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Abstract A new approach is presented for establishing
the analytical approximate solutions to general strong
nonlinear conservative single-degree-of-freedom sys-
tems. Introducing two odd nonlinear oscillators from
the original general nonlinear oscillator and utilizing
the analytical approximate solutions to odd nonlinear
oscillators proposed by the authors, we construct the
analytical approximate solutions to the original gen-
eral nonlinear oscillator. These analytical approximate
solutions are valid for small as well as large oscillation
amplitudes. Two examples are presented to illustrate
the great accuracy and simplicity of the new approach.

Keywords General nonlinear oscillator - Large
amplitude - Odd nonlinearity - Newton method -
Harmonic balance (HB) - Analytical approximation

1 Introduction

The harmonic balance (HB) method can be used to
determine analytical approximate solutions to nonlin-
ear oscillatory systems for which the nonlinear terms
are “not small”, i.e., no perturbation parameter needs to
exist [1-3]. However, it is very difficult to construct an-
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alytical approximations of higher accuracy using such
an approach because it requires analytical solutions to
sets of complicated nonlinear algebraic equations.

As such, some authors developed various improved
HB methods, such as: incremental harmonic balance
in [4]; rational representations in [5]; combination of
linearization with respect to incremental displacement
only with the harmonic balance method in [6] and cou-
pling of the Newton method with the harmonic balance
method in [7]. In general, the success of these methods
[3, 5-7] for conservative systems requires that the non-
linear restoring force f(u) is an odd function of u [i.e.
f(—u) = — f(u)], where u represents the displacement
measured from the stable equilibrium position [8, 9]. If
this condition is not satisfied, these various HB meth-
ods will leads to inconsistencies [10]. To overcome this
deficiency, Gottlieb [11] and Wu et al. [12, 13] pre-
sented some methods to solve the nonlinear oscillators
with a general nonlinear restoring force. For more ac-
curate approximation, however, these methods result in
a complex nonlinear algebraic equation(s) in terms of
unknown frequency and analytical solution is difficult
again.

In this paper, we present a new approach to establish
accurate analytical approximate period and periodic so-
lution to general strong nonlinear conservative single-
degree-of-freedom oscillators. Based on the original
general nonlinear oscillator, two new oscillators with
odd nonlinearity are first addressed [13]. Utilizing the
analytical approximate solutions to odd nonlinear os-
cillators developed by the authors [7], we construct new
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analytical approximate solutions to the original general
nonlinear oscillator by piecing the approximate solu-
tions corresponding to, respectively, the two new oscil-
lators introduced. The interesting features of the pro-
posed approach are its simplicity and excellent accu-
racy of both period and corresponding periodic solution
for small as well as large oscillation amplitudes. Two
examples are presented to validate the new approach.

2 Method of solution

Consider a conservative single-degree-of-freedom sys-
tem governed by

2
fl—tb;+f(u)=0, u0) = A, i—?(O):O 1)
where f(u) is a general nonlinear function of u. Let
V(u) = [ f(u)du be the potential energy of the system
and suppose it reaches its minimum at u = u, called
a centre. We assume uy = 0. Thus, the system will os-
cillate between asymmetric limits [— B, A] where both
—B(B > 0) and A have the same energy level, i.e.,

V(=B) =V(A) 2

Here, we combine the method of Wu et al. [7]
with strategy of Wu and Lim [13] to construct ana-
lytical approximate expressions for the solution to the
Equation (1). For the sake of convenience, the results
established in [7], which is applicable only to the case
of f(—u) = — f(u), is briefly summarized as follows.

