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Abstract By introducing impulsive biological con-
trol strategy, the dynamic behaviors of the two-prey
one-predator model with defensive ability and Holling
type-II functional response are investigated. By using
Floquet’s Theorem and the small amplitude perturba-
tion method, we prove that there exists an asymptot-
ically stable pest-eradication periodic solution when
the impulsive period is less than some critical mini-
mum value, and permanence conditions (that is, the
impulsive period is greater than some critical maxi-
mum value) are established via the method of com-
parison involving multiple Liapunov functions. It is
shown that our impulsive control strategy is more ef-
fective than the classical one. Furthermore, the effect
of impulsive perturbations on the unforced continuous
system is studied. From simulations, we find that the
system has more complex dynamic behaviors and is
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dominated by periodic, quasi-periodic, and chaotic so-
lutions.

Keywords Impulsive biological control · Functional
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1 Introduction

Pest outbreaks often cause serious ecological and eco-
nomic problems. For example, in recent years, a large
amount of locusts invaded into the region of the north-
western China of Xinjiang Province and Inner Mongo-
lia and caused damages to the crops together with the
local locusts. Flea beetle damage to oilseed Brassica
crops exceeds $300 million annually in North Amer-
ica (Courtesy of Lloyd Harris). There are many way to
beat agricultural pests. An important method for pest
control is chemical control. Pesticides are useful be-
cause they quickly kill a significant portion of a pest
population and they sometimes provide the only fea-
sible method for preventing economic loss. However,
pesticide pollution is not only recognized as a major
health hazard to human beings and to natural enemies
but also is resisted by pests. This latter reason results
in the use of high doses and more toxic materials to
combat pests. Beneficial insects are often susceptible
to chemical insecticides applied for the target pest.
One of the side effects of high rates of pesticide use
is that natural enemies and other small animals that
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might otherwise feed on pests are killed and the pest
population explodes again after the beneficial insects
are killed.

The safety of pesticides has been reviewed whilst
advancing activities on the safety of food and environ-
ment directly affecting our lives (e.g., establishment
of the Food Quality Prevention Act by US Environ-
mental Protection Agency). Pest control methods re-
lying on chemical pesticides have been reviewed with
consideration to their resistance and persistence in the
environment. In this regard, the Integrated Pest Man-
agement (IPM) approach, composed of a combination
of various pest control methods (e.g., natural enemy,
pheromone of insects), is valued and being promoted.
Biological control is another important method to beat
the pest [7, 8, 10]. Biological control is the purposeful
introduction and establishment of one or more natural
enemies from the region of origin of an exotic pest
specifically for the purpose of suppressing the abun-
dance of the pest in a new target region to a level at
which it no longer causes economic damage. Virtually
all insect and mite pests have some natural enemies.
One approach to biological control is augmentation,
which is the manipulation of existing natural enemies
to increase their effectiveness. This can be achieved by
the mass production and periodic release of natural en-
emies of the pest, and by genetic enhancement of the
enemies to increase their effectiveness at control. The
pioneering project of biological control began in 1888
when the new legendary predator, the vedalia beetle,
was imported from Australia and established in Cali-
fornia, where it rapidly suppressed populations of cot-
tony cushion scale that had been decimating the devel-
oping citrus industry [5].

So natural enemies play a more active role in sup-
pressing insect pests. Many authors have investigated
the effect of natural enemies on controlling pests [15,
17, 26]. In these works, the natural enemy is portrayed
as only feeding on one kind of pest. However, this is
not the actual case. Usually a predator (natural en-
emy) feeds on several kinds of insect pests. For ex-
ample, two species of aphids are predominant in small
grain crops: the English grain aphid and the oat-bird
cherry aphid. Aphids’ high reproductive rate enables
their populations to quickly build up to levels that can
cause an economic loss. However, aphids are usually
kept in check by biological control agents, such as
lady beetles, parasitic wasps, and syrphid fly maggots,
which are often abundant in small grain crops.

