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Abstract A method for identifying a piecewise-linear
approximation to the nonlinear forces acting on a sys-
tem is presented and demonstrated using response
data from a micro-cantilever beam. It is based on the
Restoring Force Surface (RFS) method by Masri and
Caughey, which is very attractive when initially test-
ing a nonlinear system because it does not require the
user to postulate a form for the nonlinearity a pri-
ori. The piecewise-linear fitting method presented here
assures that a continuous piecewise-linear surface is
identified, is effective even when the data does not
cover the phase plane uniformly, and is more com-
putationally efficient than classical polynomial based
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methods. A strategy for applying the method in po-
lar form to sinusoidally excited response data is also
presented. The method is demonstrated on simulated
response data from a cantilever beam with a nonlin-
ear electrostatic force, which highlights some of the
differences between the local, piecewise-linear model
presented here and polynomial-based models. The
proposed methods are then applied to identify the
force-state relationship for a micro-cantilever beam,
whose response to single frequency excitation, mea-
sured with a Laser Doppler Vibrometer, contains a
multitude of harmonics. The measurements suggest
that an oscillatory nonlinear force acts on the can-
tilever when its tip velocity is near maximum during
each cycle.

Keywords Nonlinear system identification ·
Restoring force surface · Micro electro-mechanical
system · MEMS · Nonlinear vibration · Harmonic
distortion · Force state mapping

Abbreviations
wL Relative tip deflection, [m]
y Absolute tip displacement, [m]
eb Base displacement, [m]
y0 Initial gap between beam and base, [m]
ω Frequency, [rad/s]
ωn Natural frequency, [rad/s]
ζ Damping ratio, [unitless]
ftot Total restoring forces, [N]
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fnl Nonlinear part of restoring forces, [N]
m Effective mass, [kg]
c Damping constant, [N s/m]
k Stiffness, [N/m]
ψn nth basis function for piecewise-linear function,

[unitless]
qn Coefficient of nth basis function, [N or m/s2]
N Number of basis functions in piecewise-linear

approximation
Nf Number of time instants at which the

acceleration, velocity and displacement are
measured

1 Introduction

Among the multitude of nonlinear system identifica-
tion methods in the literature, the Restoring Force Sur-
face (RFS) method by Masri and Caughey [8] is par-
ticularly attractive because it can be used to obtain a
nonparametric description of the nonlinear forces act-
ing on a system. This allows one to address one of
the primary difficulties encountered in nonlinear sys-
tem identification, finding an appropriate mathemati-
cal form for the nonlinear system. The nonparametric
restoring force surface can be examined to determine
what mathematical form is appropriate, often yielding
insight into the physics of the nonlinearity. One can
then parameterize the RFS in order to condense the
measured data and so the response of the system to
other kinds of inputs can be predicted. This parameter-
ization is typically done using a polynomial model for
the nonlinear function, yet polynomial models can be
numerically ill-conditioned when their order is high,
so it can be difficult to estimate their parameters. Or-
thogonal polynomial formulations are available that
minimize numerical ill-conditioning at the expense of
increased complexity in their implementation. Even
if these difficulties can be addressed, the coefficients
of the polynomials remain difficult to interpret physi-
cally, especially when their order is high.

This work describes a method that finds a piece-
wise linear approximation to a set of restoring force
surface data. This method uses finite-element-type
shape functions to assure that the restoring force sur-
face representation is continuous, and the shape func-
tions are chosen so that all except for one are zero at
each node, so their coefficients are easily interpreted.
Furthermore, the method is very computationally effi-
cient, so this method may be useful for condensing a

set of measured data even if the model form is known a
priori; one could use this method to condense the mea-
sured data initially and to gain insight into the system’s
response, and then subsequently fit a model of the de-
sired form.

Another issue encountered when applying the
restoring force surface method is that it can be difficult
to design an excitation signal that ensures that the re-
sponse covers the phase plane entirely and uniformly.
Sinusoidal excitation signals will almost certainly not
result in uniform coverage of the phase plane, yet they
are attractive for a number of other reasons. This work
addresses the issue by implementing the piecewise-
linear restoring force method in polar form; the restor-
ing force is parameterized as a piecewise-linear func-
tion along its orbit in the phase plane.

Duym et al. [4] previously presented a method that
is similar to this work, in which they identified a lo-
cal approximation to a restoring force surface over
cells in a rectangular grid. In their work, each cell
was defined by a small range of displacement and ve-
locity. They presented a zero-order method that esti-
mates the mean value of the restoring force over the
cell and a first-order method that estimates the mean
value and slope in two directions over the cell. Each
unit cell was uncoupled from all others, so its mean
restoring force (and slopes for the first order method)
could be estimated independently using only the data
that pertained to that unit cell. Presumably, this ap-
proach was adopted to maximize the computational
efficiency of the algorithm, appropriate for the com-
puting resources of the day. Unfortunately, their ap-
proach can result in a discontinuous surface, which is
undesirable since the restoring force surfaces of inter-
est in most problems are continuous. In their work it
appears that they plotted their zero order surfaces as
smooth surfaces by simply interpolating between the
mean values estimated for each cell, yet this represen-
tation of the data is misleading since a stepwise sur-
face with constant restoring force in each cell is what
was actually computed. The error associated with us-
ing Duym, Schoukens and Guillaume’s stepwise sur-
face can be reduced by shrinking the size of the unit
cells, yet in practice this inevitably results in some
unit cells containing very little data or no data at all,
which in turn can lead to an artificially rough esti-
mate of the restoring force surface. Such an approach
is sometimes adopted in the literature when display-
ing restoring force data [3]. The true piecewise-linear
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restoring force method presented here allows one to
use a coarser grid, so it offers significant advantages
when the measured data is not uniformly distributed
in the phase plane, and the surface identified is contin-
uous, as one would expect for most real systems.

