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Abstract Computation of focus (or focal) values for

nonlinear dynamical systems is not only important in

theoretical study, but also useful in applications. In this

paper, we compare three typical methods for computing

focus values, and give a comparison among these meth-

ods. Then, we apply these methods to study two practi-

cal problems and Hilbert’s 16th problem. We show that

these different methods have the same computational

complexity. Finally, we discuss the “minimal singular

point value” problem.

Keywords Focus value . Stability . Limit cycle .

Hilbert’s 16th problem . Symbolic computation

1 Introduction

Limit cycles commonly exist in nonlinear dynamical

systems, in almost all disciplines such as physics, me-

chanics, electronics, biology, ecology, and economics

[1–4]. Limit cycle is closely related to other impor-
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tant dynamical behaviors such as bifurcation and sta-

bility. Due to wide occurrence of limit cycles in science

and technology, limit cycle theory has been extensively

studied by mathematicians, physicists, chemists, engi-

neers, and more recently, by biologists and economists.

Limit cycles can be generated from local bifurcations

such as Hopf bifurcation [1, 5] or global bifurcations

like bifurcation from a center [2]. For local bifurca-

tion to limit cycles, the most powerful tool is the center

manifold theory [6] and normal form theory [2, 7–10].

The normal form of Hopf bifurcation can be used to de-

termine bifurcation and stability of limit cycles in the

vicinity of an Hopf critical point. To determine the ex-

istence of multiple limit cycles in the neighborhood of

a degenerate Hopf critical point, one needs to compute

the coefficients of the normal form, or more precisely,

to compute the focus values of the critical point [9–14].

It should be noted that a “focus value” is also usually

called a “focal value” in the literature.

Many methods have been developed for comput-

ing focus values and normal forms, including the

Poincaré method [15], the Takens method [16, 17], the

Lyapunov–Schmidt reduction method [18], the time av-

eraging [2], a perturbation technique based on multiple

time scales [8, 9], and the singular point value method

[11, 12], etc. The basic ideas of the Poincaré and the

Takens method are similar, by using a homological op-

erator to decompose the linear space of vector field at

each order and to find the part (normal form) which can-

not be removed by nonlinear transformations. Based on

the Poincaré method, two pioneering books written by
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Marsden and McCracken [1] and Hassard et al. [5] de-

veloped methods for computing the focus values as-

sociated with Hopf bifurcation. In particular, in the

second book [5], explicit formula was given for the

second-order focus value when the first one is zero,

even when the dimension of the system is greater than

2. The Lyapunov–Schmidt reduction method [18], on

the other hand, is often used by people to find approx-

imation of periodic solutions, emerging from Hopf bi-

furcation. The basic idea of this method is to project

the whole system into the subspace spanned by the

eigenvectors associated with a pair of purely imagi-

nary eigenvalues. This method, however, does not yield

differential equations but algebraic equations. Strictly

speaking, it cannot be employed for stability analysis,

but can be used to compute the focus values. As a mat-

ter of fact, the idea of this method is similar to that of

time averaging and multiple time scales from the view

point of projection into subspace. In engineering so-

ciety, the time averaging and multiple time scales are

widely used for computing approximate solutions of

oscillators or vibrating systems. Nayfeh [8] was the first

one to introduce the multiple time scales to compute

the normal form of oscillating systems, described by

second-order differential equations. Later, this method

was combined with a perturbation technique to form

a systematic and unifying procedure [9], which can

be directly applied to higher dimensional systems,

without application of the center manifold reduction

method.

To find the maximal number of multiple limit cycles,

one needs to compute the high-order normal forms or

high-order focus values, related to degenerate Hopf bi-

furcations [19, 20]. This requires finding explicit sym-

bolic expressions, giving rise to a crucial problem –

computational efficiency, since a non-efficient com-

puter program would quickly run into a loop or termi-

nate. Therefore, it is important to examine the existing

methods for computing normal forms and focus val-

ues. In this paper, we choose three typical methods for

a comparison: the Poincaré method [15] (which was

also called the Takens method [16, 17]), a perturba-

tion method using multiple time scales [8, 9], and the

singular point value method [11–14]. We shall not dis-

cuss the Lyapunov–Schmidt reduction method since

the main idea of this method is similar to that of the

multiple time scales. We use two practical problems and

Hilbert’s 16th problem [21] to show that all the three

methods have the same computational complexity. We

will also discuss the so-called minimal singular point

value, which is supposed to be the best in computing fo-

cus values, and show that none of the existing methods

reaches the best.

The rest of the paper is organized as follows. In the

next section, the aforementioned three typical methods

for computing focus values (normal forms) are pre-

sented. In Section 3, the three methods are applied to

two practical problems and compared. In Section 4, the

three methods are used to study Hilbert’s 16th problem,

showing that the three methods have the same compu-

tational complexity. In Section 5, a symmetric Liénard

system is used to discuss the minimal singular point

value. Finally, conclusions are drawn in Section 6.

2 Typical methods for computing focus values

In this section, we compare three typical methods for

computing focus values, which are widely used in ap-

plications associated with Hopf bifurcation.

We first introduce the Poincaré method, and then

discuss a perturbation method and the singular point

value method. Note that the Poincaré method and the

singular point value method are only applicable to two-

dimensional systems, while the perturbation method

can be directly applied to n-dimensional systems. In

other words, if one wants to apply the Poincaré method

or the singular point value method to compute focus

value, one must first apply the center manifold the-

ory, while the perturbation method combines the center

manifold theory and normal form theory in one unified

approach.

2.1 The Poincaré method

Consider the following general two-dimensional sys-

tem:

dx
dt

= Lx + f (x) ≡ v1 + f 2(x)

+ f 3(x) + · · · + f k(x) + · · · , (1)

where x = (x1, x2)T ∈ R2, f k(x) denotes the kth-order

vector homogeneous polynomials of x, and

L =
[

0 1

−1 0

]
, (2)
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with v1 = Lx ≡ J x. (Usually, J is used to denote the

Jacobian matrix. Here, L is used in consistence with the

Lie bracket notation.) It is assumed that all eigenvalues

of L have zero real parts, implying that the dynamics

of system (1) is described on a two-dimensional center

manifold.

The basic idea of the Poincaré normal form theory

is to find a near-identity nonlinear transformation,

x = y + h(y) ≡ y + h2(y) + h3(y)

+ · · · + hk(y) + · · · , (3)

such that the resulting system

d y
dt

= L y + g(y) ≡ L y + g2(y)

+ g3(y) + · · · + gk(y) + · · · (4)

becomes as simple as possible. Here, hk(y) and gk(y)

denote some kth-order vector homogeneous polynomi-

als of y.

To apply the normal form theory, first define an op-

erator as follows:

Lk : Hk �→ Hk,

Uk ∈ Hk �→ Lk(Uk) = [Uk, v1] ∈ Hk, (5)

where Hk denotes a linear vector space consisting of

the kth-order vector homogeneous polynomials. The

operator [Uk, v1] is called the Lie bracket, defined

as

[Uk, v1] = Dv1 · Uk − DUk · v1. (6)

Next, define the space Rk as the range of Lk , and the

complementary space of Rk as Kk = Ker(Lk). Thus,

Hk = Rk ⊕ Kk, (7)

and we can then choose bases for Rk and Kk . Con-

sequently, a vector homogeneous polynomial f k ∈ Hk

can be split into two parts: one is spanned on the basis

of Rk and the other on that of Kk . Normal form theory

shows that the part of f k belonging to Rk can be elim-

inated while the part belonging to Kk must be retained,

which is called a normal form.

It should be pointed out here that in general, Ker(Lk)

does not always complement the range R(Lk); how-

ever, it does for the case of simple (non-degenerate)

Hopf bifurcation. Certainly, it does not imply that it is

always the best choice of complement. As a matter of

fact, how to choose the Rk which best complements

the range Rk is still an open problem, as discussed in

Section 5.