By coupling the Newton method with the method of
harmonic balance, Wu et al. [7] obtained three analyt-
ical approximate periods and corresponding periodic
solutions. The first analytical approximation to the pe-
riod and periodic solution is

Ti1(A) = 27 [/ Q1 (A);
7 =/Q(A) (3)

where

ui(t) = Acosrt,

Qi(A) = a1/A,

4 /2
ari_1 = ;/ f (Acost)cos[(2i — 1)T]dT,
0

i=1,2,... 4
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The second analytical approximation to the period
and periodic solution is

To(A) = 27/y/Q(A),
2(A) = Qi(A) + AR (A);
u(t) = X(A)cost + Y(A)cos 3,
T =/ §20(A) ®)

where

AQ(A) = a3]2a; — (by — by)A]/ P,
X(A) = A —2a3A%/®, Y(A) =2a3A%/ D,
b = A[(bz + b4 - bo — b6)A + 18611],

4 /2
byi—1) = ;/0 fu(Acost)cos[2(i — 1)t]dr,

i=1,2,... (6)

The third analytical approximation to the period and
periodic solution is

T5(A) = 27/v/Q3(A),
Q3(A) = 22(A) + A (A)
uz(t) = [X(A) + yi(A)lcos T + [Y(A) — yi(A)
+ y2(A)] cos 3t — y,(A)cosSt,

T = /() 7

where

A (A) = [es(A1hg — Aohs + A3hy)
+(c3 = 9Y0)(A3h6 — A1hs)
+(c1 — XS0)(A2hs — Aads — Aade)]/E,
y1(A) = [X(cshg — c5A2 + c3h6)
+9Y(csA1 — c1A6)]/E,
2(A) = [X(cshq — c3h5) — 9Y (csA3 — c1A5)]/E,
E = X(hyhs — Aghs — Aahe)
—9Y (A3h6 — A1As),
A =(d2—do)/2, Xy =(ds—ds)/2,
A3 = (dy —dy)/2 — S,
Ay = (dy +ds —ds — dp)/2 4+ 92,
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s = (ds —dr +ds — dg)/2,
b = (dy+dy — dio — do)/2 + 259,

4 /2
Cri_] = — / f[X(A)cost + Y(A)cos3t]
T Jo

x cos[(2i — )rldr, i=1,2,...,

4 /2
doi—1y = - /0 ful[X(A)cost + Y(A)cos3T1]

x cos[2(i — Drldr, i=1,2,.... (8

Note that, to obtain the analytical approximation so-
lutions above, it is necessary to compute some of the
coefficients as;_1, b2(i71), C2i—1, dz(,',l), i=1,2..)
for the case of f(—u) = — f(u).

For the case of f (1) being general nonlinear function
of u, following the approach in [13], we introduce the
two odd nonlinear oscillating systems:

d*u du

T tEW=0. w0 =4 —O=0 ()
and

Cu =0, s0=8 “o=0 ©b
ﬁ+(u)—, u(0) = B, E()_ (9b)
where

gu) = {—f(—u) ifu <0, (102)
hiu) = { fw  ifu<o0 (10b)

In Equation 10(a) and (b), both g(«) and h(u) are
odd functions of u. Hence, Equation 9(a) and (b) repre-
sent the two oscillating systems with odd nonlinearity,
respectively. Substituting function g and 4 (also B in-
stead of A for the latter) in Equation 10(a) and (b) with
function f in Equations (4), (6) and (8), respectively,
we may achieve the corresponding Fourier coefficients
of the two systems with odd nonlinearity, as follows:

api—l)g, b2(i71)gs CRi—-1)g» d2(i71)g’ ai—1h,

boi—yns Coi—tyh, dai—yp, 1=1,2,... (11)
Using the coefficients in Equation (11) and the ana-
lytical approximations in Equations (3), (5) and (7),
we may obtain the first, second and third analytical

approximate periods and the corresponding periodic
solutions T1g(A), u14(t), Trg(A), usg(t), Tz4(A), uzge(t)
for system in Equation (9a), and T1,,(B), u1,,(t), To1(B),
usy (1), Tz3,,(B), us,(t) for system in Equation (9b), re-
spectively. The relation between the exact solutions of
Equation 9(a) and (b), and that of Equation (1) can
provide a definite guide for establishing analytical ap-
proximate solutions to Equation (1).

