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Abstract Coupled strongly nonlinear oscillators,

whose characteristic is close to linear for low ampli-

tudes but becomes infinitely growing as the amplitude

approaches certain limit, are considered in this paper.

Such a model may serve for understanding the dy-

namics of elastic structures within the restricted space

bounded by stiff constraints. In particular, this study fo-

cuses on the evolution of vibration modes as the energy

is gradually pumped into or dissipates out of the sys-

tem. For instance, based on the two degrees of freedom

system, it is shown that the in-phase and out-of-phase

motions may follow qualitatively different scenarios as

the system’ energy increases. So the in-phase mode ap-

pears to absorb the energy with equipartition between

the masses. In contrast, the out-of-phase mode provides

equal energy distribution only until certain critical en-

ergy level. Then, as a result of bifurcation of the 1:1

resonance path, one of the masses becomes a dominant

energy receiver in such a way that it takes the energy

not only from the main source but also from another

mass.
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1 Introduction

The nonlinear mode localization has been known for

a long time as both micro- and macro-level phe-

nomenon, see for instance [1, 2] for earlier references

and overview. In the area of nonlinear dynamics, mode

localization recently became of a growing interest due

to the idea of dynamic energy absorption [3–6]. In

contrast to stochastic localization in disordered linear

systems [7], nonlinear local modes may occur even in

perfectly symmetric systems. In general terms, local-

ization means that one or few particles become dynam-

ically isolated from the rest of the system due to specific

initial conditions and/or variation of physical parame-

ters. Different analytical and numerical tools have been

developed for both normal and local mode analyses

[8]. However, comparatively less attention was paid

to evolutionary/transient effects of nonlinear localiza-

tion. On mathematical point of view, such kind of tran-

sient phenomena is developed in between the low- and

high-energy asymptotics so that neither of them works

well enough, although both steady-state limits can be

matched in different phenomenological ways [9]. At

this point, let us mention the results of numerical ex-

periments on localized state formations, for instance

[10]. As follows from Poicare recurrence theorem, in

classic conservative systems, any inherent one-way en-

ergy localizations from distributed states are hardly sus-

tainable. In order to observe such kind of phenomena,

one must either insert nonconservative terms into the

differential equations of motion or drastically increase
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the number of degrees of freedom (DoFs) providing

the recurrence time above any reasonable observation

period.

In this work, the system is artificially made ‘open’ by

generating the energy in-flow according to the negative

damping law. Physically, this corresponds to conven-

tional mechanisms of self-excitation before the system

has reached the limit cycle. For instance, such kind of

approaches can be relevant to modeling the friction-

induced vibrations of elastic systems with clearances.

It is shown that transient localization admits interpre-
tation as a passage through the bifurcation point of the
1:1 resonance manifold. Explicit equations describing

this phenomenon are obtained by using the unique class

of strongly nonlinear oscillators with exact general so-

lutions [11], see also [12, 13]. In particular, a strongly

nonlinear coordinate transformation is introduced in

terms of elementary functions. As a result, regular aver-

aging procedures become applicable to a wide range of

nonlinear motions including dynamic transitions from

normal to local modes, and backward.

The paper is organized as follows. Section 2 de-

scribes the model of coupled oscillators and introduces

the amplitude–phase coordinates for every oscillator.

This brings the system to the form which is conve-

nient for asymptotic analyses. In Section 3, the res-

onance manifold equation is obtained and discussed.

Then, in Section 4, the differential equations of motion

near the resonance manifold are obtained by adapting

the conventional tool of averaging. The neighborhood

of bifurcation of the 1:1 resonance path is analyzed in

Section 5. Appendix A recalls some basic steps of the

high-order averaging procedure adapted for strongly

nonlinear systems in the standard Cauchy form. Nec-

essary coefficients and other complicated expressions

are listed in Appendix B.

2 System description

The model under investigation represents two linearly

coupled strongly nonlinear oscillators. However, the

original stage of transformations takes the compact

form if applied to the corresponding multiple DoFs

chain of oscillators

ẍi + tan xi

cos2 xi
= ε(xi−1 − 2xi + xi+1) − εζ ẋi (1)

with the boundary conditions x0 ≡ xN+1 ≡ 0, where

i = 1, . . . , N , and overdots indicate differentiation

with respect to time t .
It is assumed that 0 < ε � 1 and |ζ | � 1; in other

words, the damping is small compared to the strength

of coupling.