In view of these facts, Zhang et al. [25] consid-
ered a predator feeding on two kinds of pests. How-
ever, the interactions between the predator and prey
satisfy the Lotka–Volterra model, which has the un-
realistic assumption that the effect of the predation is
to reduce the prey’s per capita growth rate by a term
proportional to the prey and predator populations. As
is known, in an ecosystem the interactions between
predator and prey are often complicated and diverse.
In population dynamics, Holling [12] gave three dif-
ferent kinds of functional response of the predator to
the prey density which refer to the change in the den-
sity of prey attacked per unit time per predator as the
prey density changes, which are monotonic in the first
quadrant. If we take into account the time a predator
uses in handling the prey it has captured, one finds the
predator has a type-II functional response. But some
experiments and observations indicate that the non-
monotonic response occurs because when the nutrient
concentrations reaches a high level an inhibitory effect
on the specific growth rate may occur. To model such
an inhibitory effect, Andrews [1] suggested a function

φ(x) = mx

a + bx + x2
,

called the Monod–Haldane function, or Holling type-
IV function. Sugie and Howell [22] proposed a simpli-
fied Monod–Haldane function of the form:

φ(x) = mx

a + x2
,

which describes the phenomenon of group defense
whereby predation is decreased, or even prevented al-
together, due to the increased ability of the prey to bet-
ter defend or disguise themselves when their numbers
are large enough. An example of this phenomenon is
introduced by Tener [24].

The four kinds of Holling functional response have
been studied [6, 20]. According to Hassel et al. [11],
the Holling type-II functional response is the most
common type of functional response among arthro-
pod predators. Based on the predator-prey system with
Holling II functional response and group defense, we
suggest an impulsive differential equation [2, 3, 14]
to model the process of periodically releasing natural
enemies at different fixed times in Sect. 2. Impulsive
equations are found in almost every domain of applied
science and have been studied in many investigations:
impulsive birth [19, 23], impulsive vaccination [9, 21],
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chemotherapeutic treatment of disease [13, 16] and
population ecology [4]. They generally describe the
phenomena which are subject to steep or instantaneous
changes. In Sect. 4, we analyze the dynamic behaviors
of such systems. By using Floquet’s theorem and the
small amplitude perturbation method, we show that
there exists an asymptotically stable pest-eradication
periodic solution when the period of impulsive effect
is less than some threshold, and we prove the system
is permanent under some conditions.

2 Model formulation

The model we considered is based on the following
system:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x′
1 = x1(t)

[
a1 − x1(t)

] − x1(t)x3(t)

1+ex2
1 (t)

,

x′
2 = x2

[
a2 − x2(t)

] − x2(t)x3(t)
1+wx2(t)

,

x′
3 = x3(t)

[
m1x1(t)

1+ex2
1 (t)

+ m2x2(t)
1+wx2(t)

− d
]

(2.1)

where x1(t), x2(t), and x3(t) are the biomasses of the
two prey and the predator at time t, respectively, a1

and a2 are the intrinsic growth rates of the two prey,
d denotes the death rate of the predator, and m1 and
m2 are the rates of converting prey into predators. All
parameters are positive constants.

For the system (2.1), the following results are obvi-
ously true.

Remark 2.1 The equilibrium (0,0,0) of system (2.1)
is unstable.

Remark 2.2 The equilibrium (0,0, x3+) of syst-
em (2.1) doesn’t exist, where x3+ > 0.

In this paper, with the ideas of group defense and
Holling type-II functional response, we consider a
two-prey one-predator system with impulsive pertur-
bations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
1 = x1(t)

[
a1 − x1(t)

] − x1(t)x3(t)

1+ex2
1 (t)

,

x′
2 = x2

[
a2 − x2(t)

] − x2(t)x3(t)
1+wx2(t)

,

x′
3 = x3(t)

[
m1x1(t)

1+ex2
1 (t)

+ m2x2(t)
1+wx2(t)

− d
]
,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

t �= nτ,

x3
(
nτ+) = x3(nτ) + p,

x
(
0+) = x0 = (

x1(0), x2(0), x3(0)
)T

(2.2)

where x1, x2 and x3 are defined as above. x3(nτ+) de-
notes the biomass of predators after the nth release.
p is the release amount of predator at time t = nτ, n ∈
N and N = {1,2, . . .}, and τ is the period of the im-

pulsive effect. x1(t)x3(t)

1+ex2
1 (t)

describes the relationship be-

tween prey x1 and predator x3 when the prey exhibits

group defense, x2(t)x3(t)
1+wx2(t)

is the Holling type-II func-

tional response. All parameters are positive constants.
For convenience, we denote the solution of (2.2) by
x(t) = (x1(t), x2(t), x3(t)).

