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Abstract A new approach is presented for establishing

the analytical approximate solutions to general strong

nonlinear conservative single-degree-of-freedom sys-

tems. Introducing two odd nonlinear oscillators from

the original general nonlinear oscillator and utilizing

the analytical approximate solutions to odd nonlinear

oscillators proposed by the authors, we construct the

analytical approximate solutions to the original gen-

eral nonlinear oscillator. These analytical approximate

solutions are valid for small as well as large oscillation

amplitudes. Two examples are presented to illustrate

the great accuracy and simplicity of the new approach.

Keywords General nonlinear oscillator . Large

amplitude . Odd nonlinearity . Newton method .

Harmonic balance (HB) . Analytical approximation

1 Introduction

The harmonic balance (HB) method can be used to

determine analytical approximate solutions to nonlin-

ear oscillatory systems for which the nonlinear terms

are “not small”, i.e., no perturbation parameter needs to

exist [1–3]. However, it is very difficult to construct an-
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alytical approximations of higher accuracy using such

an approach because it requires analytical solutions to

sets of complicated nonlinear algebraic equations.

As such, some authors developed various improved

HB methods, such as: incremental harmonic balance

in [4]; rational representations in [5]; combination of

linearization with respect to incremental displacement

only with the harmonic balance method in [6] and cou-

pling of the Newton method with the harmonic balance

method in [7]. In general, the success of these methods

[3, 5–7] for conservative systems requires that the non-

linear restoring force f (u) is an odd function of u [i.e.

f (−u) = − f (u)], where u represents the displacement

measured from the stable equilibrium position [8, 9]. If

this condition is not satisfied, these various HB meth-

ods will leads to inconsistencies [10]. To overcome this

deficiency, Gottlieb [11] and Wu et al. [12, 13] pre-

sented some methods to solve the nonlinear oscillators

with a general nonlinear restoring force. For more ac-

curate approximation, however, these methods result in

a complex nonlinear algebraic equation(s) in terms of

unknown frequency and analytical solution is difficult

again.

In this paper, we present a new approach to establish

accurate analytical approximate period and periodic so-

lution to general strong nonlinear conservative single-

degree-of-freedom oscillators. Based on the original

general nonlinear oscillator, two new oscillators with

odd nonlinearity are first addressed [13]. Utilizing the

analytical approximate solutions to odd nonlinear os-

cillators developed by the authors [7], we construct new
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analytical approximate solutions to the original general

nonlinear oscillator by piecing the approximate solu-

tions corresponding to, respectively, the two new oscil-

lators introduced. The interesting features of the pro-

posed approach are its simplicity and excellent accu-

racy of both period and corresponding periodic solution

for small as well as large oscillation amplitudes. Two

examples are presented to validate the new approach.

2 Method of solution

Consider a conservative single-degree-of-freedom sys-

tem governed by

d2u

dt2
+ f (u) = 0, u(0) = A,

du

dt
(0) = 0 (1)

where f (u) is a general nonlinear function of u. Let

V (u) = ∫
f (u)du be the potential energy of the system

and suppose it reaches its minimum at u = u0, called

a centre. We assume u0 = 0. Thus, the system will os-

cillate between asymmetric limits [−B, A] where both

−B(B > 0) and A have the same energy level, i.e.,

V (−B) = V (A) (2)

Here, we combine the method of Wu et al. [7]

with strategy of Wu and Lim [13] to construct ana-

lytical approximate expressions for the solution to the

Equation (1). For the sake of convenience, the results

established in [7], which is applicable only to the case

of f (−u) = − f (u), is briefly summarized as follows.

By coupling the Newton method with the method of

harmonic balance, Wu et al. [7] obtained three analyt-

ical approximate periods and corresponding periodic

solutions. The first analytical approximation to the pe-

riod and periodic solution is

T1(A) = 2π/
√

�1(A); u1(t) = A cos τ,

τ =
√

�1(A)t (3)

where

�1(A) = a1/A,

a2i−1 = 4

π

∫ π/2

0

f (A cos τ ) cos[(2i − 1)τ ] dτ,

i = 1, 2, . . . (4)