Let the exact period and periodic solution corre-
sponding to Equation 9(a) and (b) be T, (A) and u,(?),
and T,,(B) and u,;(t), respectively. Then the exact pe-
riod T,(A) and the periodic solution u,(¢) to Equation
(1) may be obtained by piecing the two solutions above
[13]:

Teg (A) + Teh(B)

T.(A) = 12
(A) > > (12a)
and
uc(t)

Ueg (1), for 0 <1 < T

Ueh (t — —T“itA) + —T“hiB)>, for —T"iA) <t

_ Toy(A) | Tu(B)
< ol L

leg (, + ng2<A) _ TM2<B>)’ for T«giA> + LB <y

T (A) Ten(B)
=< AT + Y

(12b)

Utilizing the analytical approximate solutions to
Equation 9(a) and (b) and the relations in Equation
12(a) and (b), we can get the corresponding the kth (k =
1, 2, 3) analytical approximate period and periodic so-
lution of Equation (1) as follows:

Tie(A) n Tin(B)

Ti(A) = — 5 (13a)
and
u(t)

Ukg (1), for0 <t < w

Ukh (t - T"gT(m + —Tk”iB)) , for —T*'ifA) <t

_ Tig(A) Tin(B)
= < 2= 4wl

kg (Z + Tkgz(A) _ Tkhz(B)) . for Tkg4(A) + Tkhz(B) <t

<

Tig(A) T (B)

(13b)
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3 Illustrative examples

In this section, we will show through two exam-
ples that Equation 13(a) and (b) can provide excel-
lent analytical approximations to the period and the
corresponding periodic solutions of general nonlin-
ear oscillators for small as well as large oscillation
amplitudes.

Example 1. Consider the quadratic-cubic nonlinear os-
cillator governed by

&y

o (0) = A,

dy
+y*+y’ =0, S (0=0

(14a)

The potential energy function is V(y) = y3/3 +
y*/4, and it reaches its minimum at y = — 1. Introduc-
ing a new variable, u = y + 1, we transform Equation
(1) to

d2
—u+u—2u2+u3:0,

O=4, “wo=0
dr2 w=a W

(14b)
where A = A + 1.

Now, we study Equation (14b). For this example
fu) = u — 2u® + u?, the corresponding potential en-
ergy function is

V) =u?/2 —2u*/3 4+ u*/4 (15)

Using Equations (2) and (15), we can express B(B >
0) in terms of A:

21— 12K) 2P
+ e+ =

B=-24
B 3P 3

1[4
2V 9

1 /8 2(1-12K) 2P 16 /(4 2(1-12K) 2P -2
+ =y — — | =+ + —

2\ 9 3P 3 27 \9 3P 3
(16)

where

K = A%/2 —2A%/3 + A*/4,

1/3
pP= [1 — 12K + 23K (1 — 24K + 144K2)] /

@ Springer

For this example, using Equation (11), we obtain the
corresponding Fourier coefficients as follow:

343 16A? AX(15AT — 64)
alg = A - E) a3g = - 5
4 3 60
16A AOOT A —32)
bo, =2 +3A2— ——, by, =—— "%
0g + T 2g 6]'[
b — 16A 164
T P50 T T T 350

X
cly = Tg (4 +3X; +3X,Y, +6Y;)

