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Abstract Recently, geometric singular perturbation

theory has been extended considerably while at the

same time producing many new applications. We will

review a number of aspects relevant to non-linear dy-

namics to apply this to periodic solutions within slow

manifolds and to review a number of non-hyperbolic

cases. The results are illustrated by examples.
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This paper deals with slow–fast initial value problems

that are of the form

ẋ = f (x, y) + ε · · · , ε ẏ = g(x, y) + ε · · · ,

or alternatively

ẋ = ε f (x, y) + ε2 · · · , ẏ = g(x, y) + ε · · · .

As usual, ε is a small positive parameter, and an

overdot denotes differentiation with respect to time. For

a number of results, the vector fields f and g explicitly

depending on time t present no obstruction.

Part of the paper is a tutorial, but there are some new

results.
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1 The Tikhonov theorem

In singular perturbations, certain attraction (or hyper-

bolicity) properties of the regular (outer) expansion

play an essential part in the construction of the for-

mal approximation. Remarkably enough, this hyper-

bolicity does not include the behaviour of the slow

equation.

In the constructions, the following theorem provides

a basic boundary layer property of the solution.

Theorem 1.1. (Tikhonov, 1952, see [15]) Consider the
initial value problem

ẋ = f (x, y, t) + ε · · · , x(0) = x0, x ∈ D ⊂ Rn,

t ≥ 0,

ε ẏ = g(x, y, t) + ε · · · , y(0) = y0, y ∈ G ⊂ Rm .

For f and g, we take sufficiently smooth vector func-
tions in x, y and t; the dots represent (smooth) higher-
order terms in ε.

a. We assume that a unique solution of the initial value
problem exists and suppose this holds also for the
reduced problem

ẋ = f (x, y, t), x(0) = x0,

0 = g(x, y, t),

with solutions x̄(t), ȳ(t).
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b. Suppose that 0 = g(x, y, t) is solved by ȳ = φ(x, t),
where φ(x, t) is a continuous function and an
isolated root. Also, suppose that ȳ = φ(x, t) is an
asymptotically stable solution of the equation

dy

dτ
= g(x, y, t)

that is uniform in the parameters x ∈ D and t ∈ R+.
c. y(0) is contained in an interior subset of the do-

main of attraction of ȳ = φ(x, t) in the case of the
parameter values x = x(0), t = 0.

Then, we have

lim
ε→0

xε(t) = x̄(t), 0 ≤ t ≤ L ,

lim
ε→0

yε(t) = ȳ(t), 0 < d ≤ t ≤ L

with d and L constants independent of ε.

An interior subset of a domain is a subset of which

all the points have a positive distance to the boundary

of the domain, which is independent of ε. This con-

dition is necessary to avoid ejection of orbits by an

ε-perturbation near the boundary of the domain of at-

traction.

In assumption (b), t and x are parameters and not

variables. The idea is that during the fast motion of the

variable y, the small variations of these parameters are

negligible as long as the stability holds for values of

the parameters x ∈ D and t ∈ R+.

The uniformity condition in b and condition c

were not present in the original formulation of the

theorem.

Example 1.1. (Restriction of the time-interval) Con-

sider the initial value problem

ẍ + x = f (x, ẋ, y), x(0) = x0, ẋ(0) = x1,

ε ẏ = (2t − 1)yg(x), y(0) = y0,

with (x, ẋ, y) ∈ R3, t ≥ 0; f and g are sufficiently

smooth, and g(x) > 0. On the interval 0 ≤ t ≤ d with

0 < d < 1
2

(with d a constant independent of ε), y = 0

is an asymptotically stable solution of the equation

dy

dτ
= (2t − 1)yg(x)

with t, x as parameters. We expect a boundary layer in

time near t = 0 after which the solution will settle near

the solution of

ẍ + x = f (x, ẋ, 0), y =0, x(0) = x0, ẋ(0)= x1

as long as 0 ≤ t ≤ d. Near t = 1/2, another fast tran-

sition takes place.

Example 1.2. Consider the two-dimensional au-

tonomous system

ẋ = 1, x(0) = x0,

ε ẏ = xy − y2, y(0) = y0,

with x, y ∈ R, t ≥ 0.