By applying the Poincaré normal form theory [15],

one can find the kth-order normal form gk(y), while the

part belonging to Rk can be removed by appropriately

choosing the coefficients of the nonlinear transforma-

tion hk(y). The “form” of the normal form gk(y) is

mainly determined by the linear vector v1. However,

it depends not only on the basis of the complementary

space Kk , but also on the choice of the complemen-

tary space itself. Once Kk is chosen, one may apply the

matrix method [2] to find a basis of the space Rk and

then determine a basis of the complementary space Kk .

Having chosen the basis of Kk , the form of gk(y) can

be determined, which actually represents the normal

form.

In general, when one applies the normal form theory

to a system, one can find the “form” of the normal form

(i.e., the basis of the complementary space Kk), but

not explicit expressions. However, in practical applica-

tions, solutions for the normal form and the nonlinear

transformation need to be found explicitly. To achieve

this, one may assume a general form of the nonlinear

transformation and then substitute it back into the dif-

ferential equation, with the aid of normal form theory,

to obtain the kth-order algebraic equations by balancing

the coefficients of the homogeneous polynomial terms.

These algebraic equations are then used to determine

the coefficients of the normal form and the nonlinear

transformation. Thus, the key step in the computation

of the kth-order normal form is to find the kth-order

algebraic equations.

When the eigenvalues of a Jacobian involve one or

more pure imaginary pairs, a complex analysis may

simplify the solution procedure. It has actually been

noted that the real analysis given in [22] yields cou-

pled algebraic equations, while it will be seen below

that the complex analysis can decouple the algebraic

equations.

Thus, introduce the linear transformation

⎧⎪⎨⎪⎩
x1 = 1

2
(z + z),

x2 = i

2
(z − z),

i.e.

{
z = x1 − i x2,

z = x1 + i x2,
(8)
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where i = √−1, and z is the complex conjugate

of z. Then, the linear part of system (1) becomes

v1 = x2
∂
∂x1

− x1
∂
∂x2

= (i z − i z)T. Indeed, applying the

transformation (8) into system (1) yields

dz

dt
= i z + f (z, z),

dz

dt
= −i z + f (z, z), (9)

where f is a polynomial in z and z starting from the

second-order terms, and f is the complex conjugate

of f . Here, for convenience, we use the same notation

f = ( f, f )T for the complex analysis. To find the nor-

mal form of Hopf singularity, one may use a nonlinear

transformation given by

z = y +
∑

hk(y, y), z = y +
∑

hk(y, y), (10)

and determine the basis gk for the complementary space

of Kk , or use the Poincaré normal form theory to de-

termine the so-called resonant terms. It is well known

that the “resonant” terms are given in the form of z j z j−1

(e.g., see [2]), and the kth-order normal form is given

by

gk(y, y) =
(

(b1k + ib2k) y(k+1)/2 y(k−1)/2

(b1k − ib2k) y(k+1)/2 y(k−1)/2

)
, (11)

where the b1k and b2k are real coefficients to be de-

termined. Therefore, the normal form can be written

as

dy

dt
= iy +

∞∑
m=1

g2m+1(y, y),

d y

dt
= −i y +

∞∑
m=1

g2m+1(y, y). (12)

It is easy to see from Equation (12) that the normal form

contains odd-order terms only, as expected. In normal

form computation, the two kth-order coefficients b1k

and b2k should, in general, be retained in the normal

form.

Finally, based on Equations (4) and (9)–(11), one

can determine the algebraic equations order by order

starting from k = 2, and then apply the normal form

theory to solve for the coefficients b1k (k is odd) ex-

plicitly in terms of the original system coefficients.

Summarizing the above results gives the following

theorem.

Theorem 1. For system (1) with L given by Equa-
tion (2), the normal form is given by Equation (12),
where b1k is the kth-order focus value.

2.2 A perturbation method

Now, we briefly describe a perturbation technique

based on multiple time scales for computing normal

forms (e.g., see [8, 9]). This technique is not only appli-

cable to Hopf singularity [8, 9], but also to other singu-

larities such as Hopf-zero [23], double-Hopf [24, 25],

etc. The basic idea of the normal form theory is to ap-

ply successive coordinate transformations to obtain a

simplified form that is qualitatively equivalent to the

original system in the vicinity of an equilibrium point.

Normal form theory is usually employed after an ap-

plication of the center manifold theory, so as to reduce

the original equation to a lower-dimensional system.

The perturbation technique has been used to develop a

unified approach to directly compute the normal forms

of Hopf and degenerate Hopf bifurcations for general

n-dimensional systems without the application of the

center manifold theory [9].

Consider a general n-dimensional differential equa-

tion:

dx
dt

= J x + f (x), x ∈ Rn, f : Rn → Rn, (13)

where J x represents the linear terms of the system, and

the nonlinear function f is assumed to be analytic with

x = 0 being an equilibrium point of the system, i.e.,

f (0) = 0. Further, assume that the Jacobian of system

(13), evaluated at the equilibrium point 0, contains one

pair of purely imaginary eigenvalues ±i , and thus, the

Jacobian of system (13) may be assumed in the Jordan

canonical form:

J =

⎡⎢⎣0 1 0

−1 0 0

0 0 A

⎤⎥⎦ , A ∈ R(n−2)×(n−2), (14)

where A is stable (i.e., all of its eigenvalues have neg-

ative real parts).

The basic idea of the perturbation technique based

on multiple scales is as follows: Instead of a single

time variable, multiple independent variables or scales

are used in the expansion of the system response.

To achieve this, introducing the new independent
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time variables Tk = εk t, k = 0, 1, 2, . . . yields partial

derivatives with respect to Tk as follows:

d

dt
= ∂T0

∂t

∂

∂T0

+ ∂T1

∂t

∂

∂T1

+ ∂T2

∂t

∂

∂T2

+ · · ·

= D0 + εD1 + ε2 D2 + · · · , (15)

where Dk = ∂
∂Tk

. Then, assume that the solutions of

system (13) in the neighborhood of x = 0 are expanded

in series as

x(t ; ε) = εx1(T0, T1, . . .)

+ ε2x2(T0, T1, . . .) + · · · . (16)

Note that the same perturbation parameter, ε, is used

in both the time and space scalings in (15) and (16). In

other words, this perturbation approach treats time and

space in the same scaling.

Substituting the formulas (15) and (16) into system

(13), and solving the resulting ordered linear differen-

tial equations finally yields the normal form, given in

polar coordinates (a detailed procedure can be found in

[9]):

dr

dt
= ∂r

∂T0

∂T0

∂t
+ ∂r

∂T1

∂T1

∂t
+ ∂r

∂T2

∂T2

∂t
+ · · ·

= D0r + D1r + D2r + · · · , (17)

dφ

dt
= ∂φ

∂T0

∂T0

∂t
+ ∂φ

∂T1

∂T1

∂t
+ ∂φ

∂T2

∂T2

∂t
+ · · ·

= D0φ + D1φ + D2φ + · · · , (18)

where Dir and Diφ are uniquely determined, implying

that the normal form given by Equations (17) and (18) is

unique. Further, it has been shown [9] that the deriva-

tives Dir and Diφ are functions of r only, and only

D2kr and D2kφ are non-zero, which can be expressed as

D2kr = v2k+1r2k+1 and D2kφ = t2k+1r2k , where both

v2k+1 and t2k+1 are expressed in terms of the original

system’s coefficients. The coefficient v2k+1 is called the

kth-order focus value of the Hopf-type critical point

(the origin).

Theorem 2. Suppose the general n-dimensional sys-
tem (13) has an Hopf-type singular point at the origin,
i.e., the linearized system of (13) has one pair of purely
imaginary eigenvalues and the remaining eigenvalues
have negative real parts. Then the normal form of sys-

tem (13) for the Hopf or generalized Hopf bifurcations
up to the (2k + 1)st order term is given by

dr

dt
= r (v1 + v3r2 + v5r4 + · · · + v2k+1r2k), (19)

dθ

dt
= 1 + dφ

dt
= 1 + t3r2 + t5r4 + · · · + t2k+1r2k,

(20)

where the constants v2k+1 = D2kr/r2k+1 and t2k+1 =
D2kφ/r2k+1 are explicitly expressed in terms of the
original system parameters, and D2kr and D2kφ are
obtained recursively using multiple time scales.

2.3 The singular point value method

This iterative method computes focus values by com-

puting the singular point quantities (see [12–14] for

details).