The proposed methods will be demonstrated on re-
sponse data from a micro-cantilever beam manufac-
tured using the Sandia Ultra-planar Multi-level MEMS
Technology (SUMMiTTM) manufacturing process.
The responses of many of these micro-cantilever
beams, measured with a Laser Doppler Vibrometer
(LDV), have been found to exhibit significant non-
linearity, even when the tip displacement is less than
0.5% of the beam length and less than 50% of the
beam height. The nonlinear forces acting on the beams
appear to be quite complicated, as will be demon-
strated later, and neither the mathematical form nor the
cause of the nonlinearity is known, so the piecewise-
linear method is attractive. This work is part of an ef-
fort to understand and model the nonlinearity in these
MEMS systems. Worden and Tomlinson [12] and Ker-
schen et al. [6] successfully identified a model for
a nonlinear, macro-scale cantilever beam using the
restoring force surface method. The authors are not
aware of a prior work in which the RFS method has
been applied to a MEMS system using Laser Doppler
Vibrometry.

A number of tests have been performed as part of
this effort. The tip velocity of the beams was mea-
sured in near vacuum (∼10 mTorr pressure) using a
Laser Doppler Vibrometer (LDV) while the base of the
beams was excited with a piezoelectric actuator. A sec-
ond LDV was used to record the base velocity simul-
taneously. The bandwidth of the base excitation was
limited to frequencies around the first resonance so the
system would behave as a single degree of freedom
system. The restoring force surface method was then
applied with the aid of the piecewise-linear surface fit-
ting approach. This was valuable in the present study
because the cause of this nonlinearity is not known and
tests with sinusoidal excitation show that the nonlin-
ear dependence is complex, so traditional methods that
rely on capturing nonlinearity with a low order poly-
nomial series would be inefficient and possibly suffer
from numerical ill-conditioning.

The following section provides a brief derivation
of the restoring force surface method and presents the
proposed piecewise-linear surface fitting method. Sec-
tion 3 discusses the cantilever beam system of inter-
est. Simulation results for a simplified model of the

beam are presented in Sect. 3.1 in order to demon-
strate the piecewise-linear method. The actual exper-
imental setup, test procedure and results are described
in Sect. 3.2. Section 4 presents some conclusions.

2 Restoring force surface method

The restoring force surface (RFS) method is simply an
expression of Newton’s second law for a single-degree
of freedom, lumped mass system; the net force applied
to a point mass is equal to its mass times its accelera-
tion. For example, consider a single degree of freedom
system with mass m, damping c, and stiffness k, that is
acted on by nonlinear forces fnl(x, v) that are a single-
valued function of the displacement x and velocity v

given in the following equation of motion

mv̇ + cv + kx + fnl(x, v) = fapp (1)

where fapp is the external force applied to the system.
All of the displacement and velocity dependent forces,
or the restoring forces are collected as follows

mv̇ = −frest(x, v) + fapp (2)

where the restoring forces are frest(x, v) = cv + kx +
fnl(x, v). If the applied force and the acceleration are
measured and the mass is known then the restoring
forces can be found from (2) as follows

frest(x, v) = −mv̇ + fapp. (3)

The functional relationship between the force and
displacement and velocity can be easily evaluated if
the velocity and displacement can also be measured or
estimated. These are both typically estimated from the
measured acceleration [7].

One important consideration here is how the mass
is estimated. A number of researchers have discussed
methods for identifying the system mass [4, 13], so
this will not be treated here. This is not an issue in the
application of interest in this work, where base excita-
tion is used, because base excitation results in the mass
simply scaling the resulting forces. It will be taken to
be unity since our objective is to obtain the functional
form of the nonlinear forces; finding the precise mag-
nitude of the forces is a secondary consideration. The
term “restoring force” will be used to denote the un-
scaled acceleration since this is equal to the restoring
forces after scaling by the constant unknown mass.
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One drawback to the RFS method is that it is lim-
ited to single-degree of freedom or lumped parame-
ter multi-degree-of-freedom systems [13]. In the ap-
plication presented in this work, a single mode dom-
inates the response, so the RFS method is applica-
ble. Kerschen et al. [7] recently presented an excellent
summary of these and many other nonlinear system
identification algorithms. The restoring force surface
method is discussed in more detail in [1, 4, 7, 8, 13]
and their references.