3 Preliminaries

First, we give some notation, definitions and lem-
mas which be useful for our main results. Let R+ =
[0,∞], R3+ = {x ∈ R3 | x ≥ 0}. Denote f =
(f1, f2, f3) the map defined by the right hand of sys-
tem (2.2), and N the set of all non-negative integers.
Let V : R+ × R3+ → R+, then V is said to belong to
class V0 if:

(i) V is continuous in (nτ, (n + 1)τ ] × R3+ and for
each x ∈ R3+, n ∈ N, lim(t,y)→(nτ+,x) V (t, y) =
V (nτ+, x) exists.

(ii) V is locally Lipschitzian in x.

Definition 3.1 Let V ∈ V0, then for (t, x) ∈ (nτ,

(n + 1)τ ] × R3+, the upper right derivative of V (t, x)

with respect to the impulsive differential system (2.2)
is defined as

D+V (t, x) = lim
h→0+ sup

1

h

[
V

(
t + h,x + hf (t, x)

)

− V (t, x)
]
.

The solution of the system (2.2) is denoted by x(t) =
(x1(t), x2(t), x3(t)) :R+ → R+ × R3+, and is con-
tinuously differential on (nτ, (n + 1)τ ], n ∈ N and
x(nτ+) = limt→nτ+ x(t) exists. The global existence
and uniqueness of the solution of system (2.2) is guar-
anteed by the smoothness of f (see [2]). The following
lemma is obvious.

Lemma 3.1 Suppose x(t) is a solution of (2.2) with
x(0+) ≥ 0, then x(t) ≥ 0 for all t ≥ 0.

Definition 3.2 System (2.2) is said to be permanent
if there exist three positive constants m,M and T0

such that each positive solution (x1(t), x2(t), x3(t)) of
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system (2.2) satisfied m ≤ xi(t) ≤ M , for all t > T0,
i = 1,2,3.

We will use the following important comparison
theorem on impulsive differential equation [2]:

Lemma 3.2 Let V ∈ V0. Assume that
{

D+V (t, x) ≤ g
(
t, V (t, x)

)
, t �= nτ,

V
(
t, x

(
t+

)) ≤ ϕn

(
V (t, x)

)
, t = nτ,

(3.1)

where g :R+ × R+ → R is continuous in (nτ,

(n+1)τ ]×R+ and for u ∈ R+, n ∈ N, lim(t,y)→(nτ+,u)

V (t, y) = V (nτ+, u) exists, ϕn :R+ → R+ is non-
decreasing. Let r(t) be the maximal solution of the
scalar impulsive differential equation
⎧
⎪⎨

⎪⎩

u′(t) = g
(
t, u(t)

)
, t �= nτ,

u
(
t+

) = ϕn

(
u(t)

)
, t = nτ,

u
(
0+) = u0,

(3.2)

existing on [0,∞]. Then V (0+, x0) ≤ u0 implies that
V (t, x(t)) ≤ r(t), t ≥ 0, where x(t) is any solution
of (2.2).

Similar results can be obtained when all the direc-
tions of the inequalities in (3.1) are reversed. Note that
if we have some smoothness conditions of g to guaran-
tee the existence and uniqueness of solutions for (3.2),
then r(t) is exactly the unique solution of (3.2).

The function we will use is in the form −du. For
convenience, we give some basic properties of the fol-
lowing system.
⎧
⎪⎨

⎪⎩

u′(t) = −du(t), t �= nτ,

u
(
t+

) = u(t) + p, t = nτ,

u
(
0+) = u0.

(3.3)

Clearly, system (3.3) has a positive periodic solution

u∗(t) = p exp(−d(t − nτ))

1 − exp(−dτ)
,

t ∈ (
nτ, (n + 1)τ

]
, n ∈ N,

u∗(0+) = p

1 − exp(−dτ)
.

Since the solution of the system (3.3) is

u(t) =
(

u
(
0+) − p

1 − exp(−dτ)

)

exp(−dt) + u∗(t),

t ∈ (nτ, (n + 1)τ ], u
(
0+) ≥ 0,

we have

Lemma 3.3 System (3.3) has a positive periodic solu-
tion u∗(t) and for every solution u(t) of (3.3), it fol-
lows that u(t) → u∗(t) as t → ∞.