The second analytical approximation to the period

and periodic solution is

T2(A) = 2π/
√

�2(A),

�2(A) = �1(A) + ��1(A);

u2(t) = X (A) cos τ + Y (A) cos 3τ,

τ =
√

�2(A)t (5)

where

��1(A) = a3[2a1 − (b0 − b4)A]/�,

X (A) = A − 2a3 A2/�, Y (A) = 2a3 A2/�,

� = A[(b2 + b4 − b0 − b6)A + 18a1],

b2(i−1) = 4

π

∫ π/2

0

fu(A cos τ ) cos[2(i − 1)τ ]dτ,

i = 1, 2, . . . (6)

The third analytical approximation to the period and

periodic solution is

T3(A) = 2π/
√

�3(A),

�3(A) = �2(A) + ��2(A)

u3(t) = [X (A) + y1(A)] cos τ + [Y (A) − y1(A)

+ y2(A)] cos 3τ − y2(A)cos5τ,

τ =
√

�3(A)t (7)

where

��2(A) = [c5(λ1λ4 − λ2λ3 + λ3λ4)

+ (c3 − 9Y�2)(λ3λ6 − λ1λ5)

+ (c1 − X�2)(λ2λ5 − λ4λ5 − λ4λ6)]/E,

y1(A) = [X (c5λ4 − c5λ2 + c3λ6)

+ 9Y (c5λ1 − c1λ6)]/E,

y2(A) = [X (c5λ4 − c3λ5) − 9Y (c5λ3 − c1λ5)]/E,

E = X (λ2λ5 − λ4λ5 − λ4λ6)

− 9Y (λ3λ6 − λ1λ5),

λ1 = (d2 − d6)/2, λ2 = (d4 − d8)/2,

λ3 = (d0 − d4)/2 − �2,

λ4 = (d2 + d4 − d6 − d0)/2 + 9�2,
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λ5 = (d4 − d2 + d6 − d8)/2,

λ6 = (d2 + d8 − d10 − d0)/2 + 25�2,

c2i−1 = 4

π

∫ π/2

0

f [X (A) cos τ + Y (A) cos 3τ ]

× cos[(2i − 1)τ ] dτ, i = 1, 2, . . . ,

d2(i−1) = 4

π

∫ π/2

0

fu [X (A) cos τ + Y (A) cos 3τ ]

× cos[2(i − 1)τ ] dτ, i = 1, 2, . . . . (8)

Note that, to obtain the analytical approximation so-

lutions above, it is necessary to compute some of the

coefficients a2i−1, b2(i−1), c2i−1, d2(i−1), (i = 1, 2, . . .)

for the case of f (−u) = − f (u).

For the case of f (u) being general nonlinear function

of u, following the approach in [13], we introduce the

two odd nonlinear oscillating systems:

d2u

dt2
+ g(u) = 0, u(0) = A,

du

dt
(0) = 0 (9a)

and

d2u

dt2
+ h(u) = 0, u(0) = B,

du

dt
(0) = 0 (9b)

where

g(u) =
{

f (u) if u ≥ 0,

− f (−u) if u < 0,
(10a)

h(u) =
{− f (−u) if u ≥ 0,

f (u) if u < 0
(10b)

In Equation 10(a) and (b), both g(u) and h(u) are

odd functions of u. Hence, Equation 9(a) and (b) repre-

sent the two oscillating systems with odd nonlinearity,

respectively. Substituting function g and h (also B in-

stead of A for the latter) in Equation 10(a) and (b) with

function f in Equations (4), (6) and (8), respectively,

we may achieve the corresponding Fourier coefficients

of the two systems with odd nonlinearity, as follows:

a(2i−1)g, b2(i−1)g, c(2i−1)g, d2(i−1)g, a(2i−1)h,

b2(i−1)h, c(2i−1)h, d2(i−1)h, i = 1, 2, . . . (11)

Using the coefficients in Equation (11) and the ana-

lytical approximations in Equations (3), (5) and (7),

we may obtain the first, second and third analytical

approximate periods and the corresponding periodic

solutions T1g(A), u1g(t), T2g(A), u2g(t), T3g(A), u3g(t)
for system in Equation (9a), and T1h(B), u1h(t), T2h(B),

u2h (t), T3h(B), u3h(t) for system in Equation (9b), re-

spectively. The relation between the exact solutions of

Equation 9(a) and (b), and that of Equation (1) can

provide a definite guide for establishing analytical ap-

proximate solutions to Equation (1).