In the case of autonomous (dynamical) systems as

in this example, the attracting outer expansions cor-

respond with manifolds in phase-space and so have a

clear geometrical meaning. In this case, there are two

roots corresponding with “critical points”:

y = 0, y = x .

If x < 0, y = 0 is stable and the second one unstable.

If x > 0, the second one is stable and y = 0 is unstable.

It follows that for x < 0 we expect a boundary layer

jump towards the x-axis (y = 0) and for x > 0 we ex-

pect a boundary layer jump towards the line y = x .

Note, however, the domains of attraction by sketching

the phase-plane (see Fig. 1); solutions may also move

off to infinity. The manifolds corresponding with the

outer expansions, the lines y = 0 and y = x , are called

slow manifolds to indicate the difference from the fast

behaviour in the boundary layers.

There are two other interesting aspects of this be-

haviour. In the example, the solutions starting on the

left-hand side move on to the right-hand side. On pass-

ing the y-axis, there is an exchange of stability; there

are interesting applications showing such behaviour.

A second interesting aspect is that the slow manifold

y = 0 corresponds with an invariant manifold of the full

system; y = x , however (excluding a neighbourhood

of the origin), is an approximation of a nearby existing

invariant manifold. The orbits in the first quadrant of

the phase-plane are following the manifold given by

y = x closely.

Another interesting point is that to the left of the

y-axis the solutions get exponentially close to the
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Fig. 1 Solutions in Example 1.2 starting in (x, y) = (−2, 2) and
(−1, 2), ε = 0.1. If x < 0, they are attracted to the slow mani-
fold y = 0; if x > 0, the attraction is to the approximate slow
manifold y = x . Near the x-axis, the solutions get exponentially
close and the closest one, starting in (−2, 2), sticks longer to the
x-axis after passing a neighbourhood of the origin. If x(0) < 0,
the lift-off is near −x(0)

invariant manifold y = 0. This results in the phe-

nomenon of “sticking to the x-axis” for some time af-

ter passing the origin. It is not difficult to show that if

x(0) < 0, the lift-off takes place near −x(0).

2 The O’Malley–Vasil’eva expansion

How do we use Tikhonov’s theorem to obtain approx-

imations of solutions of non-linear initial value prob-

lems? The theorem does not state anything about the

size of the boundary layer (the parameter d in the the-

orem) or the timescales involved to describe the ini-

tial behaviour and the relative slow behaviour later

on.

Asymptotic expansions are described as follows:

Theorem 2.1. (O’Malley–Vasil’eva) Consider the ini-
tial value problem in Rn × Rm × R+

ẋ = f (x, y, t, ε),

x(0) = x0, x ∈ D ⊂ Rn, t ≥ 0,

ε ẏ = g(x, y, t, ε), y(0) = y0, y ∈ G ⊂ Rm,

where f and g can be expanded in entire powers of ε.
Suppose that the requirements of Tikhonov’s theorem

have been satisfied and moreover that for the solution
of the reduced equation 0 = g(x, ȳ, t, 0), ȳ = φ(x, t),
we have

Re Spgy(x, ȳ, t) ≤ −μ < 0, x ∈ D, 0 ≤ t ≤ L .

Then, for t ∈ [0, L], x ∈ D, y ∈ G, the formal ap-
proximation described earlier leads to asymptotic ex-
pansions of the form

xε(t) =
m∑

n=0

εnan(t) +
m∑

n=1

εnαn

(
t

ε

)
+ O(εm+1),

yε(t) =
m∑

n=0

εnbn(t) +
m∑

n=0

εnβn

(
t

ε

)
+ O(εm+1).

The constant L that bounds the domain of validity in

time is in general an O(1) quantity determined by the

vector fields f and g. For proofs, see [12] and [17].

An intermediate step in the analysis is an expansion of

the form

y = φ(x, t) + εy1(x, t) + ε2 y2(x, t) + ε3 · · · . (1)

The expansion is derived from the fast equation and it

is asymptotically valid on a timescale O(1) outside the

boundary layer.