16 5 5
~ 105 (35X + 14X, Y, +27Y;),
3 2 2
oo Yo amsxy, 43[4 3rv;
&£ 4 357 7z \15 8
b (64Y, + 367 —277Y?)
367 8 8/’
B 144Yg2 4X§ 4 3nY,
¢ = 55y T \105s T 16
4X, (40y, 3n¥;
T \ 63 16 |’
16(Y, — 3X,)
_ 2 2 g 8
dog =2 +3X, +3Y, +T,
o XX 2V 1609Y, +5X,)
28~ 2 157 ’
48Y, 4X, (4 3mY,
do, — _ 20t | ARe [ Ay
“ 7 (15 T
4 {4y, 4x, 3nY?
de, = = [2Fs 2% | T )
68 = o ( 9o 35 T g
4 (4X, 12V,
dgg = — | —= — ,
7\ 63 55
4 (12Y, 4X
dig = — [ =% — =%, 17
10g = 2 ( 91 ~ 99 ) (172)
and
. 3B3 N 16B2 _ BX(I5B7 +64)
an = 4 T 3p o T 60 :

16B BOnB + 32
boy =2+43B> + —, b2h=M,
b4 6

16B 16B
= -, b6h =
157 35w
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X _
en = A (4433 4 33,7, 4 67)) Tu(B) = 27/\/(64B + 127 + 97 BY)/(1270),
16 ()= B 2t (18b)
u = Bcost, T= ;
+—— (35X2 + 14X, Y, +27Y2) . Tiy(B)
1057
X3 N 288X, Y, N 4X2 (4 N 3wy} _ 27 ¥ Y cos3
cp=—+——+——= = =
= 357 = \ 15 3 2¢(A) \/@, usg(t) g €08 T + Y, cos 3,
Y,
+ % (367 +277Y} — 64Y3) , T =/, (19a)
T
2
B 144Y?  4X7 (3nY, 4 Ton(B) = T uy(t) = X, cos T + Y, cos 3z,
=550 T 16 " 105 2
4X, (40Y, | 37mY} T =Vl (19b)
T s T ) 2n
T T3g(A) = 9 s Q3g = QZg + AQng
2 av2 166X, —Y)) Ve
don, :2+3Xh+3Yh +T,
b — 3Xn(Xp +2Yy) n 16(9Y, + 5X) u3g(t) = (Xg + y1g) coS T + (Yg—y1g + y2,) COs 3T
M= 2 157 ’ — 25 COS5T, T = /Qu,l, (20a)
dur — 48Yh + 4Xh 37TYh 4 2T
h= o - 2 15)° T5n(B) = N Q3 = Qop + AQyy,
den = 4 (4& _ + SnYhz) uzp(t) = (Xp + yin) cos T + (¥Yp—y1n + yan) cos 3t
n — )
m\3 9 8 oy cos5T, T =/t (20b)
4 (IZY;, 4Xh>
dsp == | —7———=).
b4 55 63 where
do = 4 (14X, 12Y;, 17b
B W T (17b) $2y = L(A),
Ang = [Pl(ng Ygs QZg) + P2(ng Yg, ng)]/NG,
where
Qo = L(—B),
X = A N Y == A )
g = QuA), Yo = 0:(4) AQuy = [P1(X), Vi, Qop) — Pa(X,, Vi, Q)] /NH,
X, = — —-B), Y,=-— —B
h 01(—B) h 0>(—B) Vig = 12607 [P5(Xy, Yy, Day)
01(X) = X(3360mr — 17152X + 24157 X?) P(X. 7. G NG
) = "0 — 440X + 637 X2) +Pe(Xg. Y Sh20))/NG,
7X2(157TX —64) Yog = 126077[P7(Xg: Yg, QZg)
O(X) =

40(847 — 440X + 637 X2)

Substituting Equation 17(a) and (b) into Equations (3),
(5) and (7) leads to the first three analytical approxi-
mate periods and the corresponding periodic solutions,
respectively. They are:

Ti,(A) = 271/\/(—64A + 127 + 97 A2)/(127),
2t

ue(t) = Acost, 1= m,

(18a)

+Pg(Xg, Y, €254)]1/NG,
yin = 12607 [P5(X,, Y, $221)
— Pe(Xn, Yn, Q22,)]/NH,
yan = 12607 [P7(Xp, Y, S21)
—Ps(Xp, Yy, Q21)]/NH,
NG = P3(X,, Y, Q55) + Pa(Xg, Yy, Q0,),
NH = P3(Xy, Yi, Q21) — Pa(Xp, Yy, Q221),
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20160072 — 2131200L7 — 15580807 L3 + 10867572 L* + 64L%(86656 + 47257%)