Let the exact period and periodic solution corre-

sponding to Equation 9(a) and (b) be Teg(A) and ueg(t),
and Teh(B) and ueh(t), respectively. Then the exact pe-

riod Te(A) and the periodic solution ue(t) to Equation

(1) may be obtained by piecing the two solutions above

[13]:

Te(A) = Teg(A)

2
+ Teh(B)

2
(12a)

and

ue(t)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ueg(t), for 0 ≤ t ≤ Teg (A)

4

ueh

(
t − Teg (A)

4
+ Teh (B)

4

)
, for

Teg (A)

4
≤ t

≤ Teg (A)

4
+ Teh (B)

2

ueg

(
t + Teg (A)

2
− Teh (B)

2

)
, for

Teg (A)

4
+ Teh (B)

2
≤ t

≤ Teg (A)

2
+ Teh (B)

2

(12b)

Utilizing the analytical approximate solutions to

Equation 9(a) and (b) and the relations in Equation

12(a) and (b), we can get the corresponding the kth (k =
1, 2, 3) analytical approximate period and periodic so-

lution of Equation (1) as follows:

Tk(A) = Tkg(A)

2
+ Tkh(B)

2
(13a)

and

uk(t)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ukg(t), for 0 ≤ t ≤ Tkg (A)

4

ukh

(
t − Tkg (A)

4
+ Tkh (B)

4

)
, for

Tkg (A)

4
≤ t

≤ Tkg (A)

4
+ Tkh (B)

2

ukg

(
t + Tkg (A)

2
− Tkh (B)

2

)
, for

Tkg (A)

4
+ Tkh (B)

2
≤ t

≤ Tkg (A)

2
+ Tkh (B)

2

(13b)

Springer



280 Nonlinear Dyn (2008) 51:277–287

3 Illustrative examples

In this section, we will show through two exam-

ples that Equation 13(a) and (b) can provide excel-

lent analytical approximations to the period and the

corresponding periodic solutions of general nonlin-

ear oscillators for small as well as large oscillation

amplitudes.

Example 1. Consider the quadratic-cubic nonlinear os-

cillator governed by

d2 y

dt2
+ y2 + y3 = 0, y(0) = Â,

dy

dt
(0) = 0

(14a)

The potential energy function is V̂ (y) = y3/3 +
y4/4, and it reaches its minimum at y = −1. Introduc-

ing a new variable, u = y + 1, we transform Equation

(1) to

d2u

dt2
+ u − 2u2 + u3 =0, u(0)= A,

du

dt
(0)=0

(14b)

where A = Â + 1.

Now, we study Equation (14b). For this example

f (u) = u − 2u2 + u3, the corresponding potential en-

ergy function is

V (u) = u2/2 − 2u3/3 + u4/4 (15)

Using Equations (2) and (15), we can express B(B >

0) in terms of A:

B = − 2

3
+ 1

2

√
4

9
+ 2(1 − 12K )

3P
+ 2P

3

+ 1

2

√
8

9
− 2(1 − 12K )

3P
− 2P

3
+ 16

27

(
4

9
+ 2(1 − 12K )

3P
+ 2P

3

)−1/2

(16)

where

K = A2/2 − 2A3/3 + A4/4,

P =
[
1 − 12K + 2

√
3K (1 − 24K + 144K 2)

]1/3

For this example, using Equation (11), we obtain the

corresponding Fourier coefficients as follow:

a1g = A + 3A3

4
− 16A2

3π
, a3g = A2(15Aπ − 64)

60π
,

b0g = 2 + 3A2 − 16A

π
, b2g = A(9π A − 32)

6π
,

b4g = 16A

15π
, b6g = −16A

35π
,

c1g = Xg

4

(
4 + 3X2

g + 3XgYg + 6Y 2
g

)
− 16

105π

(
35X2

g + 14XgYg + 27Y 2
g

)
,

c3g = X3
g

4
− 288XgYg

35π
− 4X2

g

π

(
4

15
− 3πY 2

g

8

)

+ Yg

36π

(
64Yg + 36π − 27πY 2

g

)
,

c5g = −144Y 2
g

55π
+ 4X2

g

π

(
4

105
+ 3πYg

16

)