To introduce this method, consider the following

planar polynomial differential system:

dx

dt ′ = δx − y +
∞∑

k=2

Xk(x, y),

dy

dt ′ = x + δy +
∞∑

k=2

Yk(x, y), (21)

where Xk(x, y) and Yk(x, y) are homogeneous polyno-

mials of x, y of degree k. The origin (x, y) = (0, 0) is

a singular point of system (21), which is either a focus

or a linear center (when δ = 0). Since we are interested

in the computation of focus values, we assume δ = 0

in the following analysis.

Introducing the transformations given by

z = x + iy, w = x − iy,

T = i t ′, i = √−1, (22)

into system (21) results in

dz

dT
= z +

∞∑
k=2

Zk(z, w) = Z (z, w),

dw

dT
= −w −

∞∑
k=2

Wk(z, w) = −W (z, w), (23)
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where z, w, and T are complex variables, and

Zk(z, w) =
∑

α+β=k

aαβ zαwβ,

Wk =
∑

α+β=k

bαβwαzβ.
(24)

Systems (21) and (23) are said to be concomitant.

If system (21) is a real planar differential system,

then the coefficients of system (23) must satisfy the

following conjugate conditions:

aαβ = bαβ, α ≥ 0, β ≥ 0, α + β ≥ 2. (25)

By the following transformations:

z = reiθ , w = re−iθ , T = i t, (26)

system (23) can be transformed into

dr

dt
= ir

2

∞∑
m=1

∑
α+β=m+2

[
aα(β−1) − bβ(α−1)

]
ei(α−β)θrm,

dθ

dt
= 1 + 1

2

∞∑
m=1

∑
α+β=m+2

[
aα(β−1)

+ bβ(α−1)

]
ei(α−β)θrm . (27)

For a complex constant h, |h| � 1, we may write the

solution of (27) satisfying the initial condition r |θ=0 =
h as

r = r̃ (θ, h) = h +
∞∑

k=2

vk(θ )hk . (28)

Evidently, if system (21) is a real system, then

v2k+1(2π ) (k = 1, 2, . . .) is the kth-order focal (or fo-

cus) value of the origin.

For system (23), we can uniquely derive the follow-

ing formal series:

ϕ(z, w) = z +
∞∑

k+ j=2

ck j z
kw j ,

ψ(z, w) = w +
∞∑

k+ j=2

dk, jw
k z j ,

(29)

such that

dϕ

dT
= ϕ +

∞∑
j=1

p jϕ
j+1ψ j ,

dψ

dT
= −ψ −

∞∑
j=1

q jψ
j+1ϕ j . (30)

Let μ0 = 0, and μk = pk − qk, k = 1, 2, . . ., where

μk is called the kth-order singular point quantity of

the origin of system (23) [12]. Based on the singular

quantities, we can define the following concepts:

If μ0 = μ1 = · · · = μk−1 = 0 and μk 
= 0, then the

origin of system (23) is called the kth-order weak
critical singular point. In other words, k is the

multiplicity of the origin of system (23).

If μk = 0 for k = 1, 2, . . . , then the origin of sys-

tem (23) is called an extended center (complex
center).

If system (21) is a real autonomous differential sys-

tem with the concomitant system (23), then for

the origin, the kth-order focus quantity v2k+1 of

system (21) and the kth-order quantity of the sin-

gular point of system (23) have the relation given

in the following theorem [11, 13].

Theorem 3. Given system (21) (δ = 0) or (23), for any
positive integer m, the following assertion holds:

v2k+1(2π ) = iπ

(
μk +

k−1∑
j=1

ξ
( j)
k μ j

)
,

k = 1, 2, . . . , (31)

where ξ
( j)
m ( j = 1, 2, . . . , k − 1) are polynomial func-

tions of coefficients of system (23).

The following recursive formulas are used for com-

puting the singular point quantities of system (23)

[12]: c11 = 1, c20 = c02 = ckk = 0, k = 2, 3, . . . , and

∀(α, β), α 
= β, and m ≥ 1:

Cαβ = 1

β − α

α+β+2∑
k+ j=3

[(α − k + 1)ak, j−1

− (β − j + 1)b j,k−1]Cα−k+1,β− j+1, (32)
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and

μm =
2m+4∑

k+ j=3

[(m − k + 2)ak, j−1

− (m − j + 2)b j,k−1]Cm−k+2,m− j+2, (33)

where akj = bkj = Ckj = 0 for k < 0 or j < 0.

It is clearly seen from Equation (31) that

μ0 = μ1 = μ2 = · · · = μk−1 = 0

⇐⇒ v1 = v3 = v5 = · · · = v2k−1 = 0.

(Note that here μ0 = v1 = δ is the linear focus value.)

Therefore, when determining the conditions such that

v1 = v3 = v5 = · · · = v2k−1 = 0, one can instead use

the equations μ0 = μ1 = μ2 = · · · = μk−1 = 0. If the

μk’s are simpler than the v2k+1’s, then this method is

better than the method of directly computing v2k+1.

However, in general, these μk are not necessarily sim-

pler than v2k+1, as will be seen in the next section.

It should be pointed out that since the normal form

is not unique, the focus values obtained by using differ-

ent methods are not necessarily the same. However, the

first non-zero focus value must be identical (neglecting

a constant multiplier). This implies that for different fo-

cus values obtained by using different approaches, solu-

tions to the equations v1 = v3 = v5 = · · · = v2k−1 = 0

(or μ0 = μ1 = μ3 = · · · = μk−1 = 0) must be identi-

cal.

For the three methods described above, symbolic

programs have been developed using Maple, which will

be used in the following two sections.

3 Application to practical problems

3.1 Brusselator model

The well-known Brusselator model is used here to ver-

ify the results obtained in the previous section. The

model is described by [26]

dw1

dt
= A − (1 + B)w1 + w2

1w2,

dw2

dt
= Bw1 − w2

1w2,

(34)

where A, B > 0 are parameters. The system has a

unique equilibrium point:

w1e = A, w2e = B

A
. (35)

Evaluating the Jacobian of the system at the equilib-

rium point shows that an Hopf bifurcation occurs at the

critical point B = 1 + A2. Let

B = 1 + A2 + μ, (36)

where μ is a perturbation parameter. Then, the Jacobian

has eigenvalues λ = ±Ai . Suppose A = 1, and then in-

troduce the transformation w1 = w1e + x1 and w2 =
w2e − x1 + x2 into (34) to obtain the following new

system:

dx1

dt
= x2 + μx1 + μx2

1 + 2x1x2 − x3
1 + x2

1 x2,

dx2

dt
= −x1. (37)

Now, at the critical point defined by μ = 0, apply the

three methods described in the previous section to com-

pute the first-order focus value. Maple programs are

employed to obtain the following results:

The Poincaré method: b13 = − 3
8
.

The perturbation method: v3 = − 3
8
.

The singular point value method: μ1 = 3
4
i .

It is seen that b13 = v3 = i
2
μ1. Ignoring the constant

factor i
2
, the three methods give the identical result for

the first-order focus value: − 3
8
. This shows that the

limit cycles bifurcating from the critical point μ = 0

in the vicinity of the equilibrium point (w1c, w2c) is

supercritical, i.e., the bifurcating limit cycles are stable

since the first-order focus value is negative.

Further, computing the second-order focus values

gives

The Poincaré method: b15 = − 1
96

.

The perturbation method: v5 = − 1
96

.

The singular point value method: μ2 = − 67
48

i .

This indicates that the Poincaré method and the pertur-

bation method still give the same second-order focus

value, but the singular point method yields a differ-

ent μ2 (ignoring the difference factor i
2
). This is not
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Fig. 1 Simulated trajectories of the Brusselator model (34) with A = 1.0 and initial point (w1, w2) = (2, −1). (a) Convergent to the
stable equilibrium point w+ when B = 1.95. (b) Convergent to a stable limit cycle when B = 2.05

surprising since here μ1 
= 0 and the second-order fo-

cus value is a combination of μ1 and μ2.

Further computation shows that

The Poincaré method: b17 = − 2695
36864

.

The perturbation method: v7 = − 4543
36864

.