3 The slow manifold: Fenichel’s results

Tikhonov’s theorem is concerned with the attraction,

at least for some time, to the regular expansion that

corresponds with a stable critical point of the (fast)

boundary layer equation. The theory is quite general

and deals with non-autonomous equations.

In the case of autonomous equations, it is possible

to associate with the regular expansion a manifold in

phase-space and to consider the attraction properties

of the flow near this manifold. This raises the ques-

tion of whether these manifolds really exist or whether

they are just a phantom phenomenon. Such questions

were addressed and answered in a number of papers by

Fenichel [3–6], and other authors; the reader is referred

to the survey papers [9] and [10]; see also [20].

Consider the autonomous system

ẋ = f (x, y) + ε · · · , x ∈ D ⊂ Rn,

ε ẏ = g(x, y) + ε · · · , y ∈ G ⊂ Rm .
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In this context, one often transforms t → τ = t/ε so

that

x ′ = ε f (x, y) + ε2 · · · , x ∈ D ⊂ Rn,

y′ = g(x, y) + ε · · · , y ∈ G ⊂ Rm,

where the prime denotes differentiation with respect

to τ .

As before, y is called the fast variable and x the slow

variable. The zero set of g(x, y) is given again by y =
φ(x), which in this autonomous case represents a first-

order approximation M0 of the n-dimensional (slow)

manifold Mε. The flow on Mε is to a first approximation

described by ẋ = f (x, φ(x)).

In Tikhonov’s theorem, we assumed asymptotic sta-

bility of the approximate slow manifold; in the asymp-

totic constructions, we assume that the eigenvalues of

the linearised flow near M0, derived from the equation

for y, have negative real parts only.

In geometric singular perturbation theory, for which

Fenichel’s results are basic, we only assume that all

real parts of the eigenvalues are non-zero. In this case,

the slow manifold Mε is called normally hyperbolic. A

manifold is called hyperbolic if the local linearisation

is structurally stable (real parts of eigenvalues all non-

zero), and it is normally hyperbolic if in addition the

expansion or contraction near the manifold in the trans-

verse direction is larger than in the tangential direction

(the slow drift along the slow manifold).

Note that, although this generalisation is not con-

sistent with the asymptotic constructions where all the

real parts of the eigenvalues have to be negative, it al-

lows for interesting phenomena. One might approach

Mε, for instance, by a stable branch, stay for some time

near Mε, and then leave again a neighbourhood of the

slow manifold by an unstable branch. This produces

solutions indicated as “pulse-like”, “multibump solu-

tions”, etc. This type of exchanges of the flow near

Mε is what one often looks for in geometric singular

perturbation theory.

Note on the size of the time-interval

If the equations are autonomous, there is no a priori

restriction on the interval bound L . The restriction of

the time interval arises from the conditions that x and

y are in the compacta D and G. If x(t) leaves D as in

Example 1.2, this imposes the bound on the time inter-

val of validity of the estimates. In this example, we also

have the phenomenon of the solutions “sticking” to the

x-axis, even after passing the origin. The explanation

is in the exponential closeness to the slow manifold for

x < 0.

4 Approximations in the slow manifold

The existence and smoothness of the slow manifold, in

combination with the possibility of a regular expansion

describing the slow manifold drift, enables us to take

a fairly easy shortcut to obtain approximations and, in

particular, periodic solutions. Note that if we restrict

ourselves to periodic solutions within a slow manifold,

this excludes the case of non-hyperbolic transition as

found in relaxation oscillations.

We will develop the following setup of a theorem

leading to periodic solutions. Using the wealth of re-

sults on periodic solutions by averaging and normal-

isation, it is not difficult to develop this idea to other

cases.

Consider the autonomous system in Rn × Rm × R+

ẋ = f0(x, y) + ε f1(x, y) + ε2 · · · , x ∈ D ⊂ Rn,

t ≥ 0,

ε ẏ = g0(x, y) + εg1(x, y) + ε2 · · · , y ∈ G ⊂ Rm,

where f0, f1, g0, g1 are smooth vector functions, the

dots represent higher order terms. Furthermore the as-

sumptions of Tikhonov’s and Fenichel’s theorems ap-

ply for 0 ≤ t ≤ L .