− 4Xg

π

(
40Yg

63
− 3πY 2

g

16

)
,

d0g = 2 + 3X2
g + 3Y 2

g + 16(Yg − 3Xg)

3π
,

d2g = 3Xg(Xg + 2Yg)

2
− 16(9Yg + 5Xg)

15π
,

d4g = −48Yg

7π
+ 4Xg

π

(
4

15
+ 3πYg

4

)
,

d6g = 4

π

(
4Yg

9
− 4Xg

35
+ 3πY 2

g

8

)
,

d8g = 4

π

(
4Xg

63
− 12Yg

55

)
,

d10g = 4

π

(
12Yg

91
− 4Xg

99

)
, (17a)

and

a1h = B + 3B3

4
+ 16B2

3π
, a3h = B2(15Bπ + 64)

60π
,

b0h = 2 + 3B2 + 16B

π
, b2h = B(9π B + 32)

6π
,

b4h = −16B

15π
, b6h = 16B

35π
,
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c1h = Xh

4

(
4 + 3X2

h + 3XhYh + 6Y 2
h

)
+ 16

105π

(
35X2

h + 14XhYh + 27Y 2
h

)
,

c3h = X3
h

4
+ 288XhYh

35π
+ 4X2

h

π

(
4

15
+ 3πY 2

h

8

)
+ Yh

36π

(
36π + 27πY 2

h − 64Yh
)
,

c5h = 144Y 2
h

55π
+ 4X2

h

π

(
3πYh

16
− 4

105

)
+ 4Xh

π

(
40Yh

63
+ 3πY 2

h

16

)
,

d0h = 2 + 3X2
h + 3Y 2

h + 16(3Xh − Yh)

3π
,

d2h = 3Xh(Xh + 2Yh)

2
+ 16(9Yh + 5Xh)

15π
,

d4h = 48Yh

7π
+ 4Xh

π

(
3πYh

4
− 4

15

)
,

d6h = 4

π

(
4Xh

35
− 4Yh

9
+ 3πY 2

h

8

)
,

d8h = 4

π

(
12Yh

55
− 4Xh

63

)
,

d10h = 4

π

(
4Xh

99
− 12Yh

91

)
(17b)

where

Xg = Q1(A), Yg = Q2(A),

Xh = −Q1(−B), Yh = −Q2(−B)

Q1(X ) ≡ X (3360π − 17152X + 2415π X2)

40(84π − 440X + 63π X2)
,

Q2(X ) ≡ 7X2(15π X − 64)

40(84π − 440X + 63π X2)

Substituting Equation 17(a) and (b) into Equations (3),

(5) and (7) leads to the first three analytical approxi-

mate periods and the corresponding periodic solutions,

respectively. They are:

T1g(A) = 2π/
√

(−64A + 12π + 9π A2)/(12π ),

u1g(t) = A cos τ, τ = 2π t

T1g(A)
, (18a)

T1h(B) = 2π/
√

(64B + 12π + 9π B2)/(12π ),

u1h(t) = B cos τ, τ = 2π t

T1h(B)
; (18b)

T2g(A) = 2π√
�2g

, u2g(t) = Xg cos τ + Yg cos 3τ,

τ = √
�2gt, (19a)

T2h(B) = 2π√
�2h

, u2h(t) = Xh cos τ + Yh cos 3τ,

τ =
√

�2ht ; (19b)

T3g(A) = 2π√
�3g

, �3g = �2g + ��2g,

u3g(t) = (Xg + y1g) cos τ + (Yg−y1g + y2g) cos 3τ

− y2g cos 5τ, τ = √
�3gt, (20a)

T3h(B) = 2π√
�3h

, �3h = �2h + ��2h,

u3h(t) = (Xh + y1h) cos τ + (Yh−y1h + y2h) cos 3τ

− y2h cos 5τ, τ =
√

�3ht (20b)

where

�2g = L(A),

��2g = [P1(Xg, Yg, �2g) + P2(Xg, Yg, �2g)]/NG,

�2h = L(−B),

��2h = [P1(Xh, Yh, �2h) − P2(Xh, Yh, �2h)] /NH,

y1g = 1260π [P5(Xg, Yg, �2g)