L) = 24007 (847 — 4401 + 637 L2) ’

Pi(X, Y, Q) = 3303014407[1299870X> +36X%Y (7 +24Y%) + 9X3(4 — 57Y?)
— 1089506 X*Y 4 X3(1330472 — 2995489Y7) + X(16 — 384Y% — 459Y*) 4 9Y (16 + 48Y*
—3XY?%(485976 — 121157Y%) — XY?(11528 +27Y%)] — 7866478620007°Q[129X°
— 155085Y2) — Y3(336088 + 546207Y?%)] +1023X2%Y +468Y (2 + 3Y?)
+491654913757°[63X7 — 99X°Y +8X(17 — 144Y?)]
+54X5(4 — 3Y?) — 24X*Y (2 — 9Y?) 4 7079830758000007° Q*(X + Y),
+ YA +3Y)24 4+ 9Y%) + 12X%°Y (4 + 15Y?) P4(X, Y, Q) = —22353408007%[21294 X*
+4X3(52 4 57Y2 4 54Y*) + X(64 + 144Y? +66414X3Y — 27Y%(6692 + 7087Y?)
+180Y* + 81Y%)] — 26424115207 (1765621 X +30XY(5134 + 16817Y?) + 7X>(2912
+937871X%Y — 2772081 XY? — 1014411Y?) —75315Y%) — 4(80184X> 4 572225XY
—196661965500Q73[558 X° 4 348X*Y —508491Y2)Q2],
+ X3(1064 — 591Y?) 4+ X2(600Y + 981Y?) Ps(X, Y, Q) = 4682427751 X® —93648555007> X° Y
+ X (560 4 936Y> 4+ 693Y*) 4+ Y (560 + 1368Y° +420426547200Y* + 110X%Y>[3478126592
+711YH] 4 78664786200077° Q2*(1036 X +85135057%(16 4+ 15Y2)] + 3003 X4[4194304
+829X% +1036Y + 1875X°Y +225XY? +5197572(4 — 39Y?)] — 77X Y[6809452544
+ 1479Y3%) — 70798307580000077° Q2% (X 4 Y), 4 60810757%(56 + 117Y%)]

Py(X, Y, Q) = —2199023255552(429X* — 264X3Y — 15X[40682651648Y> 4+ 1040539572Y (128
— 1206X°Y? — 224X Y? +289Y%) +396Y% + 225Y*)] — 624323700m> X [25X°
— 69854400772[917826X° — 1019268 X°Y —498X2%Y — 648XY? —25Y(32 + 51Y?)I2,
+459X4(4264 — 4309Y2) — 96X°Y (3235 Pe(X, Y, Q) = —2217607[23322X° — 620862X*Y
— 11003Y?) + 8X Y (54740 + 103626Y> —9477Y3(44 + 45Y%) + 9X3(1144 + 18691Y?)
—40635Y%) — Y2(419248 + 492624Y? — 17X%Y (54028 + 121977Y?) + XY?(528992
+133641Y%) 4+ 2X%(466856 + 2916Y> +872643Y?) — 52(5478X> — 210375X%Y
+549513Y4)] + 55883520077 2Q2[2535663 X * —108472XY? — 200475Y 1L,
+ 1408764 XY + X?(2533076 — 2703195Y2) P/(X, Y, Q) = —143(X + Y)[32744257°X°
—2Y%(475958 4 120819Y?) + 2X Y (834260 — 8186062572 X*Y + 764411904y
+498129Y2)] — 11176704007 >2%(4091061 X > +528X3(131072 — 2976757%Y?)
+6572650XY — 1520539Y2), —2091909120X%Y — 4131389440X Y>

