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Abstract The present study deals with nonlinear en-

ergy pumping which consists in passive irreversible

transfer of energy from a linear structure to a non-

linear one. Various results (theoretical, numerical, and

experimental) about energy pumping based on recent

works are given. Thus, the phenomenon is studied for

different excitations: transient and periodical. More-

over, advantages of such a system are carried out in

particular efficiency of this phenomenon. That is why

the robustness and comparison with classical tuned

mass damper are analyzed. An application is consid-

ered with physical experiment using a reduced scale

building.

Keywords Nonlinear energy pumping . Nonlinear

normal modes . Reduced scaled building . Tuned mass

damper

1 Introduction

The present study deals with energy pumping phe-

nomenon which consists in passive irreversible transfer

of energy from a linear system to a nonlinear attachment

[1–3]. The aim is to be able to design efficient nonlinear
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energy sink devices (for example, with cubic nonlinear-

ity [4, 5]), in particular, to attenuate modal responses

for transient and steady vibrations. As analyzed in re-

cent studies [1, 2], this energy transfer is closely related

to nonlinear normal modes of undamped/unforced sys-

tem and nonlinear resonance mechanism. It must be

underlined that energy pumping phenomenon can be

used to attenuate vibrations of a discrete or a contin-

uous structure thanks to this nonlinear coupling. The

present study differs from previous papers since here a

strong nonlinear attachment is considered. Indeed, the

energy pumping phenomenon has been widely studied

[6, 7], but in the present study the essentially nonlinear

coupling is used first of all to attenuate the vibrations

during transient time. Energy pumping phenomenon is

here the transient irreversible transfer of energy from a

linear structure to a nonlinear structure [3]. Then, we

study if this absorber (optimized for the transient time)

can be efficient in stationary regime. Thus, the nonlin-

ear attachment can be an efficient nonlinear vibration

absorber as shown in [4], for example. The resonance

which occurs is not a classical resonance between two

linear systems. Indeed, the aim of energy pumping is far

different since strong nonlinear attachment shall be de-

signed to passively vibrate with any excited frequency.

This way large motions can theoretically be reduced for

more than one natural frequency by the same device.

However, to be able to apply it in real practical applica-

tions, numerous numerical and analytical studies need

to be done. As we will see, this kind of additional sys-

tem has numerous advantages like a good robustness (if
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Fig. 1 The two-degree-of-freedom considered system

parameters are uncertain, then, it is possible to design

attachment so that efficient energy pumping could be

obtained) and can be better than a classical linear tuned

mass damper (Frahm damper which is used in a lot of

industrial structures) in terms of vibration control un-

der periodical forcing. The structure of the paper is

as follows. In the next section, energy pumping phe-

nomenon with the capture of resonance is presented

and the transient vibrations are studied. The robust-

ness of the method is considered by using uncertain

parameters to study the efficiency of energy pumping

if parameters slightly vary. Then, the system with the

nonlinear energy sink under periodical forcing is stud-

ied analytically with the multiple scale analysis and

compared with complexification method. It allows to

make comparison with the classical tuned mass damper.

In Section 4, the above findings are tested and verified

experimentally using appropriately designed reduced

scale building with four floors. Section 5 contains con-

clusive remarks.

2 Energy pumping with transient vibrations:
Robustness

A two-degree-of-freedom system composed of two

weakly damped oscillators is considered as shown in

Fig. 1. Here, x1 and x2 denote displacements of the main

linear (or linearized) system and absorber, respectively.

The following equations are obtained:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

m1

d2x1

dt2
+ c1

dx1

dt
+ k1x1 + c2

(
dx1

dt
− dx2

dt

)
+k2(x1 − x2)3 = 0,

m2

d2x2

dt2
+ c2

(
dx2

dt
− dx1

dt

)
+ k2(x2 − x1)3 = 0.

(1)

Nonlinear coupling is considered here. We should note

that there is no linear force term in the second oscilla-

tor. Indeed, it is possible to consider only a pure nonlin-

ear oscillator as it has been done in numerous studies

[8, 9]. Moreover, this essential nonlinearity can be im-

plemented practically as it has been done in [10, 11]

where a pure cubic nonlinearity has been made phys-

ically with no linear force term. The linear primary

structure is excited by an impulse, so we consider free

oscillations of structures with initial conditions:

x2(t = 0) = x1(t = 0) = 0,
dx2

dt
(t = 0) = 0,

dx1

dt
(t = 0) = CI . (2)

Energy pumping phenomenon has been studied re-

cently [12, 13] and it corresponds to a controlled one-

way channeling of the vibrational energy to a pas-

sive nonlinear structure where it localizes and dimin-

ishes in time due to damping dissipation [1, 2]. Thus,

through energy pumping, vibrations of a linear struc-

ture (subjected to an external excitation) can be at-

tenuated thanks to a strongly nonlinear structure. This

strong nonlinear attachment allows a 1:1 resonance re-

sponsible for the energy pumping phenomenon.