Therefore, the system (2.2) has a pest-eradication
periodic solution

(
0,0, x∗

3 (t)
) =

(

0,0,
p exp(−d(t − nτ))

1 − exp(−dτ)

)

for t ∈ (nτ, (n + 1)τ ].

4 Extinction and permanence

First, we study the stability of the prey-eradication pe-
riodic solution.

Theorem 4.1 Let (x1(t), x2(t), x3(t)) be any solution
of (2.2), then (0,0, x∗

3 (t)) is asymptotically stable pro-
vided that

τ ≤ min

{
p

a1d
,

p

a2d

}

� τmin.

Proof The local stability of periodic solution
(0,0, x∗

3 (t)) may be determined by considering the
behavior of small amplitude perturbations of the so-
lution. Define

x1(t) = u1(t), x2(t) = u2(t),

x3(t) = x∗
3 (t) + u3(t)

where ui(t) (i = 1,2,3) are small perturbations.
Equation (2.2) can be expanded in a Taylor series after
neglecting higher order terms, the linearized equations
read:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′
1(t) = (

a1 − x∗
3 (t)

)
u1(t),

u′
2(t) = (

a2 − x∗
3 (t)

)
u2(t),

u′
3(t) = m1x

∗
3 (t)u1(t)

+ m2x
∗
3 (t)u2(t)

− du3(t),

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

0 < t < τ,

u3
(
nτ+) = u3(nτ).

(4.1)

Let Φ(t) be fundamental matrix of (4.1), then Φ(t)

must satisfy

dΦ(t)

dt
=

⎛

⎝
a1 − x∗

3 (t) 0 0
0 a2 − x∗

3 (t) 0
m1x

∗
3 (t) m2x

∗
3 (t) −d

⎞

⎠Φ(t)

� AΦ(t), (4.2)
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and Φ(0) = I , the identity matrix. The linearization of
the resetting impulsive conditions of (2.2) becomes

⎛

⎝
u1(nτ+)

u2(nτ+)

u3(nτ+)

⎞

⎠ =
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠

⎛

⎝
u1(nτ)

u2(nτ)

u3(nτ)

⎞

⎠ .

Thus, the monodromy matrix of (4.1) is

M =
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠Φ(τ).

From (4.2), we have Φ(τ) = Φ(0) exp(
∫ τ

0 Adt) �
Φ(0) exp(Ā). Let μ1,μ2 and μ3 be eigenvalues of ma-
trix Ā, then

μ1 = a1dτ − p

d
, μ2 = a2dτ − p

d
,

μ3 = −dτ < 0.

Therefore, all eigenvalues of M , namely, exp(μ1),
exp(μ2), and exp(μ3) have absolute values less than
one if and only if τ ≤ min{ p

a1d
,

p
a2d

}. According to
Floquet’s theory of impulsive differential equations,
the two-pest eradication solution (0,0, x∗

3 (t)) is lo-
cally stable. This completes the proof. �

In the following, we show that all solutions of (2.2)
are uniformly upper bounded.

Theorem 4.2 There exists a constant M > 0, such
that xi(t) ≤ M (i = 1,2,3) for each solution (x1(t),

x2(t), x3(t)) of system (2.2) with all t large enough.

Proof Define a function V (t, x) as

V (t, x) = m1x1(t) + m2x2(t) + x3(t).

It is clear that V ∈ V0. We calculate the upper right
derivative of V (t, x) along a solution of system (2.2)
and get the following impulsive differential equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

D+V (t) + λV (t)

= ∑2
i=1

[
mi(ai + λ)xi − bimix

2
i

]

+ (λ − d)x3,

t �= nτ,

V
(
t+

) = V (t) + p, t = nτ.

(4.3)

Let 0 < λ < d , then
∑2

i=1[mi(ai + λ)xi − bimix
2
i ] +

(λ − d)x3 is bounded. Select λ0 and λ1 such that
{

D+V (t) ≤ −λ0V (t) + λ1, t �= nτ,

V
(
t+

) = V (t) + p, t = nτ,

where λ0, λ1 are two positive constants. According to
Lemma 3.2, we have

V (t) ≤
(

V
(
0+) − λ1

λ0

)

exp(−λ0t)

+ p(1 − exp(−nλ0τ))

exp(λ0τ) − 1
exp

(
λ0τ

)

× exp
(−λ0(t − nτ)

) + λ1

λ0
,

where t ∈ (nτ, (n + 1)τ ]. Hence,

lim
t→∞V (t) ≤ λ1

λ0
+ p exp(λ0τ)

exp(λ0τ) − 1
.

