that a similar sce-
nario would happen to other dynamic systems with
strong nonlinearity. In this case, digital differentiation
could be applied given adequate sampling points per
cycle, e.g., a high sampling rate fs . In this experiment,
there were 100 points per excitation period.
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Fig. 9 Identification
residue of �e2 with each dot
representing a subharmonic;
the horizontal position of
each dot is the predicted
value of �q2, the vertical
position of each point is the
identification residue

The obtained curves are in Fig. 8(c) and (d) for the
extracted period-9 orbit. It is apparent that the recur-
rence impulses are reduced for both of the cases, and
much less high frequency noise displayed in the speed
and acceleration curves. The corresponding identified
parameters listed in Table 7, are more precise com-
pared to those of Fourier series method.

However, the algorithm of digital differentiation it-
self introduces calculation errors in (16) and (17). It
could not predict precisely the small value parameters,
e.g., friction parameters, according to an identification
test based on the simulated double pendulum system.
On the other hand, for the same simulated system, the
Fourier series method can identify all of the parame-
ters with satisfying accuracy if the error tolerance of
extraction is small enough (2% in this case). It shows
that the digital differentiation method is more stable,
but not more accurate, compared to the Fourier series
expansion algorithm.

5.5.3 Choice of subharmonics or harmonics

Next, we address the optimization strategy of
Sect. 3.2.4 for selecting harmonics. Figure 9 displays
the residue �e2 and the corresponding identification er-
ror ε2 is 18.4% when all 140 subharmonics were in-

Table 8 Identified parameters with no optimization to subhar-
monics set

Parameters Identified True values Error×100%

B11 0.1178 0.1131 4.2%

B12 0.0782 0.0711 10.0%

B15 0.0861 0.0820 5.0%

B21 1.4935 1.6816 11.2%

B22 0.2562 0.2630 0.5%

B25 0.2828 0.2913 3.4%

C11 0.0001 1.02×10−3 −
C12 0.0007 0.00366 −
C2 0.0147 0.0485 −

cluded in the identification, whose frequencies were
less than or equal to the driving frequency. Apparently,
the results for B2j for j = 1,2,5, are not satisfying,
and the comparison in Table 8 and Table 3 also cor-
roborates the rule of thumb since B21 has a 11.2%
error. On the other hand, The B1j parameters have
ε1 = 8.8%, and are quite consistent with the result af-
ter optimization in Table 3.

For the investigated system, applying the optimiza-
tion process in Sect. 3.2.4 and after 3 optimization
iterations with β = 5% (by excluding 10 erroneous
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Fig. 10 Identification
residue after optimization
for �e2 with each dot
representing a subharmonic

subharmonics), the identification errors are reduced to
ε1 = 8.1% and ε2 = 9.4%. The corresponding results
are listed in Table 3. Displayed in Fig. 10 is the residue
distribution of �e2 after optimization. Compared to the
identified values without optimization in Table 8, the
optimized ones have smaller errors and are more accu-
rate. However, the proposed optimization cannot work
well for all cases. If after a few times of optimiza-
tion the identification errors are still undesirable, we
should either use more precise UPOs, or reselect the
set of subharmonics before optimization such that the
noise contamination can be minimized. In order to ob-
tain more precise UPOs, besides the UPO extraction
with smaller tolerance of error, we can also refine the
extracted UPOs [22]. But the refinement process may
generate erroneous results from quasi-periodic orbits
and may not be adequate for limited data set. For bet-
ter selection of subharmonics, one may choose only
those subharmonics that have the largest amplitude
in the UPOs’ acceleration FFT spectrum (and avoid
those noise-contaminated high frequency subharmon-
ics, since it could only be noise). Furthermore, the se-
lection could be simplified by choosing the harmon-
ics instead of subharmonics if most of the orbits are
composed mainly of the harmonics of the driving fre-
quency fe.

5.6 Validation methods

Generally, most of the parameters of a nonlinear sys-
tem are unknown to us. The direct comparison dis-
cussed in previous sections is not available for most
applications. Besides, lots of the ‘true’ parameters in
Table 1 were also estimated. Hence, we are not clear
what the exact errors are for the identified values. Two
other methods were applied here to verify the identi-
fied parameters and the effectiveness of the identifica-
tion algorithm. The first one was to verify our method
by identifying the simulated double pendulum system
such that comparisons were made based on identifica-
tion results and the phase portraits of the experimental
and simulated systems. The second method involved
the linearized system properties, e.g., natural frequen-
cies.

5.6.1 Identification of the simulated double pendulum
system

To verify the effectiveness of identification process, a
simulated system was also examined with parameters
set as the identified values listed in Table 3 except for
the friction terms (see Sect. 5.3). The error tolerance of
extracting unstable periodic orbits was 5%. The phase
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Table 9 Comparison of the identified values and the true para-
metric settings of the simulated system (methods same as Ta-
ble 3)