To observe this resonance capture which occurs, a

time-frequency analysis must be performed since res-

onance between the linear mode and the nonlinear nor-

mal mode occurs during the transient responses. That

is why we can use the Hilbert Transform (HT) and its

properties which are often used in nonlinear free vibra-

tions in nonstationary domain, in particular, the concept

of Instantaneous Frequency (IF). As a generalization of

the definition of frequency, IF is defined as the rate of

change of the phase angle at time t of the analytic ver-

sion of the signal [14]. Given a real signal s(t), the

analytic signal z(t) is a complex signal having the ac-

tual signal as the real part and the Hilbert Transform of

the signal as the imaginary component, namely:

z(t) = s(t) + j H [s(t)] = a(t)e jφ(t), (3)

where the amplitude a(t) and the phase φ(t) are given

by:

a(t) =
√

(s(t))2 + (H [s(t)])2 and

φ(t) = tan−1

(
H [s(t)]

s(t)

)
, (4)
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Fig. 2 Energy pumping phenomenon owing to a 1:1 resonance

and the Hilbert Transform is given by the principal

value of the following integral:

H [s(t)] = 1

π

∫ ∞

−∞

s(τ )

t − τ
dτ. (5)

The Instantaneous Frequency is defined by:

fi (t) = 1

2π

dφ(t)

dt
. (6)

The IF definition captures the time variation of the fre-

quency accurately whereas when the Fourier domain

is used, the results contain a large number of compo-

nents with different frequencies and the simple nature

of the signal is lost. Thus, a frequency analysis can be

performed with the calculation of IF. Thus, as shown

in Fig. 2 (m2/m1 = 0.025, k1/m1 = 1, k2/m1 = 1,

c1/m1 = 0.0015, c2/m1 = 0.0015 and CI = 0.13; the

natural damping is very small to better “see” the phe-

nomenon and the different resonances) the nonlinear

attachment engages in nonlinear resonance. Clearly,

when energy pumping occurs, it appears that a res-

onance capture occurs with the nonlinear oscillator:

the instantaneous frequency of x2(t) becomes identi-

cal to the instantaneous frequency of the linear mode

as shown in Fig. 2c (energy transfer occurs). As the

energy of the attachment decreases due to damping,

the attachment engages in 1:1 resonance during which

targeted energy transfer from the linear structure to

the nonlinear attachment occurs (attenuation of x1 in

Fig. 2). Moreover, as underlined in [15] and as shown

in Fig. 2c, between 0 and 50s, a beating phenomenon

seems to act as “trigger” for strong nonlinear energy

transfers in the system under consideration, i.e., early

beats (before t = 50 s) act as catalyzer for effective en-

ergy transfer (then, a 1:1 resonance between 50 and

250 s).

However, it is necessary to know if the method is eff-

icient with uncertain parameters (i.e., to know if energy

pumping still occurs when parameters are not well-

known) to be able to apply it to real structures especially

since damping (which is not well-known) plays a great

role in the phenomenon. Since the nonlinear attachment

will never perfectly reflect the design and also due to
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problems of nonlinear identification, uncertainties also

appear in the nonlinearity. To check those points, it is

considered that the various parameters can be uncer-

tain. That is why we can use a recent method which

uses a projection on the basis of orthogonal polynomi-

als to Gaussian variables [16]. One, then, proposes to

extend and to use this method in the nonlinear case be-

cause the coefficients in front of the nonlinearities are

not necessarily small so that the application of the per-

turbation method is difficult. Then, as shown in [17],

the random parts of parameters noted λ̃ j are rewritten

in the form (with a Karhunen–Loeve expansion [18],

for example):

λ̃ j =
n∑

k=1

λ jkξk, (7)

where the ξk are independent Gaussian random vari-

ables with zero mean and unit variance and n is an

expansion order. In our case, damping and nonlinear

stiffness, for example, can be considered as uncertain

(because damping is not well-known and we consider

impulse responses for which damping is likely to play a

great role. Moreover, because of the aging of the struc-

ture which modifies the parameters, the loosening of

the nonlinearity can occur). x1 and x2 can be expanded

in polynomial chaos series (on the basis of truncated

polynomial chaos) involving the deterministic coeff-

icients x1i (t) and x2i (t):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x1(t) =

N∑
i=0

x1i (t)� i
({ξ}n

i=1

)
,

x2(t) =
N∑

i=0

x2i (t)�i
({ξ}n

i=1

)
,

(8)

where �p(ξ ) = �n(ξi1, . . . , ξi p) are multidimensional

Hermite Polynomials [19] of degree p and ξ is the vec-

tor of p normal random variables {ξik }p
k=1. The vari-

ables are multidimensional independent Gaussian ran-

dom variables with zero mean and unit variance. The

orthogonality relation of the generalized polynomial

chaos takes the form:

〈�i� j 〉 = 〈�2
i 〉δi j , (9)

where δi j is the Kronecker product in the Hilbert space

of the random variables ξ and 〈. , .〉 is the inner product

in the Hilbert space determined by the support of the

Gaussian variables:

〈 f (ξ )g(ξ )〉 =
∫

f (ξ )g(ξ )W (ξ )dξ . (10)

Here, W (ξ ) is the weighting function corresponding

to the polynomial chaos basis {�i }. In the case of the

Hermite polynomials, the weight function in the or-

thogonality relation (10) is:

W (ξ ) = 1√
(2π )n

e− 1
2

t
ξξ , (11)

where n is the dimension of ξ . For example, the one-

dimensional (n = 1, ξ = ξ1) Hermite polynomials are:

�0 = 1, �1 = ξ, �2 = ξ 2 − 1, �3 = ξ 3 − 3ξ . . .

(12)

In our case, damping and nonlinear stiffness, for exam-

ple, can be considered as uncertain. Let us expand c1,

c2, k2:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1 = c10
+

n∑
k=1

c1k ξk,

c2 = c20
+

n∑
k=1

c2k ξk,

k2 = k20
+

n∑
l=1

k2l ξl ,

(13)

where ξk, ξl are Gaussian random variables with zero

mean and unit variance; c10
, c20

, and k20
represent

the means; c1k , c2k , and k2l (k, l = 1, . . . , n) repre-

sent the coefficients in the Karhunen–Loeve expan-

sion, for example. x1 and x2 are then replaced by

their expansion in the equations, and the equations

obtained are multiplied by �m for m = 0, . . . , N . If

the average is done (integration on the domain of the

random variables) and by using the properties of or-

thogonality of the polynomials, a set of deterministic

ordinary differential equations is obtained and must

be solved. It is important to note that the values of

〈�2
m〉, 〈�i� j�k�m〉, and 〈ξk�i�m〉 should be calcu-

lated only once (many values are null thanks to the

properties of the polynomials), and be kept in memory

for all calculations using this method. The formulation

of the equations for m = 0, . . . , N leads to a system

of 2(N + 1) deterministic ordinary differential equa-

tions. This system of equations can be easily solved
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Fig. 3 Polynomial
expansion of order 3
(solid-line): comparison
with a Monte Carlo
simulation (dotted-line)

using standard techniques for deterministic differential

equations.

Once that the xim are known, it is easy to find the

mean and the variance of x1 and x2. Indeed,

• Means: E(x1) = x10
and E(x2) = x20

,

• Standard deviations: σx1
=

√∑N
i=1 x2

1i
〈�2

i 〉 and

σx2
=

√∑N
i=1 x2

2i
〈�2

i 〉.
This method is less time-consuming than Monte Carlo

simulations and analytical results can be obtained as

shown in [17]. Then, even if parameters are uncertain, it

is possible to design attachment so that efficient energy

pumping could be obtained as shown in Fig. 3 (mass ra-

tio equals 5%) where the nonlinear stiffness is uncertain

(k2 = k20
+ ξk21

with k21
= 30%k20

). In this sense, the

method allows to study robustness of energy pumping.

As shown in this figure, chaos polynomial expansion is

quite accurate compared to a Monte Carlo simulation

and is far less time-consuming. The phenomenon of

energy pumping still occurs when sufficient initial en-

ergy h is injected: attenuation of the linear oscillator and

resonance of the nonlinear oscillator take place. This

phenomenon of sufficient initial energy to have energy

pumping in the deterministic case has been described in

[1]. A chaos of order 2 or 3 is used because the approx-

imation is quite good; the error compared to an “exact”

solution is small (this point was underlined in [16] for

linear equations). Indeed, to check that the projection

on chaos polynomials is a good approximation of the

random response, this method has been compared with

a Monte Carlo simulation. This last method is more

time-consuming and is only a numerical method but it

provides “exact” results. Indeed, by using a chaos of

order 3, a set of eight deterministic ordinary differen-

tial equations must be solved whereas by using 10,000

iterations of Monte Carlo (so that the Monte Carlo sim-

ulation converges very well), 2 deterministic ordinary

differential equations (they are of the same type as the

o.d.e. used with chaos of order 3) must be solved 10,000

times (so we have 10,000 o.d.e. to solve). By making

the comparison between the responses of the previous

system with previous parameters and a Monte Carlo

simulation, a good concordance (even for the standard

deviation) is observed as shown in Fig. 3 so chaos poly-

nomials (even of order 2) are a good mean to obtain

transient responses when uncertainties are introduced.