2.1 True piecewise-linear restoring force surface

A true piecewise-linear restoring force surface is
found by parameterizing the surface using a set of lo-
cal basis functions and then solving for the coefficient
of each basis function, analogous to what is done in
the now ubiquitous Finite Element Method. Consider
a two-dimensional restoring force surface f (x, v) pa-
rameterized by basis functions ψn(x, v) with coeffi-
cients qn as follows

f (x, v) =
N∑

n=1

qnψn(x, v). (4)

A multitude of choices exist for the basis functions
ψn(x, v). Polynomial functions are commonly used.
However, they can lead to numerical ill-conditioning
and can be sensitive to noise. This work concentrates
on local basis functions since their coefficients qn can
be determined in a computationally efficient manner
and because they do not require that one know the
form of the nonlinear restoring force surface a priori.

For simplicity, the problem of identifying a one di-
mensional restoring force f (x) will first be addressed.
One first defines a set of nodes (xc)n over the range of
the function that one wishes to approximate. The spac-
ing between each node and the next node need not be
constant, yet it should be small enough to capture the
variation in the function. Let �x−

n and �x+
n denote

the spacing between node n and the previous and next
nodes respectively. Each node is then assigned the fol-
lowing shape function

ψn(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 + (x − (xc)n)/�x−
n ,

(xc)n − �x−
n < x < (xc)n,

1 − (x − (xc)n)/�x+
n ,

(xc)n < x < (xc)n + �x+
n .

(5)

A set of five sample basis functions is illustrated in
Fig. 1. Each basis function is simply a triangle function

Fig. 1 Sample basis functions for piecewise-linear restoring
force method for x ∈ (0,1)

that starts at zero at the previous node, rises linearly to
one at its node, and then falls off linearly between its
node and the next. The basis functions pertaining to
the extremes of the restoring force surface have simi-
lar form but are defined over a range �xn, using only
one of the two definitions in (5) so that the restoring
force is allowed to end with a non-zero value at the
extremes of the measurement range. This eliminates
any end effects that might contaminate the estimate of
the value of the force at the end node points.

Because non-uniform grid points can be used, one
can focus the mesh at points where the restoring force
is discontinuous or rapidly changing with x. In the ex-
perimental application presented in this work, a uni-
form grid was defined spanning the range of the ex-
perimental measurements. Some of the nodes for the
grid ended up belonging to basis functions that were
defined over a range of x and y that contained little
or no data. These points were discarded and the values
of �xn for neighboring nodes updated, preserving a
piecewise-linear function on a non-uniform grid.

The coefficients of the basis functions are com-
puted by setting up the following overdetermined lin-
ear system using each measured force value f (xj )

f (xi) = [
ψ1(xi) ψ2(xi) · · · ψN(xi)

]
⎡

⎢⎣
q1
...

qN

⎤

⎥⎦ . (6)

This equation can be written for each data point f (xi)

for i = 1, . . . ,Nf , resulting in an overdetermined lin-
ear system of equations that is solved in a least squares
sense. Each basis function is defined over a local cell
in the phase plane, so the matrix formed by stacking
rows of (6) will be sparse. Note that the cells for adja-
cent basis functions overlap, so the cells are not com-
pletely uncoupled as in [4]. This sparsity can be ex-
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ploited to create a computationally efficient algorithm
by forming the normal equations associated with the
least squares problem as follows

(
AT B

)
m

=
Nf∑

i=1

f (xi)ψm(xi),

(7)
(
AT A

)
m,n

=
Nf∑

i=1

ψm(xi)ψn(xi)

where m and m,n denote the mth element and the
m,nth element of the vector AT B and matrix AT A

respectively. These sums can be evaluated efficiently
by noting that the products will be zero if the point xi

to which the force f (xi) pertains is not within the cell
affected by the basis function ψm(xj ) in the first equa-
tion and similarly for the pair of basis functions in the
second equation. Furthermore, one need only compute
the sum for the data points for which one (or both) of
the basis functions is nonzero. The coefficients of the
basis functions are then found using the standard for-
mula for the least squares solution

q = (
AT A

)−1
AT B. (8)

The matrix (AT A) will be invertible if the basis func-
tions are linearly independent and the data sufficient to
adequately describe each basis function. The authors
implemented the algorithm by discarding any nodes
that were associated with less than one percent of the
average number of data points associated with each
node.

The method is easily extended to two dimensions
by defining a similar set of basis functions in two di-
mensions

ψm,n(x, v) = ψ
(x)
m (x)ψ

(v)
n (v),

ψ
(x)
m (x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 + (x − (xc)m)/�x−
m,

(xc)m − �x−
m < x < (xc)m,

1 − (x − (xc)m)/�x+
m,

(xc)m < x < (xc)m + �x+
m

(9)

where the v-direction basis function ψ
(v)
n (v) is ob-

tained by replacing x with v in the previous equation.
The basis functions are once again unity at a single
node point ((xc)n, (vc)n) on a grid. In this case the to-
tal number of basis functions in (9) will be the product
of the number of basis functions in x and v.