P5(X, Y, Q) = 422785843207 (3718X° — 72(117879300X%Y + 13097700XY?
+17743X%Y — 79148XY? + 23067Y?) — 68762925XY* +9823275XY*%)
+ 1966619655007 [18X°> + 9X*Y + 11787930072 XY (X + V)],
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Table 1 Comparison of approximate periods with exact period for Example 1

A B T. Tp/ T, /T /T, T3/ T.
0.1 0.0881633 6.35618 1.08190 0.999808 1.00002 0.999998
0.5 0.284142 8.02019 1.16892 0.988442 1.00124 0.999683
0.9 0.332812 18.4918 0.734453 0.958175 0.947356
1.5 0.414335 11.2716 0.948117 0.963956 1.00211
2.0 0.760768 6.23016 0.953896 0.988732 0.999434
5.0 3.67468 1.73240 0.975543 0.998600 0.999903
8.0 6.66944 1.01572 0.977319 0.999075 0.999921
10.0 8.66837 0.796755 0.977686 0.999169 0.999924
40.0 38.6668 0.188579 0.978244 0.999310 0.999929
70.0 68.6667 0.106971 0.978267 0.999315 0.999929
100.0 98.6667 0.0746626 0.978272 0.999317 0.999929

Ps(X, Y, ) = 28828807 [1408X° — 42415X*Y
—729Y3(28 4+ 9Y?) —4XY?(10189 — 3825Y?)
— 12X%Y(1727 4+ 4107Y?%) + 12X3(11-9642Y?)
—36(33X° —517X%Y — 1117XY? — 567Y*) Q2

Applying the L-P perturbation method, Mickens
[14] obtained the second-order analytical approximate
period 7p(A) and the periodic solution up(¢) as follows:

To(A) = 21 /wp(A), wp(A) =1 —31A%/24 (2la)

and
2

up(t) = A cos[wp(A)t] — %{—3 + 2 cos[wp(A)t]
A2
+ cos[2wp(A)t]} + 3
223 4
X {— 4 +— cos[wp(A)t] + = cos[2wp(A)t]
96 3
1 3wp(A)t (21b)
+ ﬁ COS[ wp ]}

One the other hand, the exact period T,(A) is

2dt

computed, respectively, by Equations (13a) and (21a)
are listed in Table 1. For this oscillator, it is required that
the oscillation amplitude A # 1, since Equation (14b)
has a homoclinic orbit with period +oco for A = 1. The
incomplete columns 7p in Table 1 are due to the per-
turbation solution giving meaningless results. Further-
more, we have

lim 7, = lim 7p = lim

A—0t A—0t A—0t
Ti = lim T, = lim T3 = 2mx, (23a)
A—0t A—0*
. Tl . T2
lim — = 0.978277, lim — = 0.999318,
A—+oo T, A—+oo T,
. Iz
lim — = 0.999930 (23b)
A—>+oo T,

From Table 1 and Equation 23(a) and (b), we con-
clude that the proposed approach yields highly accurate
analytical approximate periods for whole range of os-
cillation amplitudes except a small interval containing
A=1

For purpose of comparison, the exact periodic so-
lutions u.(t) achieved by integrating (14b) and the

T.(A)

/2 2dt

/2
- /o V1= (4A(1 + sint + sin® 1)) /3(1 + sin 1)) + A2(1 4 sin®1)/2

0 /14 @B +sint +sin?1))/(3(1 + sint)) + B2(1 + sin’1)/2

where B is given in terms of A, in Equation (16).
The exact period T,(A) obtained by Equation
(22) and the approximate periods Ti, T», T3, and Tp

(22)

analytical approximate periodic solutions u p(¢), u;(t),
uy(t), and u3(t) computed by Equations (21b) and
(13b), respectively, are plotted in Figs. 1-3 for the time

@ Springer



284

Nonlinear Dyn (2008) 51:277-287

0.05 4

0.00

Displacement u(?)