Let us introduce new coordinates {αi , ϕi } on the

phase plane of every oscillator {xi , ẋi } by means of

relationships

xi = arcsin(αi sin ϕi )

ẋi = αi�(αi ) cos ϕi√
1 − α2

i sin2 ϕi

(2)

where |αi | < 1 and

�(αi ) = 1√
1 − α2

i

(3)

Transformation (2) is motivated by Nesterov’s result

[11] that the oscillator

ẍi + tan xi

cos2 xi
= 0

has exact solution

xi = arcsin[sin Ai sin(t/ cos Ai )] (4)

where Ai is a constant amplitude so that αi = sin Ai .

If the amplitude Ai is close to zero, then the oscillator

linearizes whereas solution (4) gives the correspond-

ing sine-wave temporal shape. On the other hand, if

the parameter Ai approaches the upper limit π/2, then

the oscillation takes a triangular-wave shape while the

period vanishes, as follows from expression (4). Such

a high-energy limit corresponds to a free particle vi-

brating between the two stiff barriers on the interval

−π/2 < xi < π/2.

For an arbitrary energy level, the period and the total

energy of the vibration are, respectively

Ti = 2π

√
1 − α2

i (5)

and

Ei = 1

2

α2
i

1 − α2
i

(6)
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Now, substituting (2) into (1) and imposing compat-

ibility condition,

d arcsin(αi sin ϕi )

dt
= αi�(αi ) cos ϕi√

1 − α2
i sin2 ϕi

(7)

gives

α̇i = ε f (αi−1, αi , αi+1, ϕi−1, ϕi , ϕi+1) cos ϕi

ϕ̇i = �(αi ) − ε

αi
f (αi−1, αi , αi+1, ϕi−1, ϕi , ϕi+1) sin ϕi

(8)

where

f (αi−1, αi , αi+1, ϕi−1, ϕi , ϕi+1) = �−3(αi )√
1 − α2

i sin2 ϕi

×
[

arcsin(αi−1 sin ϕi−1) − 2 arcsin(αi sin ϕi )

+ arcsin(αi+1 sin ϕi+1) − ζαi�(αi ) cos ϕi√
1 − α2

i sin2 ϕi

]

System (8) is still exactly equivalent to original sys-

tem (1) regardless of the magnitudes of the parameter

ε.

Further investigation focuses on 2 DOF system

α̇i = εFi (α1, α2, ϕ1, ϕ2)

ϕ̇i = �(αi ) + εGi (α1, α2, ϕ1, ϕ2) (9)

where i = 1, 2, and expressions Fi and Gi are deter-

mined by (8).

In this case, let us introduce two new phase variables

ϕ(t) and θ (t) as follows:

ϕ1 = ϕ

ϕ2 = rϕ + θ (10)

where r is a constant ratio.

Assuming still no restrictions on the class of mo-

tions, relationships (10) bring the system to the form

α̇i = εFi (α1, α2, ϕ, rϕ + θ )

ϕ̇ = �(α1) + εG1(α1, α2, ϕ, rϕ + θ ) (11)

θ̇ = �(α2) − r�(α1) + ε[G2(α1, α2, ϕ, rϕ + θ )

− rG1(α1, α2, ϕ, rϕ + θ )]

This is the standard Cauchy form of a strongly non-

linear vibrating system with two phase variables, ϕ

and θ .

In order to formulate the major objective of further

investigation, let us assume that there is some energy

inflow into the system, for instance, due to the neg-

ative damping, ζ < 0. It is clear that, at low energy

level, the 2 DOF system possesses two linear modes

dictated by the system’s symmetry. On the other hand,

as the total energy approaches infinity, the system be-

comes effectively decoupled. As a result, four different

impact modes become possible, such as in-phase, out-

of-phase, and a couple of localized modes with one of

the two oscillators remaining in rest. The objective is

to clarify the scenario of transition from the normal to

impact mode dynamics. On this point of view, the ge-

ometry of resonance curves on the configuration plane

appears to play an important role as follows from the

analyses below.