In the work presented in Sect. 3.2, a micro can-
tilever beam was excited with base excitation. The
measured data were the base velocity and tip velocity.
The base velocity was sinusoidal with varying ampli-
tude. In each period in the steady state, the tip veloc-
ity was nearly sinusoidal. As a result, the phase plane
was populated with data points only in a region close
to an orbit. Therefore, a two-dimensional RFS on a
rectangular grid was not optimal because many of the
grid points ended up being in regions of the phase
space that were devoid of data. In the following, a one-
dimensional piecewise-linear approximation is found
for: (1) the restoring force, (2) the tip displacement and
(3) the tip velocity, all as a function of the phase angle
of the base velocity. This information was then used to
construct the two-dimensional RFS in polar form.

3 Application

Figure 2 shows a schematic of the system under study
consisting of a cantilever beam attached to a moving
base. The beam is excited around its first resonance,
so assuming that modal coupling is negligible (as will
be illustrated subsequently), it can be approximated as
a single oscillator subject to base excitation. The oscil-
lator is assumed to be connected to its base by a non-
linear element resulting in the following differential
equation

mÿ + cẏ + ky + fnl(ẇL,wL) = cėb + keb (10)

or

mÿ = −frest(ẇL,wL). (11)

Where y is the absolute displacement of the tip of the
beam, c and k are respectively the damping and stiff-
ness between the beam tip and the moving base and fnl

Fig. 2 Schematic of the system under study
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Fig. 3 Optical microscope image of micro-cantilever beams

represents the nonlinear restoring forces that are as-
sumed to depend only on the displacement of the beam
tip relative to the substrate wL and its derivative

wL = y − eb. (12)

The effective mass of the single degree of freedom rep-
resentation for the cantilever is m.

An array of micro-cantilever beams was created
using Sandia National Laboratories’ SUMMiTTM

process on a silicon wafer. This work is concerned
with a beam that had nominal length of 200 µm, width
of bbeam = 10 µm and height of 2.5 µm. It was fixed
to the substrate at one end and free at the other. The
beam was constructed by depositing two poly-silicon
layers of thicknesses 1.5 µm and 1.0 µm over a 2 µm
layer of sacrificial oxide and then removing the oxide.
Figure 3 shows an optical microscope image of an ar-
ray of beams, including the beam for which results are
presented in Sect. 3.2. Additional poly-silicon layers
were placed over the root of the array of beams, as seen
in Fig. 3. A 0.3 µm layer of poly-silicon was deposited
under the root of the beams to allow for electrostatic
actuation, causing a 0.3 µm step in the profile of the
beam since the layers are conformal, as can bee seen
in Fig. 3.

3.1 Analytical model

A simple model of the cantilever of interest was cre-
ated and its response simulated to demonstrate the per-

formance of the piecewise-linear restoring force sur-
face algorithm. The beam was modeled as an ideal
Euler–Bernoulli cantilever beam with nominal dimen-
sions and Young’s modulus E = 170 GPa and density
ρ = 2330 kg/m3. A single-term Ritz model for the
beam was constructed using the method in [5]. Base
excitation of the beam was of interest, so Ginsberg’s
method for accounting for time-varying boundary con-
ditions was applied to the displacement boundary con-
dition at the clamped end of the cantilever. A non-
linear electrostatic attractive force between the beam
and substrate was also simulated, by applying the fol-
lowing distributed load f (x) to the beam that depends
nonlinearly on the deflection of the beam from its un-
deflected position w(x):

f (x) = −0.5ε0bbeamV 2

(y0 − w(x))2
(13)

where ε0 = permittivity of free space = 8.85 × 10−12

[C2/(N m2)], V = voltage [Volts], y0 [m] is the dis-
tance between the beam and the base when the beam
is undeflected and bbeam [m] was defined previously.
Values of V = 7 Volts and y0 = 1.5 µm were used in
the following simulation and the damping constant of
the Ritz model was set to give a linear damping ratio
of 0.1%.

The response of the cantilever to sinusoidal base
excitation at 73 kHz with 50 nm amplitude was simu-
lated using an adaptive Runge–Kutta algorithm. The
simulated restoring was found from the simulated
beam tip displacement and acceleration and is shown
in Fig. 4. The restoring forces of this simulated system
depend only very weakly on velocity due to the light-
ness of the damping that was used, so their dependence
on tip velocity has been ignored.

Both 2nd and 3rd order polynomial models were fit
to the simulated data as a function of tip displacement,
as well as a piecewise-linear model. The displacement
was first scaled to the interval −1 ≤ wL ≤ 1 prior to
fitting the polynomial models in order to minimize nu-
merical ill-conditioning. The nodes of the piecewise-
linear model were unevenly distributed to concentrate
them at large negative displacements, where the restor-
ing force is most nonlinear. The polynomial models
disagree with the data in the region where the nonlin-
earity is largest, although the disagreement is less for
the 3rd order polynomial than for the 2nd order one.
The piecewise-linear model follows the data precisely,
even in the region where the nonlinearity is largest,
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Fig. 4 Simulated restoring
force for cantilever beam
with electrostatic attractive
force: (red circles)
simulated data, (blue line)
2nd order polynomial fit to
simulated data, (black line)
3rd order polynomial fit to
data, (green line)
piecewise-linear fit to data,
(green circles) nodes of the
PWL model

due to the fineness of the mesh employed in the non-
linear region.