Second, only damping of the nonlinear oscillator is con-

sidered as uncertain. By taking the same parameters

as previously (c2 = c20
+ ξc21

with c21
= 30%c20

), we

can observe that energy pumping seems efficient for a

large standard deviation as shown in the Fig. 4 where

p = 30%. By choosing a polynomial chaos expansion

of order 2, the calculation of the mean and the standard
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deviation of the energy ratio localized in the nonlinear

added mass (where energies are calculated using the

Hamiltonian of initial system without damping) shows

(in Fig. 4c and d) that energy pumping occurs with a

good efficiency when damping is uncertain since an

important ratio of energy is quickly transferred to the

additional structure in mean (the standard deviation is

small). Various numerical investigations can be done

and nonlinear normal modes (and the role of param-

eters) can also be analytically studied. Then, we can

think of a future application (for example, the attenua-

tion of building vibrations [4]) since the method seems

to be efficient when the parameters slightly vary. In par-

ticular, it is possible to consider an experiment since,

in practice, nonlinear parameters and damping are not

necessarily well-known and can be determined exper-

imentally with nonlinear identification (for example,

the authors of [20] try to determine damping of build-

ings with experiments) with uncertainties. It remains

to be said that this method allows to make further an-

alytical calculation (we obtain after this method a set

of deterministic equations which can be studied more

precisely). Indeed, this method is interesting in terms of

design since it will be possible to obtain analytical re-

sults (by studying the mean, the variance ,. . .), to make

the inverse problem and to know exactly if the method

will be robust.

3 Nonlinear energy sink with periodic forcing:
Multiple scale analysis

The phenomenon is now considered with a periodic

forcing:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

m1

d2x1

dt2
+ c1

dx1

dt
+ k1x1 + c2

(
dx1

dt
− dx2

dt

)
+k2(x1 − x2)3 = F cos(ωt),

m2

d2x2

dt2
+ c2

(
dx2

dt
− dx1

dt

)
+ k2(x2 − x1)3 = 0.

(14)

Owing to a multiple scale analysis, it is possible to

plot the amplitude–frequency curve of the system an-

alytically. The multiple scale method developed by

[21] is a singular perturbation technique which may

be used to solve nonlinear dynamical systems (some

developments and applications can be seen in [22,

23]). Then, a dimensionless model is used: (u = x1,

v = x2 − x1)

ü + ελ1u̇ + ω2
1u − ελ2v̇ − εω2

2v
3

= ε f cos(ωt), (15)

v̈ + (1 + ε)λ2v̇ − ελ1u̇ − ω2
1u + (1 + ε)ω2

2v
3

= −ε f cos(ωt), (16)
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where

– ε = m2

m1
: mass ratio,

– ω1 =
√

k1

m1
: master structure inner frequency,

– ω2 =
√

k2

m2
: coefficient of the nonlinearity,

– λi = ci
m2

: damping factors i = 1, 2,

– f = F
m1ε

: dimensionless forcing.

The solutions are sought with the following form:

u(t) = u0(T0, T1) + εu1(T0, T1) + · · · (17)

v(t) = v0(T0, T1) + εv1(T0, T1) + · · · (18)

with new independent times/derivative:

Tn = εnt, n = 0, 1, . . .

d

d t
= D0 + εD1 + · · · = d

d T0

+ ε
d

d T1

+ · · ·

Then, we are looking for a 1:1 resonance between the

two oscillators (as shown by numerical simulations).

Indeed, as shown in a lot of numerical evidences [3, 4]

and analytical results[13, 24–27], when energy pump-

ing occurs, u and v are oscillating with the same fre-

quency. Here, it is a resonance with the same pulsa-

tion ω1. It should be noted that it is not a classical

resonance between two linear modes. Indeed, here the

essential nonlinear system (with no linear term) can

resonate with any linear frequency of the primary sys-

tem. This point has been studied in numerous stud-

ies about this subject. However, in Equation (16) there

are no terms in “ω2
1v”. That is why the term “ω2

1v”

is introduced into Equation (16). Thus, the system is

now:⎧⎪⎨⎪⎩
ü + ω2

1u + ε
(
λ1u̇ − λ2v̇ − ω2

2v
3 − f cos(ωt)

) = 0,

v̈ + ω2
1v + ε

(
(1 + δ)λ2v̇ − λ1u̇ − δω2

1u − δω2
1v

+ (1 + δ)ω2
2v

3 + f cos(ωt)
) = 0,

(19)

where δ = ε−1.