The singular point value method: μ3 = 6239
2304

i .

For the third-order focus value, even the Poincaré

method and the perturbation method give different re-

sults, as expected.

Numerical simulation results based on the original

system (34) are shown in Fig. 1, which clearly indicates

that when A = 1.0 and B = 1.95, the trajectory con-

verges to the stable equilibrium point w1c = 1, w2c =
1.95 (see Fig. 1(a)); while when A = 1.0, B = 2.05,

the equilibrium point becomes unstable and a stable

limit cycle bifurcates from the equilibrium point (see

Fig. 1(b)).

3.2 Induction machine model

A model of induction machine is used to demonstrate

the application of the theorems obtained in the previous

section. The model is based on the one discussed in [27]

and the same notations are adopted here. Since in this

paper we are mainly interested in the application of

focus value computation, we will not give a detailed

derivation of the model.

Induction machine (or asynchronous machine) is

widely used in industrial applications. The behavior

of induction machine has been studied for years, but

the main attention has been focused on steady-state so-

lutions due to the complexity of the model (even with

simplifying assumptions). In order to study the dynam-

ical behavior of the model such as instability and bi-

furcations, it needs to determine the conditions of the

bifurcation (critical) points.

The model is described by a system of seven ordinary

differential equations, given as follows:

dφqs

dt
= ωb

{
uq − φds + rs

X1s

[
Xaq

(
φqs

X1s
+ φ′

qr

X ′
1r

)
− φqs

]}
,

dφds

dt
= ωb

{
ud + φqs + rs

X1s

[
Xaq

(
φds

X1s
+ φ′

dr

X ′
1r

)
− φds

]}
,

dφ0s

dt
= ωb

{
rs

X1s
(−φ0s )

}
,

dφ′
qr

dt
= ωb

{
−(1 − ωr )φ′

dr + r ′
r

X ′
1r

[
Xaq

(
φqs

X1s
+ φ′

qr

X ′
1r

)
− φ′

qr

]}
,

dφ′
dr

dt
= ωb

{
(1 − ωr )φ′

qr + r ′
r

X ′
1r

[
Xaq

(
φds

X1s
+ φ′

dr

X ′
1r

)
− φ′

dr

]}
,

dφ0r

dt
= ωb

{
r ′

r

X ′
1r

(−φ′
0r )

}
,

dω′
r

dt
= 1

2H

{
Xad

X1s X ′
1r

(φqsφ
′
dr − φdsφ

′
qr ) − TL

}
, (38)

where, except the state variables, all the variables are

system parameters. Letting

w1 = φqs, w2 = φds, w3 = φ0s, w4 = φ′
qr ,

w5 = φ′
dr , w6 = φ′

0r , w7 = ωr ,

Springer



Nonlinear Dyn (2008) 51:409–427 417

and substituting proper parameter values to Equa-

tion (38) yields a model of a 3hp induction machine

as dw
dt = f (w, V ); namely,

dw1

dt
= − 3

10
w1 − w2 + 3

10
w4 + V,

dw2

dt
= w1 − 3

10
w2 + 3

10
w5,

dw3

dt
= −3

5
w3,

dw4

dt
= 1

2
w1 − 1

2
w4 − w5 + w5w7,

dw5

dt
= 1

2
w2 + w4 − 1

2
w5 − w4w7,

dw6

dt
= −w6,

dw7

dt
= 7

120π3
(14w1w5 − 14w2w4 − 1), (39)

where V > 0 is a bifurcation parameter, representing

the input voltage of the motor.

Setting dwi
dt = 0, i = 1, 2, . . . , 7, results in two

equilibrium solutions (fixed points):

w±
1 = −3(−350V 2 + 15 ± 10S)

7630V
,

w±
2 = 7315V 2 − 150 ± 9S

7360V
,

w±
3 = 0,

w±
4 = − 1

14V
,

w±
5 = 35V 2 ± S

70V
,

w±
6 = 0,

w±
7 = −350V 2 + 124 ± 10S

109
, (40)

where

S =
√

1225V 4 − 105V 2 − 25,

indicating that the equilibrium solutions exist when

V 2 ≥ 3 + √
109

70
.

The Jacobian of Equation (39) is given by

J (w) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 3
10 −1 0 3

10 0 0 0

1 − 3
10 0 0 3

10 0 0

0 0 − 3
5 0 0 0 0

1
2 0 0 − 1

2 −1 + w7 0 w5

0 1
2 0 1 − w7 − 1

2 0 −w4

0 0 0 0 0 −1 0

49w5

60π3 − 49w4

60π3 0 − 49w2

60π3
49w1

60π3 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(41)

The conditions for various singularities of the sys-

tem have been obtained in [28], but the stability of

the bifurcating limit cycles was not discussed. Here,

we consider the stability of the limit cycles gener-

ated from an Hopf bifurcation. For Hopf bifurcation,

the Jacobian of (41) has one pair of purely imagi-

nary eigenvalues, which requires [28] that V ≥ V0 =
((3 + √

109)/70)1/2 ≈ 0.4381830425. Since w− is al-

ways unstable when V > V0, we consider w+. It can

be shown that w+ is stable when 0.4381830425 <

V < 6.2395593195 or V > 7.75369242394; unsta-

ble when 6.2395593195 < V < 7.35369242394. The

point V0 = 0.4381830425 is a static critical point. Fur-

thermore, we employ the criterion given in [28] to show

that

V 1
h = 6.2395593195 and V 2

h = 7.35369242394 (42)

are two solutions at which Hopf bifurcations occur.

When V 1
h = 6.2395593195, the eigenvalues of J (x) are

± 0.7905733366i, −1, −0.6, −0.5630004665,

− 0.5184997667 ± 1.0893171380i,

at which the equilibrium solution w+ becomes (see

Equation (40))

w+
1 = 0.0000063079, w+

2 = 6.2361231187,

w+
4 = −0.0114476949, w+

5 = 6.2361020924,

w+
7 = 0.9990816376, w+

3 = w+
6 = 0. (43)
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To find the focus values associated with the Hopf

critical point V 1
h = 6.2395593195, introduce the fol-

lowing transformation:

w = w+ + T x, (44)

where T is given by

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1086246665 0.4679587889 0 0 −0.3435100286 −0.0600500516 0.4185449984

0.5058443308 −0.0007346807 0 0 −0.1624709259 0.3390908038 −0.0104422664

0 0 0 1 0 0 0

0.5615866321 0.7517624035 0 0 −0.2404254272 −0.3457217123 −0.5576926708

0.1456981721 −0.2275738425 0 0 1.2874665260 −0.0088875674 −0.1562864724

0 0 1 0 0 0 0

−0.0589644813 0.0939157539 0 0 0.0301605532 0.1032562984 −0.0923171911

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

under which the transformed system is given in the

canonical form

dx
dt

= J x + f 2(x), (45)

where J is

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.7905733365 0 0 0 0 0

−0.7905733365 0 0 0 0 0 0

0 0 −1 0 0 0 0

0 0 0 −0.6 0 0 0

0 0 0 0 −0.5630004665 0 0

0 0 0 0 0 −0.5184997667 1.0893171380

0 0 0 0 0 −1.0893171400 −0.5184997874

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then, applying the Maple program [9] results in the

following focus values:

v3 = −0.1775337919 × 10−2,

v5 = −0.9320629120 × 10−5,

v7 = −0.1536975785 × 10−6, (46)

which implies that the limit cycles bifurcating from the

critical point V 1
h in the neighborhood of w+ are stable.

Simulation results for this example using sys-

tem (39) with V = 6.0 and V = 6.5 are de-

picted in Fig. 2. The initial point is chosen as

Fig. 2 Simulated trajectories of the induction machine model
(39) projected on the w1–w2 plane with initial point w0 =
(0.5, 5.5, 2.0, −3.0, 1.0, 4.0, −5.0)T. (a) Convergent to the

stable equilibrium point w+ = (0.0000070946, 5.9964264430,
0, −0.0119047619, 5.9964027942, 0, 0.9990067495)T when
V = 6.0. (b) Convergent to a stable limit cycle when V = 6.5
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w0 = (0.5, 5.5, 2.0, −3.0, 1.0, 4.0, −5.0)T. It can be

seen from this figure, as expected, that when V = 6.0 <

V 1
h , the trajectory converges to the stable equilibrium

point

w+ = (0.0000070946, 5.9964264430, 0,

− 0.0119047619, 5.9964027942,

0, 0.9990067495)T,

as shown in Fig. 2(a). When V = 6.5 > V 1
h , the equi-

librium point becomes unstable, and a supercritical

Hopf bifurcation occurs, giving rise to a stable limit

cycle (see Fig. 2(b)).