3.1.1 Discussion

This example illustrates some of the differences be-
tween the piecewise-linear restoring force surface and
the traditional polynomial based RFS. The polyno-
mial model in this example converges to the measured
restoring force as its order is increased. Each polyno-
mial term depends on the entire measured data set, so
convergence is global and one may observe regions of
the phase space where the convergence is not adequate
if the polynomial order is not high enough.

In contrast, the piecewise-linear model is a local
model; the value of the piecewise-linear approxima-
tion at each node depends only on the data immedi-
ately before and after each node. Hence, each node
tends to give a good approximation of the average
value of the measured restoring force in its vicinity.
As with the finite-element method, one can refine the
mesh used in the piecewise-linear approximation non-
uniformly to better describe local features of a nonlin-
ear force-displacement relationship without encoun-
tering numerical ill conditioning.

This simple example has not illustrated the effect
of measurement errors on these two methods, yet they
can have a considerable effect in practice. For exam-
ple, signal processing can introduce outliers, or the

measurement system may distort data near the ex-
tremes of the phase plane. One consequence of the fact
that the polynomial basis functions are global is that
errors in the measured data that affect only a small
portion of the phase plane can cause global changes
in the polynomial model, perhaps even rendering it
useless. This problem is exacerbated when numeri-
cal ill-conditioning is encountered, since it tends to
increase the sensitivity of the polynomial model to
small changes in the measurements. On the other hand,
a localized error in the measurements affects only the
corresponding local portion of the model when the
piecewise-linear algorithm is used.

3.2 Experimental test procedure

This section describes the results of tests on the sili-
con micro-cantilever beams that were described previ-
ously. As mentioned previously, electrostatic actuation
pads were manufactured under each beam. However,
the beams were found to respond in a highly nonlin-
ear manner even when no voltage difference was ap-
plied between the actuation pads and the beams. For
this reason, electrostatic actuation was not used in this
study in order to focus on the nonlinearity of the beams
alone. This section presents the results of testing the
single beam indicated in Fig. 3 using base excitation
in the absence of an applied electrostatic voltage.

The beams were fastened to a piezoelectric actu-
ator, which was itself fastened to a steel block that



130 M.S. Allen et al.

served as a seismic mass. The assembly was then
placed in a vacuum chamber and the air in the chamber
was evacuated resulting in a test pressure of about 10
mTorr. Laser measurements were obtained by imaging
through a quartz window.

The base of the cantilever was driven by applying
an 82 kHz sinusoidal voltage to the piezoelectric ac-
tuator with amplitudes ranging from 0–20 Volts, cor-
responding to near-resonant excitation. 524 288 sam-
ples of the beam tip and substrate time responses were
recorded, at 5.12 MHz. The laser hardware includes
a low-pass anti-aliasing filter with a cutoff frequency
of 1.5 MHz.

The base velocity and the velocity of the tip of
the beam were both measured using a Polytec Laser
Doppler Vibrometer (LDV) focused through a Mitu-
toyo optical microscope with a 10X objective lens.
The velocities were integrated and differentiated us-
ing variations on the technique described by Small-
wood [11]. The restoring force, found using (11) as the
derivative of the measured tip velocity, will be eval-
uated as a function of the relative tip displacement
wL and its derivative ẇL. The relative displacement
and relative displacement velocity, wL and ẇL, were
found by taking the difference between the integrated
and measured tip and base velocities. All of the signals
were high-pass filtered with an 8th order Butterworth
filter with a cutoff frequency of 40 kHz to eliminate
the spurious drift caused by the laser.

3.2.1 Experimental results

The autospectra of the tip velocities of this beam for
various excitation amplitudes are displayed in Figs. 5
and 6. All of the autospectra are dominated by an
82 kHz sinusoid, and all show multiple harmonics,
some of whose magnitudes are only 15–20 dB below
the fundamental. (The autospectrum is squared quan-
tity so a harmonic that is 20 dB below the fundamental
would have a velocity amplitude that is 10% that of the
fundamental 82 kHz sinusoid.) Markers are shown for
each curve indicating the peak nearest to a multiple of
the 82 kHz drive frequency. The base autospectra are
not shown, yet in each case they were a pure 82 kHz
sinusoid with 40 dB or so lower amplitude than the
tip. No harmonics were visible in the base autospectra
above their noise floor, which was at about the same
level as the tip autospectra’s noise floor.