Then, multiple scales technique are used near 1:1

resonance: ω ≡ ω1 + εσ . So, stationary solutions

u0 = a0 cos(ω1T0 + σ T1 + c0), (20)

v0 = b0 cos(ω1T0 + σ T1 + d0), (21)

are introduced. So, in Equation (19), if the estima-

tion presented in (20) and (21) is valid, one must

adopt:

δ
[
λ2v̇ − ω2

1u − ω2
1v + ω2

2v
3
] ∼ O(1), (22)

and, therefore, the expression in square brackets should

be of order ε (but each term is not necessarily

small). Indeed, as shown in a lot of numerical evi-

dences [4, 24, 26] and analytical results [25, 28, 29],

when energy pumping occurs, u and v are oscillat-

ing with the same frequency. Such a procedure is

fully justified by detailed numerical analysis and by

numerous previous papers. It is rather natural, as it

describes slow modulation and damping of the vi-

brations with frequency close to ω1

2π
. To verify it

numerically, for example, we can take the follow-

ing parameters (which will be used in the next nu-

merical studies): ε = 7.215%, ω2 = 2000 rad s−1 m−1,

ω1 = 23.17 rad s−1, λ1 = 5.13 s−1, λ2 = 12 s−1, m1 =
1.677 kg, m2 = 0.121 kg, ω = 23.17 rad s−1 and f =
1.5. With those parameters, Fig. 5 shows the evolu-

tion of (λ2v̇ − ω2
1u − ω2

1v + ω2
2v

3) by numerical in-

tegration. This expression is of order ε = 0.07215,

which verifies the hypothesis assumed previously.

Moreover, the condition (22) restricts the kind of

solutions which can be obtained by the multiscale

method. However, the aim here is to study the mech-

anism of energy pumping underlined in numerous

studies [3, 24, 25, 26, 28] which assume a 1:1 res-

onance at the pulsation ω1. All other resonances

which can occur in this kind of system are not stud-

ied in the present paper. This assumption has been

checked explicitly by looking at the approximate so-

lutions, both in multiscale and numerically as shown in

Fig. 7.

So, stationary solutions are introduced in ε-scaled

equations:

D0u0 + ω2
1u0 = 0, ε0 (23)

D0v0 + ω2
1v0 = 0, ε0 (24)

D2
0u1 + 2D0 D1u0 + λ1 D0u0 − λ2 D0v0 + ω2

1u1

− ω2
2v

3
0 = f cos(ωt), ε1 (25)

D2
0v1 + 2D0 D1v0 + (1 + δ)λ2 D0v0

− λ1 D0u0 + ω2
1v1 − δω2

1u0

+ (1 + δ)ω2
2v

3
0 = − f cos(ωt), ε1 (26)
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by numerical integration
(ε = 0.07215)

yielding eqs(u1, v1) involving e jω1T0 , e3 jω1T0 compo-

nents. Cancelling secular parts in e jω1T0 gives resonant

conditions for u0, v0. When all calculations are done,

a0, b0, c0, and d0 are implicit solutions of the system:

a0ω1σ − λ2b0ω1 sin(d0 − c0)

2
+ 3ω2

2b3
0 cos(d0 − c0)

8

+ f cos(c0)

2
= 0, (27)

λ1a0ω1

2
− λ2b0ω1 cos(d0−c0)

2
− 3ω2

2b3
0 sin(d0−c0)

8

+ f sin(c0)

2
= 0, (28)

b0ω1σ − λ1a0ω1 sin(c0 − d0)

2
+ δω2

1a0 cos(c0 − d0)

2

+ δω2
1b0

2
− 3ω2

2b3
0(1 + δ)

8
− f cos(d0)

2
= 0, (29)

(1 + δ)λ2b0ω1

2
− λ1a0ω1 cos(c0 − d0)

2

− δω2
1a0 sin(c0 − d0)

2
− f sin(d0)

2
= 0. (30)

A Newton procedure is then used to obtain the

FrF of structure coupled with energy sink. As exam-

ple, we consider ε = 7.215%, ω2 = 2700 rad s−1 m−1,

ω1 = 23.17 rad s−1, λ1 = 15 s−1, λ2 = 12 s−1, m1 =
1.677 kg, m2 = 0.121 kg to plot the FrF of structures

as shown in Fig. 6. Then, we should note that the as-
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Fig. 6 FrF plotted owing to a multiple scale analysis

sumption (22) and the fact that we are just looking

at a resonance 1:1 (other kind of solutions which can

be obtained by the multiscale analysis are not studied

in the present paper) have been checked explicitly by

Springer
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looking at the approximate solutions, both in multiscale

and numerically as shown in Fig. 7 with the previous

parameters (here, f = 5).

Moreover, by analyzing more precisely those FrF as

shown in Fig. 8 (ε = 7.215%, ω2 = 3500 rad s−1 m−1,

ω1 = 23.17 rad s−1, λ1 = 5.13 s−1, λ2 = 12 s−1, m1 =
1.677 kg, m2 = 0.121 kg) where the amplitude of ex-

citation f varies (this figure shows the maximum dis-

placement of the primary structure versus the ampli-

tude of the forcing f : for each value of f , the bar

represents the interval of displacement of the primary

structure; each point of the bar is for one fixed value

of the external excitation ω so the top of the bar is the

maximum value of displacement for one fixed value

of f ). In Fig. 7, we observe that for low amplitudes

(before f = 4), energy pumping is not activated, for

middle amplitudes, there exists an efficient range of

sink device (the maximum displacement of the pri-

mary structure is not increasing when the amplitude

f of the external forcing is increasing), and for large

amplitudes (after f = 9), the phenomenon is weakly

efficient. Moreover, to verify the good accuracy of the

multiple scale analysis, we have compared the previous

results with another method named complexification

method which is similar to the technique developed

in [30] (where the accuracy of the complexification

method has been verified). Indeed, the considered sys-

tem is governed by the following equations of motion

(same system as previously):⎧⎪⎨⎪⎩
ẍ1 + ω2

1x1 + ελ1 ẋ1+ελ2(ẋ1 − ẋ2)