It should be pointed out that the perturbation method

can be applied to the seven-dimensional system (45)

without employing the center manifold theory (more

precisely, the center manifold theory is incorporated in

the unified perturbation approach), while the Poincaré

method and the singular point value method cannot be

directly applied to system (45).

Note that in the above two examples, except for

the bifurcation parameter, all the other parameters are

fixed. In the next section, we consider systems with

free parameters and find the maximal number of limit

cycles under appropriate choices of the parameters.

4 Application to Hilbert’s 16th problem

The well-known 23 mathematical problems proposed

by Hilbert in 1902 [21] has significant impacts on the

twentieth-century mathematics. Out of 23 problems,

2 remain unsolved; one of them is the 16th problem.

This problem includes two parts: the first part studies

the relative positions of separate branches of algebraic

curves, while the second part considers the upper bound

of the number of limit cycles and their relative locations

in polynomial vector fields. Generally, the second part

of this problem is what is usually meant when talk-

ing about Hilbert’s 16th problem. The recent develop-

ments on Hilbert’s 16th problem may be found in the

survey articles [29, 30]. A simplified version (Liénard

equation) of the second part of Hilbert’s 16th prob-

lem has recently been chosen by Smale [31] as one

of the 18 challenging mathematical problems for the

twenty-first century. Although the problem is still far

away from being completely solved, related research

has made great contributions to the development of

modern mathematics.

Roughly speaking, the second part of Hilbert’s 16th

problem is to consider the planar vector fields, de-

scribed by the following polynomial differential equa-

tions:

dx

dt
= Pn(x, y),

dy

dt
= Qn(x, y), (47)

where Pn(x, y) and Qn(x, y) represent the nth-degree

polynomials of x and y. The problem is to find the

upper bound, defined by the so-called Hilbert number

H (n), on the number of limit cycles that the system

can have. In general, this is a very difficult problem,

particularly for determining global (large) limit cycles.

Although it has not been possible to obtain a uniform

upper bound for H (n), tremendous efforts have been

made in finding a large number of limit cycles and

raising the lower bound of the Hilbert number H (n)

for general planar polynomial systems or for individual

degree of systems, hoping to get close to the estimation

of the upper bound of H (n).

If the problem is restricted to the neighborhoods

of isolated fixed points, then the question is reduced

to studying degenerate Hopf bifurcations, which gives

rise to finding focus values. Alternatively, this is equiva-

lent to computing the normal form of differential equa-

tions associated with an Hopf or a degenerate Hopf

bifurcation. Suppose that the normal form associated

with the Hopf singularity is given in polar coordinates

(obtained using, say, the method given in [9]) described

by Equation (19). The basic idea of finding k small limit

cycles around the origin is as follows: first, find the

conditions such that v1 = v3 = · · · = v2k−1 = 0, but

v2k+1 
= 0, and then, perform appropriate small pertur-

bations to prove the existence of k limit cycles. In 1952,

Bautin [32] proved that a quadratic planar polynomial

vector field can have at most three small limit cycles.

For cubic systems, it has recently been proved that 12

small limit cycles can exist [33, 34, 35].

In the following, we consider two systems and

show that the three methods reviewed in Section 2 for

computing focus values have the same computational

complexity. It should be pointed out that here the “com-

putational complexity” is not the standard definition of

computational complexity, since we do not consider

computing issues such as CPU time, memory, etc. By

“the same computational complexity,” we merely mean

how complex the results (or expressions for the focus

values from symbolic computation) are obtained using
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a method. Since in this paper we are more concerned

with the expressions of the focus values, we use the

length of the computer output (i.e., the number of the

lines in output) to measure the “complexity” of the

method itself.

The first example is a cubic-order system, which

can have 12 limit cycles, and the second example is a

symmetric Liénard system, which can have more limit

cycles than one may expect.

4.1 A cubic-order system with Z2 symmetry

To obtain a cubic-order system with Z2 symmetry, ap-

ply the standard complex formulas [29]:

dz

dt
= F2(z, z),

dz

dt
= F̄2(z, z), (48)

where

F2(z, z) = (A0 + A1|z|2)z + (A2 + A3|z|2)z

+ A4z3 + A5z3. (49)

Let z = w1 + iw2, z = w1 − iw2, A j = a j + ib j ,

where w1, w2 and a j , b j are all real. Then, system (48)

is transformed to the following real form:

dw1

dt
= (a0 + a2)w1 − (b0 − b2)w2 + (a1 + a3 + a4

+ a5)w3
1 − (b1 − b3 + 3b4 − 3b5)w2

1w2

+ (a1 + a3 − 3a4 − 3a5)w1w
2
2

− (b1 − b3 − b4 + b5)w3
2,

dw2

dt
= (b0 + b2)w1 + (a0 − a2)w2 + (b1 + b3

+ b4 + b5)w3
1 + (a1 − a3 + 3a4 − 3a5)w2

1w2

+ (b1 + b3 − 3b4 − 3b5)w1w
2
2

+ (a1 − a3 − a4 + a5)w3
2. (50)

The two eigenvalues of the Jacobian of Equation (50)

evaluated at the origin (w1, w2) = (0, 0) are a0 ±√
a2

2 + b2
2 − b2

0, indicating that the origin (0, 0) is a

saddle point or a node when a2
2 + b2

2 − b2
0 ≥ 0; a focus

point or a center if a2
2 + b2

2 − b2
0 < 0. When a2

2 + b2
2 −

b2
0 = 0, the origin is either a node or a double-zero sin-

gular point. By a parametric transformation, rename

the coefficients of the resulting system to yield the fol-

lowing system:

dx

dt
= ax + by + a30x3 + a21x2 y + a12xy2 + a03 y3,

dy

dt
= ±bx + ay + b30x3+b21x2 y + b12xy2 + b03 y3,

(51)

where b > 0.

For a vector field with Z2-symmetry, naturally the

best situation is to have two symmetric focus points

about the origin. Thus, if N small limit cycles are found

in the neighborhood of one focus point, the whole sys-

tem would have 2N limit cycles. Without loss of gen-

erality, the two symmetric focus points are assumed

to be located on the y-axis (or the x-axis), and fur-

ther assumed to be precisely located at (0, ±1) with a

proper scaling, leading to the conditions of a03 = −b
and b03 = −a. Another condition, a12 = a, comes from

making the two focus points be of Hopf type. Further-

more, by applying proper parameter scaling and time

scaling, one obtains the following new system [35]:

du

dτ
= v + 2ā21u2 + 4auv − 3

2
v2 + 4bā30u3

− 2ā21u2v − 2auv2 + 1

2
v3,

dv

dτ
= −u − 4b̄21u2 + 2(2a2 ∓ 2b2 + 1)uv − 8b̄30u3

+ 4b̄21u2v − (2a2 ∓ b2 + 1)uv2, (52)

where the coefficients ā21, b̄21, ā30, and b̄30 are

expressed in terms of the original parameters

a, b, a21, b21, a30, b30. Thus, based on Equation (52),

one can compute the focus values and consider the ex-

istence of small limit cycles.

Note that system (52) contains 6 free parameters,

which suggests that we may set 6 focus values zero

thereby obtaining 7 small limit cycles for system (52),

so that the original system may have 14 small limit

cycles. However, it has been shown in [35] that the ex-

istence of 14 limit cycles is not possible. The maximal

number of small limit cycles that a cubic-order system

with Z2 symmetry can have is 12. Since in this paper we

are interested in the methods of computing focus val-

ues, we will not further discuss this interesting issue.

(For details, readers are referred to [34, 35].)