Figure 5 shows that the bandwidth of the harmonics
increases with increasing excitation amplitude, contin-
uing out beyond the 1.5 MHz cutoff frequency of the
laser decoder for higher excitation amplitudes. Other
peaks are also evident at frequencies that are not in-
teger multiples of the excitation frequency. For ex-
ample, there are peaks at 520 kHz and 1450 kHz. If
the beam were an ideal Euler–Bernoulli cantilever [5]
with nominal cross sectional properties, one would ex-
pect the first three modal frequencies to be 81.1, 508
and 1423 kHz. The peaks at 520 and 1450 kHz are
30–40 dB or more below the response at the excita-
tion frequency and about 20 dB below the harmonics
at most amplitudes, so their effect on the response is

Fig. 5 Autospectra of tip velocities for 130, 270 and 390 nm tip
amplitudes. (0 dB = 0.034 mm/s)

Fig. 6 Autospectra of tip velocities for 530, 660 and 790 nm tip
amplitudes. (0 dB = 0.034 mm/s)
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Fig. 7 Scatter-plot of restoring force surface

expected to be small relative to the nonlinear response.
The 130 nm and 270 nm tip amplitude cases are the ex-
ception having responses at 520 and 1450 kHz that are
only 10–15 dB below the dominant harmonics. It was
also noted that the restoring force surface data at 130
and 270 nm tip amplitudes had the largest variability
with respect to the base phase.

The restoring force surface values for 2500 samples
of each response are displayed in Fig. 7, with the value
of the restoring force indicated by the color of the cir-
cles. Note that the restoring force, found using (11),
can be evaluated at any pair of values (wL, ẇL) where
the response has been measured. One should note that
the beam is very lightly damped, and near resonant ex-
citation results in the tip motion being about 100 times
larger than the base motion, so the base motion has a
miniscule contribution to the restoring force in (11).
(The actual Q of the beam, found in other tests us-
ing broadband excitation, is about 5000, correspond-
ing to a damping ratio of ∼0.01%.) Figure 7 shows
the restoring force only at the points in the (wL, ẇL)

plane through which the response passes during the
first 2500 samples for various excitation amplitudes.
Different rings correspond to the following piezo ex-
citation amplitudes 3.3 V, 6.6 V, 10 V, 13.3 V, 16.6 V
and 20 V. These resulted in approximately 130, 270,
390, 530, 660, and 790 nanometers peak tip displace-
ments. Multiple data sets are shown for most of the
amplitudes, illustrating the level of repeatability ob-
served in the measurements. The measurements at
amplitudes below 600 nm are all highly repeatable,
whereas the different trials for peak amplitudes above

600 nm show significant variation. The orbits traced
in the phase plane at each amplitude also differ from
the pure elliptical motion expected for a linear time
invariant system. This deviation takes the form of rip-
ples in the rings at the points where the magnitude of
the velocity is largest, although the velocity at which
the rippling begins changes with differing excitation
amplitude.

The colored circles indicate a clear linear trend
in the restoring force surface for increasing displace-
ment (wL), suggestive of an underlying linear stiff-
ness. At moderately high amplitudes the restoring
force changes sign a number of times as the cantilever
tip executes one vibration cycle. The ripples in the
restoring force appear to occur only when the tip ve-
locity is relatively high. The restoring force at the two
highest amplitudes is clearly multi-valued, while at
other amplitudes the measurements are highly consis-
tent. A multi-valued RFS suggests that the force is al-
tered by effects other than the tip displacement and
velocity. We wish to investigate this in more detail by
characterizing the RFS at lower amplitudes and then
comparing it to that obtained when other types of ex-
citations are used. Without some kind of parameteri-
zation, the data in Fig. 7 could not be used to recon-
struct the response of the cantilever to other inputs.
This restoring force surface is not amenable to any
simple representation, so the piecewise-linear method
presented previously is attractive.

It is important to note the dependence of the restor-
ing force on both displacement and velocity in Fig. 7.
The response at each amplitude traces a distorted ring
in the phase plane, and the rings are such that the
large amplitude response cannot be predicted simply
by stretching the ring obtained at low amplitude or
vice-versa. Hence, it will be necessary to first parame-
terize the restoring force as a function of displacement
and velocity for each tip amplitude independently. The
responses at different amplitudes can then be stitched
together to find a general model for the nonlinearity.

One can capitalize on the periodic nature of the data
to simplify the system identification procedure. First,
recognize that the data are periodic with period of 1/fd

seconds, where fd is the drive frequency, so the phase
variable θ can be constructed from the drive frequency,
time (t) and phase delay (φdelay) as

θ = 2πfdt − φdelay. (14)

The phase delay is found such that the base ve-
locity is a pure sinusoid. The phase angle can then
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Fig. 8 Restoring force data versus phase angle for two data sets
and piecewise-linear fit at 130 nm tip amplitude

be wrapped to the interval [0,2π) by subtracting off
integer multiples of 2π . The restoring force, tip dis-
placement (wL) and tip displacement velocity (ẇL)
can each then be found as a function of the phase an-
gle θ .

Figures 8 and 9 show the measured restoring force
and piecewise-linear fits for 130 and 530 nm tip am-
plitudes, respectively. The top subplot shows the mea-
sured restoring force versus phase angle for two differ-
ent data sets (blue and green points) and the piecewise-
linear fit to the combined set of data (red line). The two
independent data sets are highly consistent at both am-
plitudes, and the piecewise-linear approximation fits
them well. The data at 130 nm amplitude shows con-
siderably more scatter, yet the piecewise-linear fit fol-
lows the mean trend of the data well. These data sets
are representative of the best and worse agreement
found below 530 nm tip amplitude.