For the solutions in the slow manifold, we can ap-

ply the expansion (1) y = φ(x) + εy1(x) + ε2 · · · with

g0(x, φ(x)) = 0.

For x(t) in the slow manifold, this results in

ẋ = f0(x, φ(x)) + ε
∂ f0

∂y
(x, φ(x))y1(x)

+ε f1(x, φ(x)) + ε2 · · · . (2)

This is still a very general system and much depends on

the explicit solvability of the reduced equation which

arises for ε = 0. Note that if we would strictly apply the

O’Malley–Vasil’eva expansion for the equations gov-

erning the slow manifold flow, this may produce secular

terms when approximating periodic solutions.

A relatively simple result arises as follows. Sup-

pose that putting ε = 0, the slow manifold Equation (2)
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reduces to

ż = Az,

with A a constant n × n-matrix with purely imaginary

eigenvalues only. The solution of the reduced equation

is given by

z(t) = �(t).

�(t) is a fundamental matrix which is quasiperiodic or

T-periodic.

In the T-periodic case (condition T < L), we can

apply to Equation (2) the Poincaré–Lindstedt method.

Moreover, in general, we can apply averaging. If the av-

eraged vector field in the T-periodic case has a critical

point with only one eigenvalue with real part zero, we

can apply the Bogoliubov–Mitropolsky theorem to ob-

tain the existence and approximation of a periodic solu-

tion; for examples and proofs of the Poincaré–Lindstedt

and the Bogoliubov–Mitropolsky theorems, see [18].

Example 4.1. Consider the system

ẍ + x = ε(2 − x2 − y2)ẋ + ε2 · · · ,

ε ẏ = x − y + ε · · · ,

in which the dots represent smooth higher order per-

turbations. Using the expansion y = x + ε · · · , we find

that the behaviour of x(t) in the slow manifold is gov-

erned by the equation

ẍ + x = 2ε(1 − x2)ẋ + ε2 · · · .

To O(ε), this equation contains a hyperbolic periodic

solution (from the van der Pol-equation), which, there-

fore, persists under higher order autonomous perturba-

tions.

Note that classical theorems as in [1] and [7] do not

produce such a result on the existence and approxima-

tion of a periodic solution because the reduced equation

(ε = 0) is not structurally stable.

5 Non-hyperbolic transitions

Transitions arising from non-hyperbolicity have been

studied in various contexts. We discuss a few important

cases.
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Fig. 2 The solution y(t) of the equation ε ẏ = −xy(1 −
y), y(0) = 0.5 with x(t) = sin t which starts being attracted to
the slow manifold y = 0. Although the stability between the
slow manifolds y = 0 and y = 1 changes periodically, exponen-
tial sticking delays the departure from y = 0 and produces spike
behaviour; ε = 0.01

5.1 Jumping phenomena

Interesting phenomena take place when the solutions

jump repeatedly from one manifold to another, non-

intersecting one. This may give rise to periodic so-

lutions or oscillations with fast and slow motions. A

simple example runs as follows.

Example 5.1. Consider the system

ẋ = f (x, y),

ε ẏ = −xy(1 − y).

We assume that the equation for x contains oscillatory

solutions. As an illustration, we replace it by an explicit

function, sin t . The slow manifolds are y = 0 and y = 1

with eigenvalues, respectively, −x and x .

Choosing periodic behaviour of x(t) we find spike-

like relaxation behaviour as shown in Fig. 2. This is

quite surprising as one would expect that the stabil-

ity transitions would produce blocklike oscillations be-

tween y = 0 and y = 1. The reason for this spike be-

haviour is that when the slow manifold becomes unsta-

ble, the solutions are exponentially close to the unstable

slow manifold. It takes an O(1) time-interval to leave

this manifold and around that time, there is again a

transition to stability.

Similar phenomena can be found when x(t) is cho-

sen as a quasi-periodic or almost-periodic function.
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5.2 Relaxation oscillations and quenching

Relaxation oscillations are classical phenomena where

jumps, fast transitions, take place after motion along

a slow manifold that has become unstable. For this

topic, see [8, 11] and [14]. Most rigorous analy-

sis is carried out for two-dimensional autonomous

and forced problems and it is not easy to ex-

tend this to more dimensions. As an example, we

will discuss briefly a four-dimensional problem from

[19] where the evidence is partly numerical. The

classical example is the van der Pol relaxation

equation.