3 Structure of the resonance manifold

By differentiating both sides of expressions (10) with

respect to time, one obtains

ϕ̇2

ϕ̇1

= r + θ̇

ϕ̇
(12)

Therefore, the system is close to the resonance of a

frequency ratio r if and only if the variable θ is slow

compared to ϕ so that

θ̇

ϕ̇
� r (13)

This condition implies that, during the motion, the

right-hand side of the last equation in (11) remains suf-

ficiently small compared to that of the second equation.

Perfectly, the exact resonance condition is satisfied on

the resonance manifold θ̇ = 0 or

�(α2) − r�(α1) + ε[G2(α1, α2, ϕ, rϕ)

− rG1(α1, α2, ϕ, rϕ)] = 0 (14)

θ = 0

where the initial condition θ (0) = 0 is imposed.
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Despite simplicity of the expression �(αi ), the en-

tire Equation (14) is still complicated for visualization

and further analyses. However, since resonances are de-

termined by information about entire vibration cycles,

then the dimension of the manifold can be reduced by

averaging the resonance condition with respect to the

explicit phase ϕ

�(α2) − r�(α1) + ε < G2(α1, α2, ϕ, rϕ)

− rG1(α1, α2, ϕ, rϕ) >= 0 (15)

Here and below, 〈•〉 is a mean value on the interval

0 ≤ ϕ ≤ 2π :

〈•〉 ≡ 1

2π

∫ 2π

0

(•) dϕ

Equation (15) describes a family of resonance curves

with the frequency ratio r on the configuration plane

K = {(α1, α2) : |α1| < 1, |α2| < 1} (16)

Note that it is a priori difficult to determine whether

or not some resonance curve will attract the system,

and therefore, provide Equation (15) with a real phys-

ical meaning. On that point of view, it is important to

clarify both the geometry of curves (15) and the system

dynamics near the curves.

Geometrical representation of Equation (15) is given

in Figs. 1 and 2 for perfectly decoupled and weakly

coupled oscillators, respectively. Central areas of both

diagrams are occupied by 1:1 resonance lines, r = 1.

In both figures, the vertical and horizontal straight

lines α1 = 0 and α2 = 0, respectively, correspond to

the localized modes of the decoupled system, ε = 0.

The diagonals α2 = α1 and α2 = −α1 represent the in-

phase and out-of-phase modes, respectively. Both these

modes belong, of course, to the 1:1 resonance manifold.

In the case of nonzero coupling, there are also two 1:1

curvilinear resonance lines bifurcating from the out-of-

phase mode, and then, asymptotically approaching the

localized modes as shown in Fig. 2. Such a bifurcation,

which is important for understanding the transient lo-

calization, cannot be captured by the limit of decoupled

oscillators, as follows from Fig. 1.

Let us consider the limit case analytically. Setting

ε = 0 in Equation (15) and taking into account expres-

sion (3) gives

α2
1 − r2α2

2 = 1 − r2 (17)

This equation describes a family of hyperbolas in K .

In particular case r = 1, Equation (17) describes only

the in-phase and out-of-phase modes, α2 = ±α1. Due

to the symmetry of the coupled system, the diagonals

satisfy also the entire Equation (15) with ε �= 0.

4 Dynamics near the resonance manifold

4.1 Local coordinates

Let us introduce local coordinates {ρ, s} on the reso-

nance curves of the decoupled system as

α1(ρ, s) = x1(s) + ρn1(s)

α2(ρ, s) = x2(s) + ρn2(s) (18)

where {x1(s), x2(s)} is an arbitrary point on curve (17)

defined by the parameter s, and the normal vector

{n1(s), n2(s)} is normalized to unity in terms of the

euclidean distance in K .

Equations (11) then take the form

ρ̇ = εR(ρ, s, ϕ, θ )

ṡ = εS(ρ, s, ϕ, θ )

θ̇ = �[α2(ρ, s)] − r�[α1(ρ, s)] + ε
(ρ, s, ϕ, θ) (19)

ϕ̇ = �[α1(ρ, s)] + εG(ρ, s, ϕ, θ )

where

R(ρ, s, ϕ, θ ) = n1(s)F1 + n2(s)F2

S(ρ, s, ϕ, θ )

= x ′
1(s)F1 + x ′

2(s)F2

[x ′
1(s)]2 + [x ′

2(s)]2 + ρ[n′
1(s)x ′

1(s) + n′
2(s)x ′

2(s)]