The bottom two subplots in Figs. 8 and 9 show the
piecewise-linear fits for the relative tip displacement
(nm) and relative tip velocity (mm/s). The data from
which these fits were derived is not shown, yet it was
noted that there was considerably less scatter in the
displacement and velocity data than there was in the
restoring force data shown in Figs. 8 and 9, so the fit

Fig. 9 Restoring force data versus phase angle for two data sets
and piecewise-linear fit at 590 nm tip amplitude

to the velocity was almost indistinguishable from the
average of the measured relative velocity. Hence, the
velocity traces in Figs. 8 and 9 essentially show the
average measured response over one cycle and illus-
trate the degree of harmonic distortion in the measured
velocity-time traces, which is quite severe at high am-
plitudes. Finally, it is apparent that the 130 nm ampli-
tude RFS is not simply a subset of the 530 nm RFS,
as one would expect if the nonlinearity were primar-
ily a function of displacement; both displacement and
velocity contribute to the observed nonlinearity.

The piecewise-linear fits were then used to con-
struct the restoring force surface for a range of am-
plitudes by linearly interpolating between amplitudes
at the same phase angle. Figure 10 shows the re-
sult for low excitation amplitudes (i.e., using only the
piecewise-linear fits for 130, 270 and 390 nm tip am-
plitude). The surface is highly irregular, especially at
high tip velocities where the restoring force oscillates
within each cycle.

At low velocities the force appears to be some-
what linear, so this data could be consistent with a
nearly linear static force-displacement curve. This is
examined in more detail in Fig. 11, where the data
from Fig. 10 with tip displacement velocity (ẇL) near
zero is plotted versus wL. This is essentially a zero
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Fig. 10 Restoring force surface versus tip displacement and ve-
locity at low excitation amplitudes
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Fig. 11 Static force-displacement curve for micro-cantilever
beam, derived from restoring force surface data. The markers in-
dicate the amplitude of excitation from which each pair of data
points was derived

velocity slice of the surface. Different markers are
used for each tip amplitude so they can be distin-
guished. The data agree very well with the linear stiff-
ness line (red dash-dot) that one would predict for an
Euler–Bernoulli cantilever beam with nominal stiff-
ness, density and dimensions (first resonant frequency
of 81.1 kHz).

3.2.2 Discussion

One convenient feature of sinusoidal excitation is that
it allows one to easily detect nonlinearity; responses at
frequencies other than the driving frequency indicate

nonlinearity. The autospectra in Figs. 5 and 6 show
that the system response is clearly nonlinear, and sug-
gest that the nonlinearity is responsible for as much as
10% of the velocity response at some frequencies. It
is important to verify that the laser Doppler vibrom-
eter measurement system is behaving linearly before
attributing this nonlinearity to the micro-cantilever
beams, otherwise one might be measuring the nonlin-
earity of the combined LDV-cantilever beam system.
(If the LDV were in fact nonlinear, such a measure-
ment might be useful for understanding why, yet it
was not the purpose of this study.) In order to assure
that the measurements are correct, the tests were repli-
cated with other laser decoder range settings and iden-
tical results were found. Also, it was verified that the
measured velocities were no higher than 500 mm/s
while Polytec’s specifications state that the instru-
ment nonlinearity should not exceed 1% for veloci-
ties up to 1500 mm/s for the range settings that were
used. These observations suggest that the measured re-
sponses are not an artifact of the laser measurement
system. Also, the response deviates from a pure si-
nusoid most strongly when the velocity is highest, as
illustrated in Fig. 7; if there were difficulty with the
laser measurement system, one would expect it to oc-
cur at low velocities rather than at high velocities as
observed. These observations suggest that the beams
may in fact be behaving nonlinearly, even though their
tip deflections are less than their thickness.

Figure 9 shows that the magnitude of the nonlinear
forces acting on the cantilever are much larger than
those of the linear forces at some points in the cy-
cle. The restoring forces presented in Figs. 7 and 10
are not amenable to any simple force versus displace-
ment model. Indeed, the autospectrum in Fig. 5 shows
more than 19 harmonics, so one might need as many as
19 terms to describe the restoring force using a poly-
nomial series. In fact, the authors initially attempted
using a low order polynomial series both with the
RFS method and with the Reverse Path [2] method
and were not able to find a model that fit the data
even reasonably well. Higher order polynomial mod-
els were impractical due to the computational burden
they required and numerical ill conditioning. On the
other hand, it was a relatively simple matter to fit a
piecewise-linear restoring force surface to the data,
and this was done very comfortably on a standard
desktop computer. Furthermore, the piecewise-linear
restoring force surface always tracked the mean value
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of the measurements whereas the polynomial mod-
els investigated by the authors always deviated from
the data wildly at some points in the phase plane.
The piecewise-linear restoring force surface algorithm
gives a compact and accurate model for the nonlinear
restoring forces that could be used to simulate the re-
sponse of the system to other inputs or evaluated to
determine the origin of the nonlinear forces.