-0.05

-0.10

Time ¢

Fig.1 Comparison of approximate periodic solutions with exact
periodic solution for A = 0.1 in Example 1

Displacement u(?)

Time ¢

Fig.2 Comparison of approximate periodic solutions with exact
periodic solution for A = 1.5 in Example 1

Displacement u(?)

0.0 0.2 0.4 0.6 0.8
Time ¢

Fig.3 Comparison of approximate periodic solutions with exact
periodic solution for A = 10 in Example 1
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in one exact period. These figures correspond to, three
different amplitudes of oscillation A = 0.1, A = 1.5
and A = 10, respectively.

These figures show that the proposed third analyt-
ical approximate periodic solutions, provide the most
excellent approximations with respect to the exact pe-
riodic solutions for small as well as large oscillation
amplitudes. The proposed first two approximations are
generally acceptable.

Example 2. Consider the nonlinear oscillator [13] gov-
erned by

d*u du
— = =A — = 24
where
u3, ifu >0,
f) = {—uz, ifu <O. (24b)

For this problem, the corresponding potential energy
function is

, ifu >0,
V(u) = 4u3 (25)

——, ifu<O
3

Using Equations (2) and (25), we can express B(B >
0) in terms of A as

4
B=,] % (26)

For this example, according to Equation (11), we ob-
tain the corresponding Fourier coefficients as follows:

3A3 A3 3A2
aig = T, aSgZT, b()g = 3A2, b2g = T,
6371A3 95943
ba, = be, = 0, =—, ==,
4g = Dog ‘8= o016 © ¢ T 3456
_ 23A° _ 265A7 _ 575A7
¢ = Tggg 0 W8T Tog 0 T Tagg
23A2 A2

dgg = leg =0 (273.)

d = —, = —,
EREETY) 08 = 384
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and 219048312414
Use) = S 03a817612 <"
8B 8B 8B 8B
agp=——, ayp=—7—, byp=—, by=—, 987420271A
3 157 b4 3 ————————cos 3t
8B 8B 2904488 B> 22934817612
by, = —F, ben, = f’ cip = W, 4 3547175A 5 2t
———cosdSt, T=——,
7T i T 1911234801 Ts4(A)
188104 B 10484872 B> (30a)
C3h = Soo—, C5h= — s —— —,
633?7963;57T 1122;2204062571 17848 Ty (B) = 21 \/ 3546971090587870545464 B
don, = L dp = dy = — WS 13493306661324421758757
825w 41257 41257
L 15768 1073368 ~ 080887
T 875 T 9528757 VB
2784088760637469169 B
diy = 08 @7b) (D) = e 6277528078150 < ©
3539257
110210200787959534B 3
Substitution of Equation 27(a) and (b) into 4283589416293467225 cos It
Equations (3), (5) and (7) yields the first three analyti- 200285487323358
cal approximate pferiods and the corresponding periodic T 31153377573043398 cos 57,
solutions, respectively. They are ot
T = (30b)
T5,(B)

4t 7.255197
V3A A

Tlg(A)Z Mlg(t)IACOSt,

(28a)

3 6.819781
T(B)=m- ~

2B JB

T=— (28b)

87,/2/23 7411241

A A ’
Q) 234 + A 3
Uze(t) = —— COST + = cos 3T,
24 24
2t

Tog(A)

By = T [1657 _ 6.872464
WPV 6778 JB

268B 7B
——cosT + — cos 37,
275 275

2t )
Ton(B)’

) = 87 [273033543 _ 7.41578
T 54V 125441879 A

u,(t) = Beost,

The(A) =

(29a)

ug(t) =

(29b)

For this problem, Wu and Lim [ 13] got two analytical
approximate periods, and the first one is same as the
first one computed in the present paper. Their second
analytical approximate period is

24w
V62 + 24/421A
945
(1448 + V1064512) B}
~ 1 (7.42789 n 6.87490)
2 A VB
The L-P perturbation method can not directly be

used, since no linear term in u exist. The exact period
T,(A)is

2 (72 2 J
T.(A) = — —dt
(4) A./o 1+ sin’t

2 (7P 3(1 +sinr)
+— - ——~dt
VB Jo 2(1+smt+sm t)
N 3.70815 n 3.43463
TR

where B is given in terms of A in Equation (26).