+ P6(Xg, Yg, �2g)]/NG,

y2g = 1260π [P7(Xg, Yg, �2g)

+ P8(Xg, Yg, �2g)]/NG,

y1h = 1260π [P5(Xh, Yh, �2h)

− P6(Xh, Yh, �2h)]/NH,

y2h = 1260π [P7(Xh, Yh, �2h)

− P8(Xh, Yh, �2h)]/NH,

NG = P3(Xg, Yg, �2g) + P4(Xg, Yg, �2g),

NH = P3(Xh, Yh, �2h) − P4(Xh, Yh, �2h),
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L(X ) ≡ 201600π2 − 2131200Lπ − 1558080π L3 + 108675π2L4 + 64L2(86656 + 4725π2)

2400π (84π − 440L + 63π L2)
,

P1(X, Y, �) ≡ 330301440π [1299870X2

− 1089506X4Y + X3(1330472 − 2995489Y 2)

− 3XY 2(485976 − 121157Y 2) − XY 2(11528

− 155085Y 2) − Y 3(336088 + 546207Y 2)]

+ 49165491375π3[63X7 − 99X6Y

+ 54X5(4 − 3Y 2) − 24X4Y (2 − 9Y 2)

+ Y (4 + 3Y 2)2(4 + 9Y 2) + 12X2Y (4 + 15Y 2)

+ 4X3(52 + 57Y 2 + 54Y 4) + X (64 + 144Y 2

+ 180Y 4 + 81Y 6)] − 2642411520π�(1765621X3

+ 937871X2Y − 2772081XY 2 − 1014411Y 3)

− 196661965500�π3[558X5 + 348X4Y

+ X3(1064 − 591Y 2) + X2(600Y + 981Y 3)

+ X (560 + 936Y 2 + 693Y 4) + Y (560 + 1368Y 2

+ 711Y 4)] + 786647862000π3�2(1036X

+ 829X3 + 1036Y + 1875X2Y + 225XY 2

+ 1479Y 3) − 707983075800000π3�3(X + Y ),

P2(X, Y, �) ≡ −2199023255552(429X4 − 264X3Y

− 1206X2Y 2 − 224XY 3 + 289Y 4)

− 69854400π2[917826X6 − 1019268X5Y

+ 459X4(4264 − 4309Y 2) − 96X3Y (3235

− 11003Y 2) + 8XY (54740 + 103626Y 2

− 40635Y 4) − Y 2(419248 + 492624Y 2

+ 133641Y 4) + 2X2(466856 + 2916Y 2

+ 549513Y 4)] + 558835200π2�[2535663X4

+ 1408764X3Y + X2(2533076 − 2703195Y 2)

− 2Y 2(475958 + 120819Y 2) + 2XY (834260

+ 498129Y 2)] − 1117670400π2�2(4091061X2

+ 6572650XY − 1520539Y 2),

P3(X, Y, �) ≡ 42278584320π (3718X3

+ 17743X2Y − 79148XY 2 + 23067Y 3)

+ 196661965500π3[18X5 + 9X4Y

+ 36X2Y (7 + 24Y 2) + 9X3(4 − 57Y 2)

+ X (16 − 384Y 2 − 459Y 4) + 9Y (16 + 48Y 2

+ 27Y 4)] − 786647862000π3�[129X3

+ 1023X2Y +468Y (2 + 3Y 2)

+ 8X (17 − 144Y 2)]

+ 707983075800000π3�2(X + Y ),

P4(X, Y, �) ≡ −2235340800π2[21294X4

+ 66414X3Y − 27Y 2(6692 + 7087Y 2)

+ 30XY (5134 + 16817Y 2) + 7X2(2912

− 75315Y 2) − 4(80184X2 + 572225XY

− 508491Y 2)�],

P5(X, Y, �) ≡ 468242775π2 X6−9364855500π2 X5Y

+420426547200Y 4 + 110X2Y 2[3478126592

+ 8513505π2(16 + 15Y 2)] + 3003X4[4194304

+ 51975π2(4 − 39Y 2)] − 77X3Y [6809452544

+ 6081075π2(56 + 117Y 2)]