So V (t) is uniformly ultimately bounded. Hence, by
the definition of V (t), it is known that there exists a
constant M > 0 such that xi(t) ≤ M (i = 1,2,3) for t

large enough. The proof is completed. �

In the following, let us investigate the permanence
of system (2.2).

Theorem 4.3 System (2.2) is permanent provided that

d > max

{
m1

√
e

1 + √
e3

,
m2a2

1 + wa2

}

and

τ > max

{
p

a1(d − m2a2
1+wa2

)
,

p

a2
(
d − m1

√
e

1+√
e3

)

}

� τmax.

Proof Suppose x(t) is a solution of (2.2) with x0 > 0.
From Theorem 4.2, we may assume x3(t) ≤ M and
M > max{a1, a2} for t > 0. Note that

x′
1(t) ≤ x1(t)

(
a1 − x1(t)

)
,

considering the comparison equation
{

f ′(t) = f (t)
(
a1 − f (t)

)
,

f (0) = x1(0),

we have x1(t) ≤ f (t) and f (t) → a1 as t → ∞, thus
x1(t) ≤ a1 + ε1 (ε1 > 0) for t large enough. Without
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loss of generality, we may assume x1(t) ≤ a1 + ε1

for t > 0. Similarly, one can assume x2(t) ≤ a2 + ε1

(ε1 > 0) for t > 0. Let k̄3 = p exp(−dτ)
1−exp(−dτ)

− ε3 > 0,

ε3 > 0. According to Lemmas 3.2 and 3.3, we have
x3(t) > k̄3 for all t large enough. In the following, we
want to find k̄1 > 0 and k̄2 > 0 such that xi(t) ≥ k̄i

(i = 1,2) for t large enough. This induction involves
two steps.

Step 1. Because of the conditions of the theorem

d > max

{
m1

√
e

1 + √
e3

,
m2a2

1 + wa2

}

,

one can select ki > 0 (i = 1,2) and ε > 0 small
enough such that

0 < k1 < min

{

a1,
1√
e

}

, 0 < k2 < a2,

δ1 = m1k1

1 + ek2
1

< d − Δ1 − ε

(

where Δ1 � m2a2

1 + wa2

)

, d − Δ1 > 0,

δ2 = m2k2

1 + wk2
< d − Δ2

(

where Δ2 � m1
√

e

1 + √
e3

)

,

and

δ3 = δ1 + δ2 < d.

It will be proved that there exist t1, t2 ∈ (0,∞) such
that xi(ti) ≥ ki (i = 1,2), otherwise there will be three
cases.

(i) There exists a t2 > 0, such that x2(t2) ≥ k2, but
x1(t) < k1 for all t > 0.

(ii) There exists a t1 > 0, such that x1(t1) ≥ k1, but
x2(t) < k2 for all t > 0.

(iii) x1(t) < k1, x2(t) < k2 for all t > 0.

Let us consider the three cases.
Case (i). In this case, by the condition of theorem

τ > max

{
p

a1(d − m2a2
1+wa2

)
,

p

a2
(
d − m1

√
e

1+√
e3

)

}

� τmax,

choose ε′
1 > 0 small enough such that

σ1 = a1τ − k1τ − p

d − δ1 − Δ1 − ε
− ε′

1τ > 0.

According to the assumption above, it is easy to see

x′
3(t) ≤ x3(t)(−d + δ1 + Δ1 + ε).

By Lemmas 3.2 and 3.3, it follows that x3(t) ≤ y(t)

and y(t) → ȳ(t), where

ȳ(t) = p exp
(
(−d + δ1 + Δ1 + ε)(t − nτ)

)

1 − exp
(
(−d + δ1 + Δ1 + ε)τ

) ,

t ∈ (
nτ, (n + 1)τ

]
,

and y(t) is the solution of the following equation

⎧
⎪⎨

⎪⎩

y′(t) = (−d + δ1 + Δ1 + ε)y(t), t �= nτ,

y
(
t+

) = y(t) + p, t = nτ,

y
(
0+) = x03.