Identified Settings Error×100%

Jo1 (kg m2) 5.767×10−4 5.757×10−4 0.2%

Jo2 (kg m2) 4.310×10−5 4.228×10−5 1.0%

B11 0.1166 0.1167 0.1%

B12 0.0787 0.0781 0.8%

B15 0.0848 0.0849 0.1%

C11 0.0005 0.0 −
C12 0.0038 0.00366 3.8%

B21 1.5943 1.6149 1.3%

B22 0.2568 0.2562 0.2%

B25 0.2866 0.2868 0.1%

C2 0.0429 0.0485 11.5%

portrait has been shown in Fig. 5. Some similarity ob-
served in the simulated system compared to the ex-
perimental phase portrait (displayed in Fig. 3), e.g.,
chaotic behavior. Many detailed chaotic characteris-
tics were not available due to the inadequate experi-
mental data. However, it turned out that more UPOs
could be extracted from the equally large, sampled
data of the simulated system, than from the experi-
mental data set. Meanwhile, for the simulated system,
the comparison in Table 9 between the identified val-
ues and the parameter settings shows that all the para-
meters including the friction coefficients were identi-
fied correctly, which confirms the effectiveness of this
algorithm. The friction coefficients, probably due to
their much smaller values and the weakness of the
least mean square method, were still hard to calculate
very accurately, and thus, identified with larger error
percentages. With little noise in the simulated data,
the error can only come from the recurrence error of
the extracted periodic orbits. Also, it confirms the dif-
ficulty of identifying small friction parameters in the
experiment, since more noise contamination occurred
in the experimental data.

5.6.2 Linear properties

The linearized pendulum can also be applied to vali-
date the identification results, e.g., by comparing the
natural frequencies of the linearized system. Suppose
the pendulum has only a small-angle oscillation with-

Table 10 Natural frequencies

Identified Experimental Error×100%

fn1 1.336 1.25 6.9%

fn2 2.904 3.00 3.2%

out excitation. By discarding the higher order terms
and neglecting dry friction, (2) can be simplified to
⎧
⎨

⎩

d2φ1
dτ 2 + B11

d2φ2
dτ 2 + B12φ1 − C12(φ̇2 − φ̇1) = 0,

d2φ2
dτ 2 + B21

d2φ1
dτ 2 + B22φ1 − C2(φ̇2 − φ̇1) = 0.

(19)

Since our goal is to examine the natural frequencies,
by neglecting the damping terms, (19) can be further
simplified to the form of
⎧
⎨

⎩

d2φ1
dτ 2 = −B12

1−B11B21
φ1 + B22B11

1−B11B21
φ2,

d2φ2
dτ 2 = B12B21

1−B11B21
φ1 + −B22

1−B11B21
φ2,

(20)

and the characteristic matrix of (20) is

A =

⎛

⎜
⎜
⎜
⎝

0 1 0 0
−B12

1−B11B21
0 B22B11

1−B11B21
0

0 0 0 1
B12B21

1−B11B21
0 −B22

1−B11B21
0

⎞

⎟
⎟
⎟
⎠

. (21)

The eigenvalues of matrix A are the natural fre-
quencies of the linearized system in nondimensional
form. The natural frequencies of the identified system
were solved to be 1.336 Hz and 2.904 Hz. Through
FFT analysis, the natural frequencies obtained by ex-
perimental data are 1.25 Hz and 3.00 Hz. Comparison
in Table 10 shows that the natural frequencies match
with the FFT result. It shows that the identified para-
meters excluding the friction terms are reliable for the
purpose of system linearization.

6 Conclusions

A double pendulum system experiment was exam-
ined for chaotic system identification. The investi-
gated system was a multi-degree-of-freedom system
with strong non-linearity, including mixed φi , φ̇i and
φ̈i nonlinearity. However, only displacement signals
were directly measured data. To adapt to these new
challenges, some modifications were added in the har-
monic balance identification algorithm:
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1. The identification appeared to be less noise-
resistant in this case, mainly due to the strong nonlin-
ear term of (

dφi

dτ
)2 sin (φ2 − φ1) and φi

′′ cos (φ2 − φ1).
The high frequency noise contamination in the strong
nonlinear terms was reduced with low pass filtering of
each component before convolution.

2. Digital differentiation was applied to the exper-
imental data in order to make the identification results
more robust even with large recurrence errors in the
extracted orbits. It could be of use for limited data sets.
However, the digital differentiation algorithm also in-
troduced differentiation error, and thus, did not give
accurate values of friction terms.

3. Choices of harmonics also influenced the iden-
tified parameters. Inappropriate selection of harmonics
can generate poor results. To avoid poor results, the
key factor was to avoid noise contaminated harmon-
ics. For the present system, the subharmonics were se-
lected to avoid noise.

4. Linear regression techniques were applied to
quantify the identification error εi , which reflected
the error of the identified parameters by examining
the residues and the predicted values. Based upon
the identification error, an optimization algorithm was
proposed to improve the result. An identification er-
ror less than 10% indicated a rather satisfying result.
However, optimization is limited by statistics, and can-
not work for all data to satisfy the rule of thumb.

Friction was a problem in the identification process.
For lightly damped systems, since the friction factors
were much smaller than other parameters, the identifi-
cation could not produce accurate values of the friction
terms. Noise and recurrence error were the two factors
that contributed to this error. However, the harmonic
balance algorithm is robust, and the validation process
showed that the friction error had little effect on other
identified parameters. Meanwhile, the convergence of
the identification algorithm was not fully discussed in
the experimental study, mainly due to the direct com-
parison between the identified and the measured para-
meters. In lieu of convergence, the model was verified
using residuals, comparisons to known parameters and
linearized properties.

Through the experiment, it can be concluded that
the examined identification method can be applied
to systems of chaotic, strong nonlinearity and multi-
degrees of freedom. With adequate modification, the
identification result can be improved, and the quality
of the result can be quantified by the identification er-
ror.
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