− 15X [40682651648Y 3 + 10405395π2Y (128

+ 396Y 2 + 225Y 4)] − 624323700π2 X [25X3

− 498X2Y − 648XY 2 − 25Y (32 + 51Y 2)]�,

P6(X, Y, �) ≡ −221760π [23322X5 − 620862X4Y

− 9477Y 3(44 + 45Y 2) + 9X3(1144 + 18691Y 2)

− 17X2Y (54028 + 121977Y 2) + XY 2(528992

+ 872643Y 2) − 52(5478X3 − 210375X2Y

− 108472XY 2 − 200475Y 3)]�,

P7(X, Y, �) ≡ −143(X + Y )[3274425π2 X5

− 81860625π2 X4Y + 764411904Y 3

+ 528X3(131072 − 297675π2Y 2)

− 2091909120X2Y − 4131389440XY 2

− π2(117879300X2Y + 13097700XY 2

− 68762925XY 4 + 9823275XY 4)

+ 117879300π2 XY (X + Y )]�,
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Table 1 Comparison of approximate periods with exact period for Example 1

A B Te TP/Te T1/Te T2/Te T3/Te

0.1 0.0881633 6.35618 1.08190 0.999808 1.00002 0.999998

0.5 0.284142 8.02019 1.16892 0.988442 1.00124 0.999683

0.9 0.332812 18.4918 0.734453 0.958175 0.947356

1.5 0.414335 11.2716 0.948117 0.963956 1.00211

2.0 0.760768 6.23016 0.953896 0.988732 0.999434

5.0 3.67468 1.73240 0.975543 0.998600 0.999903

8.0 6.66944 1.01572 0.977319 0.999075 0.999921

10.0 8.66837 0.796755 0.977686 0.999169 0.999924

40.0 38.6668 0.188579 0.978244 0.999310 0.999929

70.0 68.6667 0.106971 0.978267 0.999315 0.999929

100.0 98.6667 0.0746626 0.978272 0.999317 0.999929

P8(X, Y, �) ≡ 2882880π [1408X5 − 42415X4Y

− 729Y 3(28 + 9Y 2) − 4XY 2(10189 − 3825Y 2)

− 12X2Y (1727 + 4107Y 2) + 12X3(11−9642Y 2)

− 36(33X3 − 517X2Y − 1117XY 2 − 567Y 3)]�

Applying the L-P perturbation method, Mickens

[14] obtained the second-order analytical approximate

period TP(A) and the periodic solution uP(t) as follows:

TP(A) = 2π/ωP(A), ωP(A) = 1 − 31A2/24 (21a)

and

uP(t) = A cos[ωP(A)t] − A2

3
{−3 + 2 cos[ωP(A)t]

+ cos[2ωP(A)t]} + A2

3

×
{
− 4 + 223

96
cos[ωP(A)t] + 4

3
cos[2ωP(A)t]

+ 11

32
cos[3ωP(A)t]

}
(21b)

One the other hand, the exact period Te(A) is

Te(A) =
∫ π/2

0

2dt√
1 − (4A(1 + sin t + sin2 t))/(3(1 + sin t)) + A2(1 + sin2 t)/2

+
∫ π/2

0

2dt√
1 + (4B(1 + sin t + sin2 t))/(3(1 + sin t)) + B2(1 + sin2 t)/2

(22)

where B is given in terms of A, in Equation (16).

The exact period Te(A) obtained by Equation

(22) and the approximate periods T1, T2, T3, and TP

computed, respectively, by Equations (13a) and (21a)

are listed in Table 1. For this oscillator, it is required that

the oscillation amplitude A �= 1, since Equation (14b)

has a homoclinic orbit with period +∞ for A = 1. The

incomplete columns TP in Table 1 are due to the per-

turbation solution giving meaningless results. Further-

more, we have

lim
A→0+

Te = lim
A→0+

TP = lim
A→0+

T1 = lim
A→0+

T2 = lim
A→0+

T3 = 2π, (23a)

lim
A→+∞

T1

Te
= 0.978277, lim

A→+∞
T2

Te
= 0.999318,

lim
A→+∞

T3

Te
= 0.999930 (23b)

From Table 1 and Equation 23(a) and (b), we con-

clude that the proposed approach yields highly accurate

analytical approximate periods for whole range of os-

cillation amplitudes except a small interval containing

A = 1.