(ρ, s, ϕ, θ ) = G2 − rG1

G(ρ, s, ϕ, θ ) = G1

Fi = Fi (α1(ρ, s), α2(ρ, s), ϕ, rϕ + θ )

Gi = Gi (α1(ρ, s), α2(ρ, s), ϕ, rϕ + θ )

′ ≡ d/ds
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Fig. 1 Resonance curves of
the decoupled system,
ε = 0, for frequency ratios
r = 1, 1/3, 3, 1/5, 5, 3/5,
and 5/3
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Fig. 2 Resonance curves of
the weakly coupled
oscillators, ε = 0.01, for
frequency ratios r = 1, 1/3,
3, 1/5, 5, 3/5, and 5/3
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Equations (19) finalize the transformation of

variables

{α1, α2, ϕ1, ϕ2} −→ {ρ, s, ϕ, θ}

These equations are still exact but appear to compli-

cate the original form of equations. Nevertheless, the

major advantage of the new system is due to the explicit

presence of the distance ρ to lines (17). This fact will

essentially be employed below.

4.2 Asymptotic analysis and discussion

Let us bring the system to the standard form with a sin-

gle fast phase. At this point, first physical assumption

is introduced. Namely, it is assumed that ρ ∼ μ = √
ε;

in other words, the whole system remains near the reso-

nance lines of the decoupled system. Then, by rescaling

the distance as ρ = μl, one obtains

l̇ = μR(μl, s, ϕ, θ)

ṡ = μ2S(μl, s, ϕ, θ)

θ̇ = μQ(l, s) + μ2
(μl, s, ϕ, θ) (20)

ϕ̇ = �(μl, s) + μ2G(μl, s, ϕ, θ)

where μQ(l, s) = �[x2(s) + μln2(s)] − r�[x1(s) +
μln1(s)] = O(μ), and �(μl, s) ≡ �[x1(s) + μln1(s)].

The system now has a single fast phase ϕ and should

be qualified as an ‘essentially nonlinear’ system due to

the essential dependance of its basic frequency � on

the system’s position.

Second-order averaging with respect to the fast

phase, which is described in Appendix A, gives the

coordinate transformation and the corresponding dif-

ferential equations of motion in, respectively, the

form

l = q + μ

�(μq, p)

∫ ϕ

0

[R(μq, p, ϕ, θ)

−〈R(μq, p, ϕ, θ)〉] dϕ

s = p + μ2

�(μq, p)

∫ ϕ

0

[S(μq, p, ϕ, θ)

− 〈S(μq, p, ϕ, θ)〉] dϕ (21)

and

q̇ = μ〈R(μq, p, ϕ, θ )〉
ṗ = μ2〈S(μq, p, ϕ, θ )〉
θ̇ = μQ(q, p) + μ2〈
(μq, p, ϕ, θ )〉 (22)

ϕ̇ = �(μq, p) + μ2〈G(μq, p, ϕ, θ )〉

Taking into account the Fourier expansions for R,

S, 
, and G with respect to the phase angle ϕ and

calculating the integrals in (22) gives

q̇ = μ[R0(μq, p) + R1(μq, p) sin θ

+ R3(μq, p) sin 3θ + · · ·]
ṗ = μ2[S0(μq, p) + S1(μq, p) sin θ

+ S3(μq, p) sin 3θ + · · ·] (23)

θ̇ = μQ(q, p) + μ2[
0(μq, p) + 
1(μq, p) cos θ

+ 
3(μq, p) cos 3θ + · · ·]
ϕ̇ = �(μq, p) + μ2[G0(μq, p) + G1(μq, p) cos θ

+ G3(μq, p) cos 3θ + · · ·]

where the coefficients are listed in Appendix B.

This is a final result of the averaging procedure that

separated fast and slow components of the dynamics.