+εω2
2(x1 − x2)3 = ε f cos(ωt),

εẍ2 + ελ2(ẋ2 − ẋ1) + εω2
2(x2 − x1)3 = 0,

(31)

which can be rewritten as:⎧⎪⎨⎪⎩
ẍ1 + ω2

1x1 + +ελ1 ẋ1 + ελ2(ẋ1 − ẋ2)

+εω2
2(x1 − x2)3 − ε f cos(ωt) = 0,

ẍ2 + λ2(ẋ2 − ẋ1) + ω2
2(x2 − x1)3 = 0.

(32)

The complexification method described in [30] is used.

Thus, the new complex variables

ψ1 = ẋ1 + jωx1, ψ2 = ẋ2 + jωx2, j2 = −1,

(33)

are introduced. Then, the complex amplitudes are ex-

pressed as:

ψ1 = ϕ1e jωt , ψ2 = ϕ2e jωt . (34)

Substituting (33) and (34) into the equations of mo-

tion (32) and averaging at the excitation pulsation ω,

we retain only terms containing e jωt . We then obtain

a set of two complex modulation equations govern-

ing the (slow) evolution of the complex amplitudes

ϕi , i = 1, 2. To study steady state periodic solutions

of the system, we impose stationary conditions to

the modulation equations by setting ϕ̇1 = ϕ̇2 = 0. To
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analyze the set of complex algebraic equations obtained

(that governs the constant complex amplitudes of the

two oscillators), we express the complex amplitudes in

terms of their real and imaginary parts,

ϕ1 = z1 + j z2, ϕ2 = z3 + j z4, (35)

which upon substitution yield the following inhomo-

geneous set of four real equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ωz2

2
+ ελ1z1

2
+ ω2

1z2

2ω
+ ελ2

2
(z1 − z3)

+ 3εω2
2

8ω3
((z1 − z3)2 + (z2 − z4)2)(z2 − z4) = 0,

ωz1

2
+ ελ1z2

2
+ ε f

2
− ω2

1z1

2ω
+ ελ2(z2 − z4)

2

− 3εω2
2(z1 − z3)

8ω3
((z1 − z3)2 + (z2 − z4)2) = 0,

−ωz4

2
+ λ2

2
(z3 − z1) + 3ω2

2

8ω3
((z3 − z1)2

+(z4 − z2)2)(z4 − z2) = 0,

ωz3

2
+ λ2

2
(z4 − z2) − 3ω2

2

8ω3
((z3 − z1)2

+ (z4 − z2)2)(z3 − z1) = 0.

(36)

For fixed values of the system parameters, this set is

numerically solved for varying pulsation ω to obtain the

fundamental resonance curves of the system where the

fast frequency of the steady-state response is identical

to the frequency of the external excitation. The analytic

approximations to the responses of the two oscillators

are obtained by reserving the variable transformations,

and are given by:

x1(t)≈ |ϕ1|
ω

cos(ωt + φ1), x2(t)≈ |ϕ2|
ω

cos(ωt + φ2),

(37)

where the amplitudes and phases are computed in terms

of the solutions of the set (36) as follows,

|ϕ1| =
√

z2
1 + z2

2, |ϕ2| =
√

z2
3 + z2

4,

φ1 = arctan

(
z2

z1

)
, φ2 = arctan

(
z4

z3

)
. (38)

By taking the same values as previously (ε =
7.215%, ω2 = 4228 rad s−1 m−1, ω1 = 23.17 rad s−1,

λ1 = 5.13 s−1, λ2 = 12 s−1, m1 = 1.677 kg, m2 =
0.121 kg), we can see in Fig. 9 that the multiple scale

analysis is in good agreement with the complexification

method.