For purpose of comparison, the exact periodic so-

lutions ue(t) achieved by integrating (14b) and the

analytical approximate periodic solutions u P (t), u1(t),
u2(t), and u3(t) computed by Equations (21b) and

(13b), respectively, are plotted in Figs. 1–3 for the time
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Fig. 1 Comparison of approximate periodic solutions with exact
periodic solution for A = 0.1 in Example 1

Fig. 2 Comparison of approximate periodic solutions with exact
periodic solution for A = 1.5 in Example 1

Fig. 3 Comparison of approximate periodic solutions with exact
periodic solution for A = 10 in Example 1

in one exact period. These figures correspond to, three

different amplitudes of oscillation A = 0.1, A = 1.5

and A = 10, respectively.

These figures show that the proposed third analyt-

ical approximate periodic solutions, provide the most

excellent approximations with respect to the exact pe-

riodic solutions for small as well as large oscillation

amplitudes. The proposed first two approximations are

generally acceptable.

Example 2. Consider the nonlinear oscillator [13] gov-

erned by

d2u

dt2
+ f (u) = 0, u(0) = A,

du

dt
= 0 (24a)

where

f (u) =
{

u3, if u ≥ 0,

−u2, if u < 0.
(24b)

For this problem, the corresponding potential energy

function is

V (u) =

⎧⎪⎨⎪⎩
u4

4
, if u ≥ 0,

−u3

3
, if u < 0

(25)

Using Equations (2) and (25), we can express B(B >

0) in terms of A as

B = 3

√
3A4

4
(26)

For this example, according to Equation (11), we ob-

tain the corresponding Fourier coefficients as follows:

a1g = 3A3

4
, a3g = A3

4
, b0g = 3A2, b2g = 3A2

2
,

b4g = b6g = 0, c1g = 6371A3

9216
, c3g = 959A3

3456
,

c5g = 23A3

768
, d0g = 265A2

96
, d2g = 575A2

384
,

d4g = 23A2

192
, d6g = A2

384
, d8g = d10g = 0 (27a)
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and

a1h = 8B2

3π
, a3h = 8B2

15π
, b0h = 8B

π
, b2h = 8B

3π
,

b4h = − 8B

15π
, b6h = 8B

35π
, c1h = 2904488B2

1134375π
,

c3h = 188104B2

309375π
, c5h = −10484872B2

262040625π
,

d0h = 6376B

825π
, d2h = 11224B

4125π
, d4h = −1784B

4125π
,

d6h = 1576B

7875π
, d8h = −107336B

952875π
,

d10h = 25496B

353925π
(27b)

Substitution of Equation 27(a) and (b) into

Equations (3), (5) and (7) yields the first three analyti-

cal approximate periods and the corresponding periodic

solutions, respectively. They are

T1g(A) = 4π√
3A

≈ 7.255197

A
, u1g (t) = A cos τ,

τ = 2π t

T1g(A)
, (28a)

T1h(B) = π

√
3π

2B
≈ 6.819781√

B
, u1h(t) = B cos τ,

τ = 2π t

T1h(B)
; (28b)

T2g(A) =
8π

√
2
/

23

A
≈ 7.411241

A
,

u2g(t) = 23A

24
cos τ + A

24
cos 3τ,

τ = 2π t

T2g(A)
, (29a)

T2h(B) = 5π

2

√
165π

677B
≈ 6.872464√

B
,

u2h(t) = 268B

275
cos τ + 7B

275
cos 3τ,

τ = 2π t

T2h(B)
; (29b)

T3g(A) = 8π

5A

√
273033543

125441879
≈ 7.41578

A
,

u3g(t) = 21904831241A

22934817612
cos τ

+ 987420271A

22934817612
cos 3τ

+ 3547175A

1911234801
cos 5τ, τ = 2π t

T3g(A)
,

(30a)

T3h(B) = 2π

/√
3546971090587870545464B

1349330666132442175875π

≈ 6.86887√
B

,

u3h(τ ) = 2784088760637469169B

2855726277528978150
cos τ

+ 110210200787959534B

4283589416293467225
cos 3τ

− 20028548732335B

31153377573043398
cos 5τ,

τ = 2π t

T3h(B)
(30b)