We now apply the three methods reviewed in the

previous section to compute the focus values of system

(52) and obtain the following results.
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The Poincare method:
b13:=1/2*a-2*a^2*b21b-2*a21b*b21b-a21b*a+2*b^2*b21b+3/2*b*a30b-1/2*b21b:
b15:=-11/36*a-7/3*a*a21b*b^2-25/9*b21b*a21b*a^2-1/6*a21b*b*a30b+92/9*b21b*b^2*a^2

-11/9*b21b*a21b*b^2-8/9*b21b*a21b^2-14/3*b21b*a^4-50/9*b21b*b^4+11/9*a*a21b^2
+2/3*b^3*a30b+11/36*b21b+1/9*a^3*a21b-5/3*a*b30b+2*b21b^2*a+23/3*b21b*b30b
-2/9*a*b^4+4/9*a^3*b^2-2/9*a^5-40/9*b21b^3+152/9*a^3*b21b^2-2/3*b^5*a30b
+40/9*b^6*b21b-160/9*a^2*b21b^3-16/3*a^3*b30b+2/9*a21b^2*a^3-1/9*a^3
-6*b21b*a*b*a30b-8*a21b*b21b*b^2*a^2-1/3*a21b*a^2*b*a30b-8/9*a21b*a^3*b^2
+4*a21b*b21b*a^4+4*a21b*b21b*b^4-2/9*a21b^2*b^2*a-4*a21b^2*b^2*b21b
+4*a21b^2*a^2*b21b-2/3*a^4*b*a30b-152/9*b^2*b21b^2*a+4/3*a^2*b^3*a30b
+40/3*b21b^2*b*a30b+10/3*a21b^2*b*a30b+8*a21b*b21b^2*a+4/9*a21b*a*b^4
+52/3*a^2*b21b*b30b-40/3*a^2*b21b*b^4-52/3*b^2*b21b*b30b+16/3*b^2*a*b30b
+40/3*b^2*b21b*a^4-3*b*a30b*b30b+1/3*a21b*b^3*a30b+52/3*a21b*b21b*b30b
-10/3*a21b*a*b30b+23/18*a21b*b21b-11/12*b*a30b+11/9*b^2*a+5/9*b^2*b21b+5/9*a21b*a
+7/9*a^2*b21b-40/9*a21b^3*b21b-20/9*a21b^3*a+4/9*a21b*a^5-40/9*a^6*b21b
+160/9*b^2*b21b^3-160/9*a21b*b21b^3:

b17 := ... (87 lines)
b19 := ... (355 lines)
v111:= ... (1180 lines)

The perturbation method:
v3 := -2*a21b*b21b-a21b*a+1/2*a-1/2*b21b+3/2*b*a30b+2*b21b*b^2-2*b21b*a^2:
v5 := 4*a21b^2*b21b*a^2-7/3*a21b*a*b^2-8/9*a21b*b^2*a^3-11/9*a21b*b21b*b^2

-2/9*a21b^2*a*b^2-11/36*a+16/3*a*b^2*b30b+4/3*b^3*a30b*a^2-25/9*a21b*b21b*a^2
-4*a21b^2*b21b*b^2-1/6*a21b*b*a30b+40/3*b*a30b*b21b^2-152/9*a*b21b^2*b^2
-10/3*a21b*a*b30b-40/3*b21b*b^4*a^2+4/9*a21b*a*b^4-2/3*b*a30b*a^4
+92/9*b21b*b^2*a^2-3*b*a30b*b30b-11/12*b*a30b+11/36*b21b+4*a21b*b21b*b^4
+4*a21b*b21b*a^4-52/3*b21b*b^2*b30b+52/3*a21b*b21b*b30b+52/3*b21b*a^2*b30b
+1/3*a21b*b^3*a30b+40/3*b21b*b^2*a^4+160/9*b21b^3*b^2-16/3*a^3*b30b+23/3*b21b*b30b
+11/9*a*b^2+4/9*b^2*a^3+5/9*a21b*a-40/9*a21b^3*b21b-20/9*a21b^3*a+40/9*b21b*b^6
-40/9*b21b*a^6+152/9*b21b^2*a^3+1/9*a21b*a^3-5/3*a*b30b+2*a*b21b^2-8/9*a21b^2*b21b
+11/9*a21b^2*a+7/9*b21b*a^2+5/9*b21b*b^2-2/3*b^5*a30b-160/9*a21b*b21b^3
-160/9*b21b^3*a^2+2/9*a21b^2*a^3+2/3*b^3*a30b+4/9*a21b*a^5-2/9*a*b^4-14/3*b21b*a^4
-50/9*b21b*b^4+23/18*a21b*b21b-1/3*a21b*b*a30b*a^2-8*a21b*b21b*b^2*a^2
-6*a*b*a30b*b21b+10/3*a21b^2*b*a30b+8*a21b*a*b21b^2-40/9*b21b^3-1/9*a^3-2/9*a^5:

v7 := ... (83 lines)
v9 := ... (344 lines)
v11:= ... (1173 lines)

The singular point value method:
mu1 := I*(-3*b*a30b-a+b21b+4*b21b*a^2-4*b21b*b^2+4*a21b*b21b+2*a21b*a):
mu2 := -1/48*I*(736*b21b*b30b-17*a+1664*a21b*b21b*b30b+264*a21b*b*a30b-960*b21b^2*b*a30b

-2544*a21b^2*b*a30b-352*a^3*a21b+64*b^2*a+1152*a^4*b21b-96*b^3*a30b-384*b^4*b21b
-160*a*b30b-320*a*a21b*b30b+1664*a^2*b21b*b30b-1664*b^2*b21b*b30b-928*a^2*b*a30b
-768*b^2*b21b*a^2+2976*b^3*a21b*a30b+864*b^2*a*a21b-384*b^4*a+768*b^2*a^3
-1152*b^5*a30b+17*b21b-51*b*a30b-1152*a^4*b*a30b-1664*b21b^2*a+496*a21b^2*b21b
-1024*a21b^2*a-20*a21b*b21b+122*a*a21b+1444*a^2*b21b+156*b^2*b21b+3392*a21b^3*b21b
+1280*a^2*b21b^3+1280*b21b^3*a21b-1024*b^6*b21b+1024*a^6*b21b+768*a^5*a21b
-2816*a^3*b21b^2+1984*a^3*a21b^2-512*a^3*b30b+1696*a*a21b^3-1280*b^2*b21b^3
+2304*b^3*a30b*a^2-320*a^3-384*a^5+5760*a^4*a21b*b21b+512*a*b30b*b^2
+5760*b^4*a21b*b21b+320*b21b^3+768*b^4*a*a21b-1536*b^2*a^3*a21b-3072*b^2*a^4*b21b
+3072*b^4*a^2*b21b-512*b^2*a21b*b21b-288*b*a30b*b30b-11520*b^2*a^2*a21b*b21b
+2752*a*b21b*b*a30b-2976*a^2*a21b*b*a30b-640*a^2*a21b*b21b-1984*b^2*a*a21b^2
-8128*b^2*a21b^2*b21b-2176*a*b21b^2*a21b+8128*a^2*b21b*a21b^2+2816*b^2*a*b21b^2):

mu3:= ... (85 lines)
mu4:= ... (355 lines)
mu5:= ... (1156 lines)
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The numbers given in the brackets denote the numbers

of lines in the computer output files.

It is easy to see that

b13 = v3 = i

2
μ1,

which shows that the three different methods give the

same first-order focus value (at most by a difference

of a constant fact), as expected. For the second-order

focus values, it can be shown that b15 = v5, but μ2 is not

equal to v5 by a difference of a constant fact. Further,

for the third-order focus values, b15 
= v5. However, if

setting b13 = v3 = μ1 = 0, which results in

ā30 = a(2ā21 − 1) + b̄21(4ā21 + 4a2 − 4b2 + 1)

3b
,

then one has

b15 = v5 = i

2
μ2.

Further, if letting b15 = v5 = μ2 = 0 (which yields

b̄30 = b̄30(a, b, ā21, b̄21)), then one obtains

b17 = v7 = i

2
μ3.

This process can be carried out to higher order fo-

cus values, i.e., if b1(2i+1) = v2i+1 = μi = 0, i =
1, 2, . . . , k − 1, then

b1(2k+1) = v2k+1 = i

2
μk .