When considering the cause of the nonlinearity,
there are a few nuances in the data that one should
note. First, the restoring force found at 130 nm tip am-
plitude, shown in Fig. 8, shows considerable scatter. It
was also noted that the peaks in the autospectra of the
velocity in the vicinity of the 2nd and 3rd natural fre-
quencies of the beam were considerable relative to the
nonlinear harmonics at this amplitude (and would be
even more so in the acceleration). The presence of the
2nd and 3rd modes in the response contaminates the
restoring force, and one could have notch or low-pass
filtered the data to eliminate the effects of these modes,
as done in [6, 12]. However, since these modes’ fre-
quencies are not integer multiples of the first natural
frequency or the excitation frequency, their contribu-
tions average to zero over a sufficient number of cycles
of the input. These modes appear to have had a smaller
net effect on the data at higher excitation amplitudes.

Another interesting observation is that the au-
tospectra in Fig. 5 show that the beam responds out
beyond the 1.5 MHz bandwidth of the laser decoder.
Harmonics beyond the 19th may contain important in-
formation about the restoring force surface that was
not captured. (In such a case one would expect the
measurements to reflect a truncated Fourier series type
representation for the restoring force surface; the omit-
ted terms may alter the representation of the restoring
force surface over the whole range of displacement
and velocity.) On the other hand, the harmonics in
the autospectra for small tip displacement amplitudes
(130, 270 and 390 nm) had decayed significantly at
1.5 MHz, suggesting that the restoring force should
have been adequately captured at these amplitudes.
For this reason, the restoring force surface was only
displayed for these amplitudes in Fig. 10.

It seems that one important clue to the cause of
the nonlinearity in these measurements is its veloc-
ity dependence. Figure 11 suggests that the force-
displacement relationship is linear at zero velocity. On
the other hand, Fig. 7 shows that for any given am-
plitude, the response appears to be somewhat linear

until a certain tip speed is reached, after which the
response becomes erratic until the speed again falls
below that threshold. The oscillatory nature of the re-
sponse is reminiscent of a stick-slip phenomenon, in
which the unmeasured state could be the state of an
internal Jenkins element [10]. Somewhat similar os-
cillatory forces are presented in Fig.10a of [3] for a
macro-scale system with Coulomb friction, yet the os-
cillations observed there were not as severe nor quite
as regular. Considering the layer-wise manufacturing
process for these cantilevers, it is perhaps possible that
the structure contains regions where the interlayer ad-
hesion is weak or has failed that could act as sliding
surfaces. For example, there might be regions near the
root where some of the sacrificial oxide remains that
the poly-silicon beam could slide against. Even so,
some of the phenomena observed cannot be explained
by a single degree of freedom model with Coulomb
friction, nor are the authors aware of an alternative
sliding friction model that could describe this type of
response. For example, neither Segalman’s Iwan ele-
ment [10] nor the Bouc–Wen model [3, 9] are capable
of describing this oscillatory behavior at high veloci-
ties for a single degree of freedom system.

This paper presents test data from only one beam.
The authors have measured qualitatively similar re-
sponses from other beams of lengths ranging from
100–1500 microns, widths ranging from 10 to 30 mi-
crons and similar thicknesses (1.5–2.5 microns). Al-
though the cause of the nonlinearity has not yet been
determined, the piecewise-linear restoring force sur-
face method has proven helpful in condensing the
measured data and eliminating a number of theories
regarding the cause of the nonlinearity. Efforts are un-
derway to develop a mathematical model that recreates
the observed behavior. The authors are also investigat-
ing the LDV to verify that the manufacturer’s specifi-
cations regarding its linearity are correct.

4 Conclusions

A semi-nonparametric extension to the restoring force
surface method was presented that creates a piecewise-
linear approximation to the restoring forces acting on
a dynamic system. The sparsity of the problem was
exploited, resulting in a highly efficient algorithm for
condensing a set of measured data into a continuous,
piecewise-linear function. The function found tends to
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track the mean of the measured data very well. In con-
trast, the authors have found that this is not always
the case when using other standard model forms, such
as polynomials, for the nonlinearity. This piecewise-
linear method is also able to deal with data that is
not uniformly distributed in the phase plane much
more effectively than the method of Duym et al. [4].
A methodology was also presented that can be used
to extract a polar representation when dealing with si-
nusoidally excited data. The piecewise-linear model
found using the methods presented here is valuable in
guiding initial efforts aimed at finding a suitable math-
ematical form for a system or for condensing a set of
measured data so that a suitable mathematical model
can more easily be found.

The proposed method was demonstrated on a sim-
ple analytical beam with a nonlinear electrostatic force
and using experimental measurements from a micro-
cantilever beam that exhibits a complicated, velocity-
dependent nonlinearity. The experimental beam was
tested in vacuum and was excited by applying si-
nusoidal excitation to its base of varying amplitude.
The restoring force surface (RFS) method was used to
characterize the nonlinearity because it allows for non-
parametric analysis of nonlinear response data. The
RFS method provided powerful insight into the dy-
namics of this system, and a piecewise-linear approxi-
mation to the nonlinear forces was found that could be
used to simulate the response of the system to differ-
ent excitations or initial conditions. Future work will
investigate whether the same low amplitude restoring
force surface is obtained when different types of exci-
tations, such as swept sine excitation are used.
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