Quenching of undesirable relaxation oscillations by

energy absorption or exchange of energy can take

different forms. Apart from straightforward damp-

ing mechanisms, one can use autoparametric coupling

which we shall discuss here. A general characterisation

of autoparametric systems is given in [16], see also [2]

and [13].

The important questions are ‘what are the conditions
for the frequencies of the coupled oscillators’ and ‘what
are the requirements for the coupling terms to achieve
effective destabilisation of the normal mode’ (or, more

modestly, ‘reduction of the amplitude of the normal
mode’).

It turns out that to destabilise relaxation oscillations

one needs, apart from correct tuning, rather strong in-

teractions of a special form. This is tied in with the

necessity to perturb the slow manifold which charac-

terises to a large extent the relaxation oscillation. The

results of this example are discussed in more detail in

[19].

Example 5.2. Consider the van der Pol equation

ẍ + x = μ(1 − x2)ẋ, μ 	 0.

Pure van der Pol relaxation is illustrated in Fig. 3 using

Liénard variables.

Consider the possibility of quenching the

van der Pol relaxation oscillator by embed-

ding it in an autoparametric system of the

form

ẍ + x = μ(1 − x2)ẋ + μcẋ y2, (3)

ÿ + κ ẏ + q2 y = dxy. (4)

z
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Fig. 3 The phase plane of pure van der Pol relaxation in Liénard
variables. The slow manifold is approximated by a cubic curve,
fast motion is indicated by double arrows. The slow manifold is
unstable for −1 < x < +1

In generalised Liénard variables, this becomes

1

μ
ẋ = z + x − 1

3
x3 + cxy2,

ż = − 1

μ
x − 2cxy ẏ

with the equation for y added. The slow manifold is

given by

z = −(1 + cy2)x + 1

3
x3,

which is unstable if 1 + cy2 − x2 > 0. The slow man-

ifold corresponds with a 3-dimensional cubic cylinder

parallel to the ẏ-axis.

This is a rich system with coexisting periodic and

chaotic behaviour. As a numerical illustration for the

behaviour of the dynamics of system (3–4), we present

a projection of the limit set on the (x, ẋ)-plane (so the

transients were left out) in Fig. 4. For more numerical

experiments, see [19].

5.3 A remark on resonance manifolds

In mechanics, an important part is played by slow–fast

sytems, usually called amplitude-angle or action-angle

systems, of the form

ẋ = εX (φ, x) + ε2 · · · , φ̇ = 
(x) + ε · · · ,
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Fig. 4 A periodic limit set of the system (3–4) for μ = 10, c =
−2.2, d = 0.03, κ = 0.075 with high starting values of the y-
oscillation, projected on the x − ẋ plane. The dotted orbit corre-
sponds with the unperturbed van der Pol relaxation oscillation.
In the perturbed state, the slow manifolds are reduced and the
limit cycle becomes asymmetric. SM is the stable part of the slow
manifold

with x ∈ Rn, φ ∈ Tm . The so-called spatial variable

x is derived from a system of oscillators, φ indicates

the corresponding angles, defined on the m-torus. Av-

eraging over the torus (the angles) is possible out-

side the resonance manifolds. The latter correspond

with the zeros of the right-hand side of the equa-

tion for φ written out in all the possible combination

angles.

However, it is already clear that, because of the form

of the right-hand side of the angle equation, such a res-

onance manifold will not be hyperbolic. One might

expect, that localising around such a resonance man-

ifold might resolve this, but it is shown quite gener-

ally in [18], Section 11.7 that to first order, the equa-

tions determining the dynamics in the resonance man-

ifold are not structurally stable, even if the original

oscillator system is dissipative. As second-order ap-

proximation produces hyperbolicity in a number of

cases, we conclude that slow–fast systems of this type

are of a different nature and have only a superficial

similarity to systems with slow manifolds of Fenichel

type.
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