Moreover, for a periodical excitation and to better

understand the interest of energy pumping compared

to classical linear tuned mass damper, the amplitude–

frequency curves (Fig. 10) can be compared. For

example, two cases can be compared: (a) a primary

structure with an optimal linear tuned mass damper (the
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amplitudes with the
nonlinear coupling and the
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amplitudes with the linear
TMD, the dotted line - - -
denotes the amplitude of x1

without coupling

optimization is described in [31]: k2 = 232.54 N m−1)

(b) a primary structure with a nonlinear attachment

k2/m2 = 800,000, m2/m1 = 0.1, c2/m2 = 7 (so, the

specific natural damping in the nonlinear system is

0.39%). The damping coefficient and mass of the sec-

ondary added system are identical in both cases. Re-

sults are displayed in Fig. 10 for an harmonic excita-

tion. The solutions for the nonlinear system have been

calculated using the method described in [30]. We can

clearly see an important advantage of the strong non-

linear coupling. Indeed, the curve with cubic coupling

(i.e., the case in which the absorber is present) is al-

ways “under” (the amplitude is not amplified for a f-

ixed value of forcing frequency f = ω/2π ) the curve

without coupling (i.e., the case in which no absorber

is present) which is not the case with a classical linear

tuned mass damper where two resonances can appear.

This last point can be dangerous for the structure, for

example, with an earthquake where several frequen-

cies can be excited and far from the main resonance

the classical tuned mass damper can increase the vi-

brations. With strong cubic coupling, the features (in

particular, the modes) of the system are not modified.

Indeed, in Fig. 10, for 20 < ω < 25, the linear absorber

is not effective and it is even dangerous for the primary

structure. As shown in the Fig. 11, with a classical

tuned mass damper and far from the main resonance

two others peaks can appear. The advantages and dis-

advantages of the two kinds of absorbers (the TMD is

the classical tuned mass damper and the NES is the

strong nonlinear coupling with energy pumping phe-

nomenon) can be summarized in Table 1 in which the

disadvantages have been underlined.

So if the frequency of the linear primary structure is

moving (because of aging. . .), one need to adjust the

Frahm damper (Linear tuned mass damper) which is

not the case with the NES.

4 Experimental verification

The experimental considered system is shown in

Fig. 12. An experimental campaign is achieved on a

small scaled four-storey building both to check feasibil-

ity and to investigate the energy pumping phenomenon

on a realistic case-study. The four-storey building

namely the linear master structure was manufactured
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Table 1 Comparison of TMD and NES

Strongly nonlinear coupling Linear tuned mass damper

Fitted to attenuate the whole frequency span of a mode Fitted to attenuate a single frequency or narrow surrounding band

Reliable attenuation of natural frequency Optimal attenuation of targeted frequency

Attenuation curve always remains underneath uncontrolled FrF Possible amplification outside targeted frequency bandwidth

Little sensitive to frequency shifts FrF (structural damages,

durability)

Sensitive to frequency shifts

Range of application
Attenuation triggered beyond an amplitude threshold Attenuation as soon as low forcing amplitude levels

Amplitude-dependent attenuation Attenuation gain independent from excitation level

Free oscillations: yes / Steady vib.: yes Free oscillations: yes / Steady vib.: yes

Transient vibrations: yes Transient vibrations: no

Simultaneously control of several modes: cascades of No

resonances
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Fig. 11 Comparison with a
classical linear tuned mass
damper

by welding stainless steel columns and supporting

beams. Steel plates were also welded on each storey

to simulate realistic mixed steel–concrete slabs. The

system is clamped on a plexiglass plate mounted on

a shaking table driven by a Linmot electromagnetic

linear motor. This latter is controlled by a Linmot

E1000 MT controller which is characterized by the

ability to efficiently stream almost any excitation prof-

ile (sine dwells, sine sweeps, random noise, pulses,

earthquakes). Data acquisition of 6 PCB piezotronics

accelerometers is performed by using a HP 3566A/67

Analyzer up to a sampling frequency of 12,800 Hz thus

permitting to capture most instantaneous information

of dynamic responses. The whole test rig is mounted

on a heavy concrete block dynamically isolated from

the ground. Linear eigenfrequencies and related specif-

ic damping of the main structure are identified when

analyzing averaged FrF response curves obtained for

random white noise or sine sweep excitations as il-

lustrated in Fig. 13. Modal identification is performed

by a pole-residual technique using Matlab structural

dynamic toolbox SDtools. Generally speaking, eigen-

modes are shear modes because of the low stiffness of

the columns and high plates. As a result, accelerometers
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Fig. 12 Experimental system

placed on each storey of the structure indeed record ac-

tual horizontal components and not rotated ones. The

secondary mass, of the absorber, can slide along a rail

fixed to the top of the simple building. x1 and x2 rep-

resent, respectively, absolute displacements of the pri-

mary structure (at the top of the structure) and of the

added mass. m1 denotes the mass of the primary struc-

ture and m2 the mass of the second added structure.