(4.4)

Therefore there exists a T1 > 0 such that

x3(t) ≤ y(t) ≤ ȳ(t) + ε′
1,

x′
1(t) ≥ x1(t)

(
a1 − k1 − (

ȳ(t) + ε′
1

))
. (4.5)

Let N1 ∈ N and N1τ > T1. Integrating (4.5) on
(nτ, (n + 1)τ ] (n ≥ N1), we have

x1
(
(n + 1)τ

)

≥ x1(nτ) exp

(∫ (n+1)τ

nτ

[
a1 − k1 − (

ȳ(t) + ε′
1

)]
dt

)

= x1(nτ) exp(σ1).

Then

x1
(
(N1 + k)τ

) ≥ x1(N1τ) exp(kσ1) → ∞,

as k → ∞,

which is a contradiction to the boundedness of x1(t).
Case (ii). Let ε′

2 small enough such that

σ2 = a2τ − k2τ − p

d − δ2 − Δ2
− ε′

2τ > 0.

Similar to Case (i), one can find a contradiction to the
boundedness of x2(t).

Case (iii). Using the assumption in Case (iii), it is
easy to see

x′
3(t) ≤ x3(t)

(

−d + m1k1

1 + ek2
1

+ m2k2

1 + wk2

)

= x3(t)(−d + δ1 + δ2).
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In the same manner as Case (i), we can find a contra-
diction.

From the three cases above, it is concluded that
there exist t1 > 0, t2 > 0 such that x1(t1) ≥ k1 and
x2(t2) ≥ k2.

Step 2. If x1(t) ≥ k1 for all t ≥ t1, then our aim is
obtained. Otherwise, if x1(t) < k1 for some t ≥ t1.
Setting t∗ = inft≥t1

{
x1(t) < k1

}
, then x1(t) ≥ k1 for

t ∈ [t1, t∗). It is easy to see x1(t
∗) = k1, since x1(t)

is continuous. Suppose t∗ ∈ [n1τ, (n1 + 1)τ ], n1 ∈ N.

Select n2, n3 ∈ N such that

n2τ > ln

(
ε′

1

M + p

)/
(−d + δ1 + Δ1 + ε),

exp
(
(n2 + 1)σ3τ

)
exp(n3σ1) > 1,

where σ3 = a1 − k1 − M < 0. Set τ̄ = n2τ + n3τ .
We claim that there must exist a t ′ ∈ ((n1 + 1)τ,

(n1 + 1)τ + τ̄ ) such that x1(t
′) ≥ k1. Otherwise,

x1(t) < k1, for all t ∈ ((n1 +1)τ, (n1 +1)τ + τ̄ ]. Con-
sidering (4.4) with y((n1 + 1)τ+) = x3((n1 + 1)τ+),
we have

y(t) =
(

(
y(n1 + 1)τ+)

− p

1 − exp((−d + δ1 + Δ1 + ε)τ )

)

× exp
(
(−d + δ1 + Δ1 + ε)

(
t − (n1 + 1)τ

))

+ ȳ(t),

for t ∈ (nτ, (n+ 1)τ ], n1 + 1 ≤ n < n1 + 1 +n2 +n3.

Then
∣
∣y(t) − ȳ(t)

∣
∣

< (M + p) exp
(−(d − δ1 − Δ1 − ε)n2τ

)
< ε′

1,

x3(t) ≤ y(t) ≤ ȳ(t) + ε′
1,

for (n1 +n2 + 1)τ ≤ t ≤ (n1 + 1)τ + τ̄ , which implies
(4.4) holds on [(n1 +n2 +1)τ, (n1 +1)τ + τ̄ ]. Similar
as in Step 1, we have

x1
(
(n1 + n2 + 1 + n3)τ

)

≥ x1
(
(n1 + n2 + 1)τ

)
exp(n3σ1).

System (2.2) gives

x′
1(t) ≥ x1(a1 − k1 − M) = σ3x1(t). (4.6)

Integrating (4.6) on (t∗, (n1 + n2 + 1)τ ], yields

x1
(
(n1 + n2 + 1)τ

) ≥ k1 exp
(
σ3(n1 + 1)τ

)
.