Further calculations require parametrization of curves

(17). In this work, only the case of 1:1 resonance is

considered, when r = 1 and Equation (17), therefore,

gives diagonals α2 = α1 and α2 = −α1in K corre-

sponding to in-phase and out-of-phase normal modes,

respectively. For example, the out-of-phase mode ad-

mits the parametrization x1(s) = −s and x2(s) = s
with the related normal vector {n1, n2} = (

√
2/2){1, 1}

so that the coordinate transformation (18) takes the

form

α1 = −s + ρ
√

2/2 = −s + μl
√

2/2 (24)

α2 = s + ρ
√

2/2 = s + μl
√

2/2

Since the coordinates s and ρ = μl are described by

Equations (21) then (24) gives

α1 = −p + μq
√

2/2 + O(μ2) (25)

α2 = p + μq
√

2/2 + O(μ2)
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Let us first discuss the results of numerical integra-

tion of system (23). In Fig. 3, the dashed lines repre-

sent 1:1 resonances as those shown in Fig. 2 on the

amplitude plane K . Therefore, the horizontal and ver-

tical dashed straight lines are pieces of the in-phase and

out-of-phase modes, respectively. Two another dashed

curves intersect the out-of-phase mode. Along these

curves, the system can eventually reach the localized

modes with no violation of the 1:1 resonance condi-

tion. So, every such intersection qualifies as a bifurca-

tion point of the 1:1 resonance manifold. The purpose

of numerical tests was to clarify the global system be-

havior near the 1:1 resonance lines including the above

bifurcation points.

First, the numerical simulations suggest instabil-

ity of the out-of-phase mode above the bifurca-

tion point. In particular, Fig. 3 shows that the sys-

tem leaves the neighborhood of the out-of-phase

mode on considerable distance from the initial po-

sition regardless of the initial distance to the mode.

Nevertheless, globally, the out-of-phase mode re-

mains attractive to the system, as Fig. 4 clearly

shows.

Now, let us assume that the energy is pumped into

the system according to the negative damping law (see

the introductory remarks for a physical interpretation

of this assumption). Let initially the system be close

to the out-of-phase mode below the bifurcation point.

While the energy is slowly pumped into the system,

its path remains close to the out-of phase mode for

some period of time. At some energy level, however, the

out-of-phase mode fails to attract the system and fur-

ther energy partition qualitatively changes, as shown

in Figs. 5 and 6. The system prefers to take another

branch of the 1:1 resonance manifold so that the en-

ergy obtained by the system is not equally distributed

any more between the two particles. For instance, Fig.

7 shows that particle 1 becomes the dominant energy

receiver taking back even some energy accumulated

by another particle before the symmetry brake has

occurred.

The system’s behavior during the localization pro-

cess appears to be reversible under the positive damping

condition (see Figs. 8 and 9). In particular, despite the

positive damping, the energy of particle 1 is growing
until it becomes equal to that of particle 2. Then, the en-

ergy becomes equally dissipating out of both particles,

as shown in Fig. 9.

5 Dynamics near the bifurcation point: Onset of
localization

In order to understand the above numerical results, let

us consider the neighborhood of bifurcation point by

assuming that the distance from the origin to the bifur-

cation point is of the order μ = √
ε. This is justified in

the case of weak coupling between the oscillators. In-

deed, if no coupling at all, ε = 0, the bifurcation points

are absorbed by the equilibrium position (see Figs. 1

and 2). Based on the above assumption, let us rescale

the coordinate along the out-of-phase mode

p = √
εP (26)

Now, linearizing Equations (23) with respect to q
and θ and keeping the leading-order terms with respect

to ε gives

d

dt

[
q

θ

]
= ε

[
−ζ/2

√
2P/2√

2(P − P−1) 0

] [
q

θ

]
(27)

and

Ṗ = −1

2
ζεP (28)

The equation for phase ϕ is not considered; however,

the equation for θ is included in order to track the res-

onance condition θ = 0. As seen from Equation (27),

the condition θ ≡ 0 may be satisfied while the system

remains on the out-of-phase mode q = 0.

Equation (28) describes the amplitude of the out-of-

phase mode as a slow varying exponential function

P = P0 exp

(
−1

2
ζεt

)
(29)

where P0 = P(0).

By considering P as a quasi-constant parameter, one

can determine the type of equilibrium point of system

(27) as the system slowly drifts along the resonance

manifold θ = 0, or (P − P−1)q = 0. In particular, it is

seen that the resonance manifold bifurcates at P = ±1

in such a way that a nonzero in-phase component q may

occur with no violation of the 1:1 resonance condition.