Remark: The above expressions of the focus values

obtained by using different methods show that their

computational complexity is in the same order (see

the numbers of the computer output lines, given in the

brackets).

4.2 A symmetric Liénard equation

The second example is the Liénard equation [36] de-

scribed by

dx

dt
= y,

dy

dt
= −g(x) − f (x)y, (53)

where g(x) and f (x) are polynomial functions of x .

Here, we investigate a particular class of Liénard equa-

tions with Z2 symmetry, in which g(x) is a third-degree

odd polynomial, while f (x) is an even function of x .

To be more specific, consider the following system:

dx

dt
= y,

dy

dt
= −1

2
b2x(x2 − 1) − y

m∑
i=0

ai x
2i ,

(54)

where b 
= 0 and ai ’s are real coefficients.

Equation (54) has three fixed points: (0, 0) and

(±1, 0). It is easy to use linear analysis to show that

the origin (0, 0) is a saddle point (with eigenvalues
1
2
(−a0 ±

√
a2

0 + 2b2)). In order to have the two fixed

points (±1, 0) being linear centers, the following

condition must be satisfied:

m∑
i=0

ai = 0 or a0 = −
m∑

i=1

ai . (55)

The eigenvalues of the Jacobian of system (54) evalu-

ated at (±1, 0) are ±|b|i . What we want to do is, for a

given positive integer m, to choose appropriate values

of ai ’s such that system (54) has maximal number of

limit cycles in the neighborhood of the two fixed points

(±1, 0). This local analysis is based on the calculation

of focus values or the normal form associated with the

Hopf singularity.

By introducing the following scalings:

ai =⇒ b ai , i = 0, 1, . . . , m,

the transformation

x = ±(1 + u), y = ±bv,

and the time scaling τ = bt , we obtain the following

canonical form:

du

dτ
= v,

dv

dτ
= −u − 3

2
u2 − 1

2
u3 − v

m∑
i=0

ai (1 + u)2i . (56)

Now, consider the case of m = 5. We apply the three

methods to compute the focus values (normal forms)

of system (56) and obtain the following results.
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The Poincare method:
b13 := -3/4*a3-2*a4+1/4*a1-15/4*a5:
b15 := 1/8*a1+1/4*a2+7/8*a3+3/2*a4+5/8*a5-160/9*a4^3-15/4*a3^3-1000/9*a4*a5^2

-25/36*a1^2*a5+5/9*a1^2*a2+5/12*a1^2*a3-20/3*a1*a4^2-5/4*a1*a3^2+5/9*a1*a2^2
-625/36*a1*a5^2-5/3*a2^2*a3-40/9*a2^2*a4-25/3*a2^2*a5-160/9*a2*a4^2-5*a2*a3^2
-125/3*a2*a5^2-20*a3^2*a4-125/4*a3^2*a5-100/3*a3*a4^2-875/12*a3*a5^2-20/9*a1*a2*a4
-50/9*a1*a2*a5-20/3*a1*a3*a4-25/2*a1*a3*a5-200/9*a1*a4*a5-20*a2*a3*a4
-100/3*a2*a3*a5-500/9*a2*a4*a5-100*a3*a4*a5-625/12*a5^3+5/36*a1^3-700/9*a4^2*a5:

b17 := ... (40 lines)
b19 := ... (156 lines)
b111:= ... (507 lines)

The perturbation method:
v3 := -3/4*a3-2*a4-15/4*a5+1/4*a1:
v5 := -5*a3^2*a2+5/12*a3*a1^2-875/12*a3*a5^2-25/3*a5*a2^2-25/36*a5*a1^2+5/9*a2*a1^2

-5/3*a3*a2^2-40/9*a4*a2^2-20*a4*a3^2+5/9*a2^2*a1-625/36*a5^2*a1-125/3*a5^2*a2
-160/9*a4^2*a2-100/3*a4^2*a3-700/9*a4^2*a5-125/4*a3^2*a5-5/4*a3^2*a1
-1000/9*a4*a5^2-20/3*a4^2*a1-160/9*a4^3-500/9*a4*a5*a2-15/4*a3^3-625/12*a5^3
-200/9*a4*a5*a1-50/9*a5*a2*a1-25/2*a3*a5*a1-100/3*a3*a5*a2+5/36*a1^3-20/9*a4*a2*a1
-20*a4*a3*a2-20/3*a4*a3*a1-100*a4*a3*a5+1/8*a1+1/4*a2+7/8*a3+3/2*a4+5/8*a5:

v7 := ... (40 lines)
v9 := ... (156 lines)
v11:= ... (501 lines)

The singular point value method:
mu1 := Complex(-1/2)*(a1-3*a3-8*a4-15*a5):
mu2 := Complex(1/96)*(81*a1-48*a2-1128*a4-483*a3-1695*a5-768*a2^2*a3-2048*a2^2*a4

-3840*a2^2*a5-8000*a5^2*a1-33600*a5^2*a3-51200*a5^2*a4-15360*a4^2*a3
-35840*a4^2*a5-8192*a4^2*a2+192*a1^2*a3-320*a1^2*a5-576*a3^2*a1-9216*a3^2*a4
-14400*a3^2*a5+256*a2^2*a1-3072*a4^2*a1-9216*a3*a2*a4-46080*a3*a4*a5
-25600*a4*a2*a5-2560*a1*a2*a5-19200*a5^2*a2+64*a1^3-1728*a3^3-8192*a4^3
-24000*a5^3-10240*a1*a4*a5-3072*a1*a4*a3-5760*a1*a3*a5-1024*a1*a2*a4
-15360*a3*a2*a5+256*a1^2*a2-2304*a3^2*a2):

mu3:= ... (40 lines)
mu4:= ... (162 lines)
mu5:= ... (542 lines)

Similar to the first example, the first-order focus values

are

b13 = v3 = i

2
μ1,

which again indicates that the three different meth-

ods give the same first-order focus value (at most

by a difference of a constant fact). For the second-

order focus values, we have b15 = v5, while μ2 is not

equal to v5 by a difference of a constant fact. Simi-

larly, for the third-order focus values, b17 
= v7. Setting

b13 = v3 = μ1 = 0 yields

a1 = 3a3 + 8a4 + 15a5,

and

b15 = v5 = i

2
μ2.

Further letting b15 = v5 = μ2 = 0 results in

a2 = −5a3 − 10a4 − 10a5,

and

b17 = v7 = i

2
μ3.

Continuing this process yields that

b1(2i+1) = v2i+1 = μi = 0 (i = 1, 2, . . . , k − 1)

=⇒ b1(2k+1) = v2k+1 = i

2
μk .

This example again shows that the three different meth-

ods have the same computational complexity.
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To end this section, we present a numerical example

with 10 small limit cycles. We have the following focus

values:

v1 = −(a0 + a1 + a2 + a3 + a4 + a5),

v3 = 1

4
(a1 − 3a3 − 8a4 − 15a5),

when v1 = 0,

v5 = 1

4
(a2 + 5a3 + 10a4 + 10a5),

when v1 = v3 = 0,

v7 = − 5

16
(a3 − 14a5),

when v1 = v3 = v5 = 0,

v9 = − 7

16
(a4 + 9a5),

when v1 = v3 = v5 = v7 = 0,

v11 = 21

32
a5,

when v1 = v3 = v5 = v7 = v9 = 0.

Let a5 = 0.002, and select the other parameters as

a5 = 0.002,

a4 = −9a5 + ε1,

a3 = 14a5 − ε2,

a2 = −5a3 − 10a4 − 10a5 − ε3,

a1 = 3a3 + 8a4 + 15a5 + ε4,

a0 = −a1 − a2 − a3 − a4 − a5 + ε5,

where the perturbations are chosen as

ε1 = 0.1 × 10−4, ε2 = 0.1 × 10−7,

ε3 = 0.1 × 10−11, ε4 = 0.1 × 10−16,

ε5 = 0.1 × 10−23.