Then

x1
(
(n1 + 1 + n2 + n3)τ

)

≥ k1 exp
(
σ3(n1 + 1)τ

)
exp(n3σ1) > k1,

which is a contradiction. Let t̄ = inft≥t∗{x1(t) ≥ k1},
then x1(t̄) = k1 and (4.6) holds for t ∈ [t∗, t̄). Inte-
grating (4.6) on [t∗, t̄) yields

x1(t) ≥ x1
(
t∗

)
exp

(
σ3(t − t∗)

)

≥ expk1
(
(1 + n2 + n3)τ

)
.

Let k̄1 � k1 exp(σ3(1 + n2 + n3)τ ). For t > t̄ the same
argument can be continued since x1(t̄) ≥ k1, hence
x1(t) ≥ k̄1 for all t > t1.

Since x1(t̄) ≥ k1, then the same result holds for all
t > t1. Thus, we conclude x1(t) ≥ k̄1 for t > t1.

Similarly, we can prove x2(t) ≥ k̄2 for all t > t2.
This completes the proof. �

Remark 4.1 The conditions of Theorem 4.3 is suffi-
cient.

Remark 4.2 From [26] and [15], one knows that the
corresponding systems are permanent when the stabil-
ity of pest-eradication periodic solutions disappears.
But for system (2.2), actually this is not the case. For
example, let a1 = 1.6, a2 = 3, e = 1, w = 1, d = 0.5,
m1 = 0.9, m2 = 0.5, b1 = 1, b2 = 1, p = 1, then p

a1d
≈

1.25, p
a2d

≈ 0.6667. Choose τ = 3, then τ > max{ p
a1d

,
p

a2d
}. But x1 is extinct, and x2 and x3 are permanent.

Remark 4.3 From [18], it is shown that the extinct crit-
ical value τmin and the permanent value τmax are the
same for the single functional response system. But
for the combined system (2.2), both of them are dif-
ferent, and the behaviors of the systems are difficult to
tell apart.

Remark 4.4 From the numerical simulations in Fig. 2,
one infers that there exists a positive solution to sys-
tem (2.2).
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5 Numerical analysis

Our focus so far has been on the asymptotic stability
of the pest-eradication periodic solution and the per-
manence of the system (2.2). Now we will study the
effects of the impulsive period τ on the complexity of
the system (2.2).

Let a1 = 3.1, a2 = 3, ω = e = 1, d = 0.7, m1 = 0.9
and m2 = 0.8. Then system (2.1) has four bounded
equilibria which are unstable and the system does
not have positive equilibrium. By computer simula-
tions, system (2.1) exists a positive periodic solution
in R+

3 , see Fig. 1a and b. Since system (2.1) cannot
be solved explicitly and system (2.2) cannot be rewrit-
ten as equivalent difference equations, it is difficult to
study them analytically.

First of all, we introduce additional predators into
the predator-prey system (2.1) and consider the impul-
sive effect of τ (the control parameter) on the sys-
tem (2.1) where p = 2. The effect τ may be docu-
mented by stroboscopically sampling one of the vari-
ables over a range of τ values. In Fig. 2a, we have
displayed bifurcation diagrams for the population x2

as τ increases from 1.5 to 8.5 with initial values
(x10, x20, x30) = (2,3,2). When the impulsive period
τ < 0.952, the pest-eradication periodic solution is
stable. From Theorem 4.3, d satisfies the condition,
and the system is permanent when the impulsive pe-
riod τ > 6.452. The two conclusions are confirmed by
Fig. 2a. When 0.952 < τ < 6.452, the dynamic behav-
ior of species x1, x2 and x3 are complicated.

Fig. 1 For system (2.1) exists a periodic solution. a Phase portrait of periodic solution. b Time series of periodic solution

Fig. 2 a The bifurcation diagram of population x2 with respect to τ on [1.5,8.5] for system (2.2) with initial values (2,3,2). b An
expanded view of a with respect to τ on [2,2.25]. Note that below τ = 2.04 the behavior is periodic. Above τ = 2.04 there are
quasi-periodic behavior, period-doublings, intermittency and crises, and in the vicinity of τ = 8.2, the solution from period-3 turns to
period-1
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Fig. 3 a Expanded view of Fig. 2a with respect to τ on [6.8,6.9] for system (2.2). b First-order quasi-periodic when τ = 2.05, with
initial values (2,3,2)

Fig. 4 a A high-order quasi-periodic solution for system (2.2) when τ = 2.05, with initial values (2,3,2). b A period-5 solution when
τ = 6.88 with initial values (2,3,2)

With τ increasing from 1.5 to 8.5, there are some
interesting phenomena. Zooming in, we get Figs. 2b
and 3a. In both figures, there are four important re-
spects to be illustrated as follows.