This indicates an onset of the localization phenomenon,

which can be described as a growing in-phase mode
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Fig. 3 Global dissipative
dynamics of weakly
coupled oscillators near the
out-of-phase mode on the
‘amplitude plane’ under the
following parameters and
initial conditions:
ε = 0.005, ζ = 0.1,
ρ(0) = 0.001, s(0) = 0.7,
θ (0) = 0.0, ϕ(0) = 0.0, and
Tmax = 15000.0
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Fig. 4 Global dissipative
dynamics of the weakly
coupled oscillators near the
out-of-phase mode on the
‘amplitude plane’ under the
following parameters and
initial conditions:
ε = 0.005, ζ = 0.1,
ρ(0) = 0.05, s(0) = 0.7,
θ (0) = 0.0, ϕ(0) = 0.0, and
Tmax = 15000.0

Springer



Nonlinear Dyn (2008) 51:245–258 253

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

-0.2

-0.1

0

0.1

0.2

S

t 0=

ρρ

Fig. 5 Transient mode
localization under the
energy inflow due to
negative damping. The
parameters are as follows:
ε = 0.01, ζ = −0.01,
ρ(0) = 0.001, s(0) = 0.05,
θ (0) = 0.0, ϕ(0) = 0.0, and
Tmax = 25000.0
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Fig. 6 Magnified portion of
the previous figure
transformed to the original
‘amplitude plane’ α1α2
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Fig. 7 Representation of
the transient localization on
the energy versus time plane
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Fig. 8 The transient
dynamics from local to
out-of-phase normal mode
due to energy loss. The
parameters are as follows:
ε = 0.01, ζ = 0.01,
ρ(0) = 0.12, s(0) = 0.12,
θ (0) = 0.0, ϕ(0) = 0.0, and
Tmax = 20000.0

near the bifurcation point. Eliminating the phase θ from

system (27) gives

q̈ + ζεq̇ + ε2

(
1 + 1

4
ζ 2 − P2

)
q = 0 (30)

As the coordinate P is ‘frozen,’ the corresponding

characteristic equation has a couple of roots

λ1,2 = ε

(
−1

2
ζ ± i

√
1 − P2

)
(31)
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Fig. 9 Transition from the
localized to cooperative
dynamics on the energy
versus time plane

These roots determine the phase portrait of in-phase

dynamics near the out-of-phase mode.

Let us consider the case of negative damping

ζ < 0 under the assumption 0 < P0 < 1. In this

case, as follows from (31), the out-of-phase mode

is always unstable. However, as P grows accord-

ing to (29), the type of instability is changing as

follows:

(a) 0 < P < 1 (unstable focus): The in-phase com-

ponent oscillates with a slowly increasing ampli-

tude.

(b) 1 < P < 1 + ζ 2/4 (unstable node): There is no

more oscillations about the out-of-phase mode;

however, the in-phase modal amplitude still

grows at a slow rate ε|ζ |.
(c) 1 + ζ 2/4 < P (saddle point): The in-phase am-

plitude growth drastically accelerates because

the stiffness of oscillator (30) becomes negative.

The system drifts now along another branch of

the resonance manifold leading to localization.

In the case of positive damping ζ > 0, let us assume

that the system is initially above the bifurcation point

P0 > 1 + ζ 2/4. As P slowly decreases according to

(29), the type of equilibrium point is changing as fol-

lows:

(a) 1 + ζ 2/4 < P (saddle point),
(b) 1 < P < 1 + ζ 2/4 (stable node),

(c) 0 < P < 1 (stable focus).

Numerical tests on the corresponding nonlinear sys-

tem confirm all qualitative features of the local behav-

ior near the out-of-phase mode as described by the lin-

earized model (30). However, the linearized model does

not capture some properties of the global dynamics near

the locally unstable region. In particular, the in-phase

amplitude increase is limited by a global cycle as fol-

lows from Figs. 3 and 4.

So, the original system reveals a hierarchy of three

different temporal scales of the dynamics. The fastest

scale associated with the temporal rate of fast phase was

excluded by the averaging. Then, the dynamic process

described by system (27) is developed in a slow scale

determined by the parameter of coupling ε. Finally, as

follows from Equation (28), the coefficients of system

(27) are varying at the slowest rate estimated by the

damping coefficient ζε.