For this problem, Wu and Lim [13] got two analytical

approximate periods, and the first one is same as the

first one computed in the present paper. Their second

analytical approximate period is

TWL(A) = 1

2

[
24π√

62 + 2
√

421A

+ 2π

√√√√ 945π(
1448 + √

1064512
)

B

]

≈ 1

2

(
7.42789

A
+ 6.87490√

B

)
(31)

The L-P perturbation method can not directly be

used, since no linear term in u exist. The exact period

Te (A) is

Te(A) = 2

A

∫ π/2

0

√
2

1 + sin2 t
dt

+ 2√
B

∫ π/2

0

√
3 (1 + sin t)

2
(
1 + sin t + sin2 t

)dt

≈ 3.70815

A
+ 3.43463√

B
(32)

where B is given in terms of A in Equation (26).

Springer



286 Nonlinear Dyn (2008) 51:277–287

Table 2 Comparison of approximate periods with exact period for Example 2

A Te T1/Te TWL/Te T2/Te T3/Te

0.1 53.8066 0.982791 1.00133 0.999675 0.999934

0.4 15.9078 0.984336 1.00125 0.999797 0.999935

0.7 9.86793 0.985002 1.00122 0.999850 0.999936

1.0 7.31147 0.985433 1.00120 0.999884 0.999936

4.0 2.35702 0.987086 1.00111 1.00001 0.999938

7.0 1.51444 0.987718 1.00108 1.00006 0.999938

10.0 1.14713 0.988103 1.00106 1.00010 0.999938

40.0 0.400784 0.989438 1.00099 1.00020 0.999940

70.0 0.265121 0.989896 1.00097 1.00024 0.999940

100.0 0.204333 0.990162 1.00096 1.00026 0.999940

400.0 0.0756442 0.991017 1.00091 1.00033 0.999941

700.0 0.0510031 0.991289 1.00090 1.00035 0.999941

1000.0 0.0397414 0.991442 1.00089 1.00036 0.999942

The exact period Te (A) computed by Equation (32)

and the approximate periods T1, T2, T3 and TWL cal-

culated, respectively, by Equations (13a) and (31) are

listed in Table 2. In addition, we have

lim
A→0+

T1

Te
= 0.978277, lim

A→0+

T2

Te
= 0.999318,

lim
A→0+

T3

Te
= 0.999929, lim

A→0+

TWL

Te
= 1.00156,

lim
A→+∞

T1

Te
= 0.992880, lim

A→+∞
T2

Te
= 1.00047,

lim
A→+∞

T3

Te
= 0.999943, lim

A→+∞
TWL

Te
= 1.00082

(33)

From Table 2 and Equation (33), we may conclude

that Equation (13a) is capable of providing excellent

analytical approximations to the period for the whole

range of values of oscillation amplitude.

For comparison, the exact periodic solutions ue(t)
achieved by integrating Equation 24(a) and (b) and the

analytical approximate periodic solutions u1(t), u2(t),
and u3(t) computed by Equation (13b), are plotted in

Figs. 4–6 for the time in one exact period. These figures

correspond to three different amplitudes of oscillation

A = 0.1, A = 1 and A = 10, respectively.

These figures show that the proposed analytical ap-

proximate periodic solutions in Equation (13b) are very

accurate. Especially, the proposed second and third

Fig. 4 Comparison of approximate periodic solutions with exact
periodic solution for A = 0.1 in Example 2

Fig. 5 Comparison of approximate periodic solutions with exact
periodic solution for A = 1 in Example 2
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Fig. 6 Comparison of approximate periodic solutions with exact
periodic solution for A = 10 in Example 2

analytical approximations provide the most excellent

solutions with respect to the exact periodic solutions

for small as well as large amplitude of oscillation. The

proposed first analytical approximations are generally

acceptable.

4 Conclusions

A new approach has been presented for establishing the

analytical approximate solutions to general strong non-

linear conservative single-degree-of-freedom systems.

By introducing two odd nonlinear oscillators from the

original general nonlinear oscillator and utilizing the

analytical approximate solutions to odd nonlinear os-

cillators proposed by the authors, we have constructed

the analytical approximate solutions to the original gen-

eral nonlinear oscillator. These analytical approximate

solutions are valid for small as well as large amplitudes

of oscillation. Two examples have shown the great ac-

curacy and simplicity of the new approach.
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