In this experiment, the first modal idealized viscous

damping coefficient between the primary mass and

the support is c1 and between the primary mass and

the secondary mass is c2. This model was designed,

built, and tested at ENTPE. As underlined in [32],

a cubic nonlinearity is made geometrically with two

linear springs (k and l are the stiffness and length of

each linear spring). However, when this spring is ex-

perimentally implemented, linear term appears since

there exists a small prestress force in the spring. That

is why even if the prestress force is kept to a min-

imum, linear coupling also appears. For the primary

structure, we first consider only the first mode. An im-

pulsion is considered at the top of the primary struc-

ture. Thus, the building and nonlinear absorber can

be idealized by the model displayed in Fig. 1. The

equations are similar to System (1) or (14) depend-

ing on the considered excitation. The experimental pa-

rameters are m2 = 0.121 kg, m1 = 1.677 kg. A modal

analysis and experimental dynamic analysis of the

structures give k1 = 900.3 N m−1, c1 = 0.995 N s m−1,

c2 = 1.452 N s m−1, and k2 = 1.48.106 N m−3. The

natural frequency of the linear oscillator is 3.69 Hz.

First of all, transient vibrations are analyzed.

By considering an impulse at the first pri-

mary mass x2(t = 0) = x1(t = 0) = 0, dx2

dt (t = 0) =
0, dx1

dt (t = 0) = 0.25 with the help of a hammer (the

load has been applied to the top floor of the model build-

ing (the representation of the primary structure by the

building’s first mode is thus reasonable)), then acceler-

ations of free oscillations are measured and plotted as

shown in Fig. 14 where energy pumping occurs (attenu-

ation of the vibrations of the first mass owing to the res-

onance of the nonlinear one). The experimental results

are in good agreement with the numerical integration

of system (1) with the previous parameters (by taking
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Fig. 14 Experimental results with an impulse

only one mode into account in the numerical analysis)

as shown in Fig. 15. We can clearly see that during

energy pumping phenomenon, the first mode is only

responsible for energy pumping. Indeed, by taking one

mode into account in the theory (resonance with one

mode) and in numerical simulations, the results are in

good agreement with experimental results. There is just

a small difference in experiment since the other modes

change a little the response of x1 but as underlined

in [4], the first mode here is only responsible for en-

ergy pumping (there is resonance of the first mode but

other modes are just oscillating with natural damping)

and other modes of the linear structure are just simple

damped oscillators. This is explained by the fact that

the other modes of the structure (the second mode is

16.09 Hz) are very far from the main linear mode and

the main resonance is at 3.69 Hz.

Then, when energy pumping occurs, it appears that

a resonance capture occurs with the nonlinear oscilla-
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Fig. 15 Comparison of experimental and numerical results

tor as shown in Fig. 16 where the instantaneous fre-

quency of experimental signal x2(t) (the experimental

acceleration has been integrated twice with special f-

ilters) has been calculated with the Hilbert Transform.

In Fig. 16, the instantaneous frequency of x2(t) be-

comes identical to the instantaneous frequency of the

linear mode (3.69 Hz) (energy transfer occurs). Before

t = 2s, the nonlinear normal mode is totally destroyed

(brutal change of frequency of x2) resulting in qua-

sidestruction of vibrations.

Moreover, periodic forcing (owing to a small shak-

ing table) can be studied. The experimental amplitude–

frequency curves verify the theory seen in the pre-

vious part as shown in Fig. 17. Indeed, the curves

with coupling (presence of the nonlinear absorber)

are “under” the curve without coupling (there is

no absorber) for different values of amplitude f so

the main features of the main structure to be iso-

lated are not modified. The NES appears to be very

efficient.
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5 Conclusion

Energy pumping phenomenon has been studied nu-

merically, theoretically, and experimentally for differ-

ent excitations. Not only is energy pumping efficient

for transient vibrations, but it is also very efficient for

periodic excitation. Indeed, experimental verification

has shown the efficiency of energy pumping compared

to classical linear tuned mass damper. Not only is the

phenomenon robust theoretically as shown in the first

part, but it is possible to implement it practically with

a small realistic building model. Moreover, this study

has shown advantages of using this kind of absorber in-

stead of using classical tuned mass damper. This main

point is the strong nonlinear coupling. Indeed, weakly

linear (or weakly nonlinear) tuned mass dampers are

commonly used to absorb the vibrations of a specif-

ic linear mode of a structure and its design is often

optimized to widen the resonant frequency range. The

tuned mass damper is adjusted to fit a natural frequency

of the structure and the weak nonlinearity only slightly

enlarges the efficient frequency span. Energy of the

tuned mass damper is dissipated by a damper element.

They are not very useful if one considers frequency

shifts resulting from structural damages or durability

problems. Although designed to absorb harmonic res-

onant excitations, the efficiency of the classical tuned

mass dampers meets severe drawbacks when excita-

tions are transient waves. The aim of energy pumping

is far different since strong nonlinear attachment shall

be designed to passively vibrate with any excited fre-

quency. This way large motions can theoretically be re-

duced for more than one natural frequency by the same

device. Cascades of resonance capture may even occur

meaning that the energy sink is able to pass from one

mode to another while extracting energy from them.

Contrary to the case of standard tuned mass dampers,

energy transfer is irreversible because of modal local-

ization which prevents the energy from being released

back to the main structure. It remains to consider the

implementation of such a system in real buildings.
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