6 Concluding remarks

In this work, regular perturbation approaches to

strongly nonlinear transient dynamics have been devel-

oped based on exactly solvable oscillators. The devel-

oped tool was applied to tracking the mode localization

and delocalization phenomena in the 2 DOF system as

the energy is slowly pumped into or out of the system,

respectively. In particular, it was shown that the onset

of localization is associated with the bifurcation of 1:1

resonance manifold on the out-of-phase mode such that

the phase diagram of the in-phase component passes
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paths through unstable node to saddle point. Once the

amplitude of in-phase mode has reached the order of

out-of-phase mode, the energy becomes localized on

one of the two masses.

Although this study is based on the oscillators

with specific restoring force characteristics, the phe-

nomenon itself seems to have a general meaning. As

a further extension of this work, a coupled set of os-

cillators with arbitrary hardening characteristics could

be considered. Also, it would be important to increase

the number of DoFs by one, at least in order to find a

three-dimensional version of the transient localization.

Appendix A

Let us specify the system as follows

l̇ = μR(μl, s, ϕ, θ)

ṡ = μ2S(μl, s, ϕ, θ)

θ̇ = μQ(l, s) + μ2
(μl, s, ϕ, θ) (A.1)

ϕ̇ = �(μl, s) + μ2G(μl, s, ϕ, θ)

where μ is a small parameter.

Such kind of equations may occur when con-

sidering ‘essentially nonlinear’ systems with state-

dependent frequencies under different resonance

conditions.

Below, the averaging tool described in [14] is

adapted to the specific class of systems (A.1).

First approximation is obtained by keeping first-

order terms on the right-hand side of system (A.1) and

applying the averaging procedure with respect to the

fast phase ϕ. This gives

l̇ = μ〈R(0, s0, ϕ, θ)〉
θ̇ = μQ(l, s0) (A.2)

where s0 is constant in first order with respect to μ.

System (A.2) is easily integrated and the result gives

an error of order μ on time intervals of order 1/μ.

In many cases, however, first approximation may give

incomplete characterization of the system.

In order to illustrate the next step, let us consider

only first equation of system (A.1). This is sufficient

for illustration of the procedure which is sequentially

applied in the same way to other equations. Let us rep-

resent the first equation of (A.1) in the form

l̇ = μ〈R(0, s0, ϕ, θ )〉 + μ[R(0, s, ϕ, θ )

− 〈R(0, s0, ϕ, θ )〉] + μ2l R′
ρ(0, s0, ϕ, θ ) + O(μ3)

(A.3)

Following the idea of averaging, one must eliminate

the second term on the right-hand side by means of the

coordinate transformation

l = q + μ f (q, s, ϕ, θ ) (A.4)

Substituting (A.4) into (A.3) and taking into account

(A.1) gives

q̇ + μ

(
∂ f

∂q
q̇ + ∂ f

∂s
ṡ + ∂ f

∂ϕ
ϕ̇ + ∂ f

∂θ
θ̇

)
= μ〈R(0, s, ϕ, θ )〉 + μ[R(0, s, ϕ, θ )

−〈R(0, s, ϕ, θ )〉] + μ2q R′
ρ(0, s, ϕ, θ ) + O(μ3)

(A.5)

Now, the function f (q, s, ϕ, θ ) is determined from

the condition

�(0, s)
∂ f

∂ϕ
= R(0, s, ϕ, θ ) − 〈R(0, s, ϕ, θ )〉 (A.6)

which eliminates the fast phase ϕ from the equation in

first order of μ.

Further, f (q, s, ϕ, θ ) must be independent of q be-

cause the terms of order μ on the right-hand side

of Equation (A.6) do not depend on q. As a result,

Equation (A.5) takes the form

q̇ = μ〈R(0, s, ϕ, θ )〉 + μ2q R′
ρ(0, s, ϕ, θ ) (A.7)

−μ2

(
∂ f

∂ϕ
q�′

ρ(0, s) + ∂ f

∂θ
Q(q, s)

)
+ O(μ3)

Since the fast phase ϕ has been eliminated from

the terms of order μ, then the averaging procedure

applies to the terms of order μ2 analogously to the

first stage of the method. So, taking into account

the obvious relationship 〈∂ f/∂ϕ〉 = 〈∂ f/∂θ〉 = 0

gives

q̇ = μ〈R(0, s, ϕ, θ )〉 + μ2〈q R′
ρ(0, s, ϕ, θ )〉 + O(μ3)
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Within the same order of magnitudes, the above

equation is equivalent to

q̇ = μ〈R(μq, s, ϕ, θ)〉 + O(μ3) (A.8)

The second approximation, therefore, is a direct av-

eraging of the original Equation (A.1); however, the

original coordinate l is expressed by transformation

(A.4), which is determined by (A.6) in the form

l = q + μ

�(μq, s)

∫ ϕ

0

(R(μq, s, ϕ, θ)

− 〈R(μq, s, ϕ, θ)〉) dϕ + O(μ2) (A.9)

In this expression, the variable μq is back instead of

zero. Although the expression still approximates the co-

ordinate transformation in first order of μ, its form be-

comes compliant with Equation (A.8). Moreover, such

a modification often improves results of calculation.