First, in Fig. 3a, there is period-5 solution (Fig. 4b)
for system (2.2) when τ = 6.88. However, in Fig. 2b,
there is a “window” which is composed of “ribbons”
between τ = 2.2 and τ = 2.25. What dynamic behav-
ior do those “ribbons” represent? Choosing τ = 2.22,
the phase portrait plot shows that the orbit is a high-
order quasi-periodic solution (Fig. 4a) which is com-
pared with a first-order quasi-periodic one (Fig. 3b).

Second, we must be careful to distinguish the
smear of points that occurs on Fig. 2b due to quasi-
periodicity from the smear of points on Fig. 3a in the
chaotic regions. One should notice the banded struc-

ture of the quasi-periodic behavior and compare that
to the “random scatter” of the chaotic. For example,
Fig. 5a shows a high order quasi-periodicity when
τ = 2.14, and Fig. 5b shows a strange attractor when
τ = 6.84. That is, on bifurcation diagrams, the dy-
namic behavior of the “black” region is either chaotic
or quasi-periodic which can be distinguished by two
methods.

On the one hand, one can distinguish them by a
skiagraph of the phase portrait. For example, Figs. 6a
and b are skiagraphs of Figs. 5a and b on the plane
x1–x2, respectively. On the other hand, to verify that
the regions on Fig. 3a with a scattering of trajectory
points are actually chaotic, we should compute the (av-
erage) Lyapunov exponent for the trajectory. The Lya-
punov exponent is 0 for quasi-periodic behavior and
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Fig. 5 a A high order of quasi-periodicity for system (2.2), where τ = 2.14. b A strange attractor, where τ = 6.84, with initial values
(2,3,2)

Fig. 6 a A skiagraph of Fig. 5a on the plane x1–x2 for system (2.2). b A skiagraph of Fig. 5b on the plane x1–x2

positive for chaotic behavior. In the quasi-periodic sce-
nario, the system begins again with a limit cycle tra-
jectory. As the control parameter changes, a second
periodicity appears in the behavior of the system. If
the ratio of the period of the second type of motion to
the period of the first is not rational, then the motion is
quasi-periodic. Under some circumstances, if the con-
trol parameter is changed further, the motion becomes
chaotic. However, the quasi-periodic route to chaos is
likely to lead to chaotic behavior, but not necessarily.

Finally, we remark on intermittency and crises. The
intermittency route to chaos is characterized by dy-
namics with irregularly occurring bursts of chaotic be-
havior interspersed with intervals of apparently peri-
odic behavior. A crisis is a bifurcation event in which
a chaotic attractor and its basin of attraction suddenly

disappear or suddenly change in size as some control
parameter is adjusted.

6 Discussion

In this work, by introducing impulsive effect concern-
ing biological control strategy, we investigate the dy-
namic behaviors of a two-prey one-predator model in
which one prey has defensive ability and another prey
has a Holling type-II functional response to the preda-
tor. By using Floquet’s theorem and the small ampli-
tude perturbation method, we prove that there exists
an asymptotically stable pest-eradication periodic so-
lution when the impulsive period is less than some crit-
ical value τmin, and permanence conditions are estab-
lished via the method of comparison involving mul-
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tiple Liapunov functions when the impulsive period is
greater than some critical value τmax. With the increase
of impulsive period τ , the system has a unique positive
solution. In the following, let us compare the results of
system (2.1) with systems (2.2).

System (2.1) is a model with a classical biological
control technique. From Remarks 2.1 and 2.2, it can be
shown that the pest eradication equilibrium (0,0, x3+)

doesn’t exist, and the equilibrium (0,0,0) is unstable,
which means that one cannot eradicate pests steadily.
However, from the impulsive control system (2.2), the
pest can be eradicated provided that the impulsive pe-
riod τ is less than a threshold min{ p

a1d
,

p
a2d

}, where

p is the release amount of the natural enemy, which
can be controlled in advance. So it is shown that the
impulsive control strategy is more effective than the
classical one.

Acknowledgements This work is supported by National Nat-
ural Science Foundation of China (10171106).
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