1
TwrL(A) = 3 |:

+ 27

3D

(32)
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Table 2 Comparison of approximate periods with exact period for Example 2

A T, T / T. TWL/ T. T2/ Te T3/ T.
0.1 53.8066 0.982791 1.00133 0.999675 0.999934
0.4 15.9078 0.984336 1.00125 0.999797 0.999935
0.7 9.86793 0.985002 1.00122 0.999850 0.999936
1.0 7.31147 0.985433 1.00120 0.999884 0.999936
4.0 2.35702 0.987086 1.00111 1.00001 0.999938
7.0 1.51444 0.987718 1.00108 1.00006 0.999938

10.0 1.14713 0.988103 1.00106 1.00010 0.999938
40.0 0.400784 0.989438 1.00099 1.00020 0.999940
70.0 0.265121 0.989896 1.00097 1.00024 0.999940
100.0 0.204333 0.990162 1.00096 1.00026 0.999940
400.0 0.0756442 0.991017 1.00091 1.00033 0.999941
700.0 0.0510031 0.991289 1.00090 1.00035 0.999941
1000.0 0.0397414 0.991442 1.00089 1.00036 0.999942

The exact period T, (A) computed by Equation (32)
and the approximate periods 77, T», T3 and Ty, cal-
culated, respectively, by Equations (13a) and (31) are
listed in Table 2. In addition, we have

. Tl . T2
lim — = 0.978277, lim — = 0.999318,
A—0+ T, A—0+ T,
T T
lim — =0.999929, lim —% — 1.00156,
A—0t Te A—0t e

. T ) T,
lim — = 0.992880, lim T = 1.00047,

A—+oo T, A—+oo T,

T
WL 1.00082

A—+00 e

T
lim — = 0.999943, lim

A—+oo T,

(33)

From Table 2 and Equation (33), we may conclude
that Equation (13a) is capable of providing excellent
analytical approximations to the period for the whole
range of values of oscillation amplitude.

For comparison, the exact periodic solutions u,(t)
achieved by integrating Equation 24(a) and (b) and the
analytical approximate periodic solutions u(t), u(t),
and u3(¢) computed by Equation (13b), are plotted in
Figs. 4-6 for the time in one exact period. These figures
correspond to three different amplitudes of oscillation
A =0.1,A=1and A = 10, respectively.

These figures show that the proposed analytical ap-
proximate periodic solutions in Equation (13b) are very
accurate. Especially, the proposed second and third
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Fig.4 Comparison of approximate periodic solutions with exact
periodic solution for A = 0.1 in Example 2
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Fig.5 Comparison of approximate periodic solutions with exact
periodic solution for A = 1 in Example 2
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Fig.6 Comparison of approximate periodic solutions with exact
periodic solution for A = 10 in Example 2

analytical approximations provide the most excellent
solutions with respect to the exact periodic solutions
for small as well as large amplitude of oscillation. The
proposed first analytical approximations are generally
acceptable.

4 Conclusions

A new approach has been presented for establishing the
analytical approximate solutions to general strong non-
linear conservative single-degree-of-freedom systems.
By introducing two odd nonlinear oscillators from the
original general nonlinear oscillator and utilizing the
analytical approximate solutions to odd nonlinear os-
cillators proposed by the authors, we have constructed
the analytical approximate solutions to the original gen-
eral nonlinear oscillator. These analytical approximate
solutions are valid for small as well as large amplitudes
of oscillation. Two examples have shown the great ac-
curacy and simplicity of the new approach.
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