Appendix B

In order to analytically calculate the integrals of averag-

ing, the trigonometric expansions are used as follows:

1√
1 − z2 sin2 ϕ

=
1∑

k=0

A2k(z) cos 2kϕ, |z| < 1

(B.1)

A0 = 2
K

π

A2 = 4
2E + (z2 − 2)K

π z2

arcsin(z sin ϕ) =
2∑

k=1

B2k−1(z) sin (2k − 1)ϕ (B.2)

B1 = z + 1

8
z3 + 3

64
z5 + 25

1024
z7

+ 245

16384
z9 + O(z11)

B3 = − 1

24
z3 − 3

128
z5 − 15

1024
z7

− 245

24576
z9 + O(z11)

cos ϕ

1 − z2 sin2 ϕ
=

5∑
k=1

Q2k−1(z) sin(2k − 1)ϕ (B.3)

Q1 = 2

z2

√(
1 − z2

)[
−1+z2+

√(
1 − z2

)]

Q3 = 2

z4

√(
1 − z2

) [4 − 5z2 + z4

+ (3z2 − 4)

√(
1 − z2

)
]

where K = K (z2) is the complete elliptic integral of

the first kind, and E = E(z2) is the complete elliptic

integral.

Note that the coefficients of expansion (B.1) are ex-

act, and therefore, the essentially nonlinear specific of

the system is preserved.

Coefficients of the averaged equations are listed as

follows:

R0 = −ζ

2

[
n1 Q1(α1)α1

�(α1)2
+ n2 Q1(α2)α2

�(α2)2

]
R1 = 1

4

[
n1[2A0(α1) + A2(α1)]B1(α2)

�(α1)2

− n2[2A0(α2) + A2(α2)]B1(α1)

�(α2)2

]
R3 = 1

4

[
n1 A2(α1)B3(α2)

�(α1)2
− n2 A2(α2)B3(α1)

�(α2)2

]
S0 = −ζ

2

[
∂x1

∂s

Q1(α1)α1

�(α1)2
+ ∂x2

∂s

Q1(α2)α2

�(α2)2

]

×
(

∂x1

∂s

∂α1

∂s
+ ∂x2

∂s

∂α2

∂s

)−1

S1 = 1

4

[
∂x1

∂s

[2A0(α1) + A2(α1)]B1(α2)

�(α1)2

− ∂x2

∂s

[2A0(α2) + A2(α2)]B1(α1)

�(α2)2

]

×
(

∂x1

∂s

∂α1

∂s
+ ∂x2

∂s

∂α2

∂s

)−1

S3 = 1

4

[
∂x1

∂s

A2(α1)B3(α2)

�(α1)2
− ∂x2

∂s

A2(α2)]B3(α1)

�(α2)2

]

×
(

∂x1

∂s

∂α1

∂s
+ ∂x2

∂s

∂α2

∂s

)−1
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G0 = 2A0(α1)B1(α1) + A2(α1)[B3(α1) − B1(α1)]

2�(α1)3α1

G1 = [−2A0(α1) + A2(α1)]B1(α2)

4�(α1)3α1

G3 = − A2(α1)B3(α2)

4�(α1)3α1


0 = −2A0(α1)B1(α1) + A2(α1)[B3(α1) − B1(α1)]

2�(α1)3α1

+ 2A0(α2)B1(α2) + A2(α2)[B3(α2) − B1(α2)]

2�(α2)3α2


1 = [2A0(α1) − A2(α1)]B1(α2)

4�(α1)3α1

+ [−2A0(α2) + A2(α2)]B1(α1)

4�(α2)3α2


3 = A2(α1)B3(α2)

4�(α1)3α1

− A2(α2)B3(α1)

4�(α2)3α2
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