Then, we have the perturbed focus values

v11 = 0.130921886214805168841168519071 × 10−2,

v9 = −0.437296689849981673958052390216 × 10−5,

v7 = 0.31248592319463145473698632407 × 10−8,

v5 = −0.24999874858487645346314 × 10−12,

v3 = 0.25 × 10−17,

v1 = −0.1 × 10−23,

and the perturbed parameters

a0 = −0.001990009999000009999999,

a1 = −0.02992002999999999,

a2 = 0.019900049999,

a3 = 0.02799999,

a4 = −0.01799,

a5 = 0.002,

under which the approximate amplitudes of the five

small limit cycles are obtained as

r1 = 0.000646, r2 = 0.003344, r3 = 0.008842,

r4 = 0.029766, r5 = 0.048554.

The simulated phase portrait for this example is shown

in Fig. 3, where 3 large limit cycles, which enclose all

the 10 small limit cycles, are also obtained. It should

be pointed out that the large limit cycles can be numer-

ically simulated, while the small limit cycles cannot be

obtained by numerical simulation. The existence of the

small limit cycles must be proved theoretically.

-4.5

-3

-1.5

 0

 1.5

 3

 4.5

-3.2 -1.6  0  1.6  3.2

y

x
Fig. 3 Simulated phase portrait of Leénard equation (54)
showing 10 small limit cycles around the fine focus points
(±1, 0) and 3 large limit cycles under the perturbed pa-
rameter values: b = 1, a0 = −0.001990009999000009999999,
a1 = −0.02992002999999999, a2 = 0.019900049999, a3 =
0.02799999, a4 = −0.01799, and a5 = 0.002
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5 Remarks on the minimal singular point value

In this section, we propose the concept of “the minimal

singular point value” based on the definition of sin-

gular point value. This generalization is similar to the

generalization of the normal form theory to the unique

normal form theory, which is also called the minimal

normal theory or the simplest normal form theory (e.g.,

see [37–40].

In order to illustrate the concept, we re-investigate

the second example considered in the previous section.

Recall that the basic idea in computing the singular

point value is to simplify the computation of the focus

values. Let us look at the relation between the singu-

lar point values and the focus point values, given by

Equation (31):

v2k+1(2π ) = iπ

(
μk +

k−1∑
j=1

ξ
( j)
k μ j

)
, k = 1, 2, . . . ,

where ξ
( j)
m ( j = 1, 2, . . . , k − 1) are polynomial func-

tions. The main question here is how to choose the

polynomial functions ξ
( j)
k so that μk becomes the sim-

plest. In other words, when we are trying to find μk , we

should use the previous information of ξ
( j)
k as much as

possible.

Definition 1. The kth-order minimal singular point

value, μ̄k , is the one such that the expression of μk

in Equation (31) becomes the simplest under proper

choices of the polynomial functions ξ
( j)
k , and then

μ̄k = μk .

For the singular point values given for the Liénard

system (see the μ j ’s given in the previous section), let

us check if these singular point values are the simplest.

In other words, we want to see if we can further sim-

plify the expressions of the singular point values. For

simplicity, let μ̄ j = i
2
μ j . Then, Equation (31) becomes

v2k+1 = μ̄k +
k−1∑
j=1

ξ
( j)
k μ̄ j , k = 1, 2, . . . , (57)

Now, consider the focus values v j . It has been shown

that

v3 = μ̄1 = 1

4
(a1 − 3a3 − 8a4 − 15a5). (58)

Then, we obtain

v5 = 1

4
(a2 + 5a3 + 10a4 + 10a5)

+ 1

72
(a1 − 3a3 − 8a4 − 15a5)

× [
9 + 10

(
a2

1 + 4a2
2 + 9a2

3 + 16a2
4 + 25a2

5

)
+ 20a1(2a2 + 3a3 + 4a4 + 5a5) + 40a2(3a3

+ 4a4 + 5a5) + 60a3(4a4 + 5a5) + 400a4a5

]
,

(59)

which indicates that we may choose

μ̄2 = 1

4
(a2 + 5a3 + 10a4 + 10a5), (60)

and

ξ
(1)
1 = 1

18

[
9 + 10

(
a2

1 + 4a2
2 + 9a2

3 + 16a2
4 + 25a2

5

)
+ 20a1(2a2 + 3a3 + 4a4 + 5a5) + 40a2(3a3

+ 4a4 + 5a5) + 60a3(4a4 + 5a5) + 400a4a5

]
.

(61)

Thus, we have a simple expression for v5:

v5 = μ̄2 + ξ
(1)
1 μ̄1. (62)

For v7, after a lengthy manipulation, we similarly

have

v7 = − 5

16
(a3 − 14a5)

+ 1

82944
(a1 − 3a3 − 8a4 − 15a5)

× {(a1 − 3a3 − 8a4 − 15a5)

× [
(a1 − 15a5 − 3a3 − 8a4)

(
7540(a1 − 3a3

− 8a4 − 15a5)(a1 − 19a3 − 40a4 − 15a5)

+ 723840a2
3 + 2895360a3a4 + 24489

+ 2895360a2
4

) + 160(a2 + 5a3 + 10a4 + 10a5)

×(
377(a1 − 3a3 − 8a4 − 15a5)(a1 − 15a3

−32a4 − 15a5) + 377(a2 + 5a3 + 10a4 + 10a5)

× (3a1 + 4a2 − 13a3 − 32a4 − 5a5)
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+ 477 + 18096a2
3 + 72384a2

4 + 72384a3a4

)
− (

55296a3 − 36864a4 − 737280a5

+11581440a4a2
3 + 23162880a2

4a3

+ 15441920a3
4 + 1930240a3

3

)]
+ 16(a2 + 5a3 + 10a4 + 10a5)

× [
(a2 + 5a3 + 10a4 + 10a5)

(
7540(a2 + 5a3

+ 10a4 + 10a5)(a2 − 3a3 − 6a4 + 10a5) + 5643

+ 180960a2
3 + 723840a3a4 + 723840a2

4

)
− (

7452a3 − 3528a4 − 92160a5 + 1930240a3
4

+ 241280a3
3 + 1447680a4a2

3 + 2895360a2
4a3

)]
+ (

16605 + 61767680a3
4a3 − 1080576a4a3

+ 46325760a2
4a2

3 − 5898240a4a5

+ 15441920a4a3
3 − 2949120a3a5 − 1670400a2

4

− 122688a2
3 + 1930240a4

3 + 30883840a4
4

)}
+ 1

576
(a2 + 5a3 + 10a4 + 10a5)

[
328(a2 + 5a3

+ 10a4 + 10a5)(a2 + a3 + 2a4 + 10a5) + 81

+ 1312a2
3 + 5248a3a4 + 5248a2

4

]
≡ μ̄3 + ξ

(1)
2 μ̄1 + ξ

(2)
2 μ̄2, (63)

where μ̄3 = − 5
16

(a3 − 14a5).

Similarly, we can find μ̄4 and μ̄5. In summary, we

have

μ̄1 = 1

4
(a1 − 3a3 − 8a4 − 15a5),

μ̄2 = 1

4
(a2 + 5a3 + 10a4 + 10a5),

μ̄3 = − 5

16
(a3 − 14a5),

μ̄4 = − 7

16
(a4 + 9a5),

μ̄5 = 21

32
a5. (64)

The above singular point values are much simpler than

those obtained by using the singular point method,

given in the previous section. These simple values are

merely very simple linear functions of the coefficients,

and believed to be the minimal or the simplest singular

point values. In fact, note that these simpler singular

point values are exactly the ones obtained in the pre-

vious section for the second example, i.e., μ̄k = v2k+1

when vi (i = 1, 3, . . . , 2k − 1) is set zero. This is cer-

tainly not surprising for this example, since each solu-

tion from vi = 0 is just a simple linear expression.

However, no method has been developed so far for

computing the minimal singular point values for gen-

eral nonlinear dynamical systems. This is an important

research topic for future study of nonlinear dynamical

systems.

6 Conclusions

In this paper, we have considered three typical methods

for computing focus values with a detailed comparison.

Applications of these methods to some practical prob-

lems and Hilbert’s 16th problem have shown that the

different methods have the same complexity, but none

of them gives the simplest (or minimal) singular point

value. Further research is needed to develop an efficient

approach for computing focus values.
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