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Abstract A simple Jeffcott rotor is considered with

broadband temporal random variations of internal

damping which are described using the theory of

Markov processes. Transverse response of the rotor

with stiffening nonlinearity either in external damp-

ing or in restoring force is studied by stochastic aver-

aging method. This method reduces the problems to

stochastic differential equations (SDEs) for which an-

alytical solutions are obtained for the Fokker–Planck–

Kolmogorov (FPK) equations for stationary probability

density functions (PDFs) of the squared whirl radius of

the shaft. These PDFs do exist beyond the dynamic in-

stability threshold and they correspond to forward whirl

of the rotor. At rotation speeds just slightly above the

instability threshold, the response PDF has integrable

singularity at zero which corresponds to intermittency

in the response.
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1 Introduction

Internal or “rotating” damping is a well-known source

of potential dynamic instability of shafts operating at

supercritical speeds [1, 2]. This kind of destabilizing

damping may be present due to energy dissipation in

the shaft’s material or rubbing between rotating com-

ponents. Similar effect, in some cases, may also be a

result of fluid flow in journal bearings, “slot effect”

in fluid machinery, etc., with model of internal damp-

ing providing at least qualitatively adequate descrip-

tion for flow-induced dynamic instabilities [2]. In such

cases, certain temporal random variations in flow con-

ditions may be expected sometimes which may result

in “smeared” instability threshold. The corresponding

stochastic lateral response of the shaft should be studied

then both for reliability predictions and for interpreting

tests results.

The case where the variations are slow compared

with the rotor’s natural frequency had been studied in

[3]. In that case, the shaft may be occasionally brought

into the instability domain for brief periods of time even

if it is nominally stable, i.e., if mean or expected value

of the internal damping coefficient corresponds to sta-

ble rotation of the shaft – perhaps close to the instabil-

ity threshold. Statistical analysis of the corresponding

transient short-time sporadic outbreaks in response has

been made in [3] using parabolic approximation for

peaks of the coefficient of the internal damping [4].

The same rotor is considered in this paper but for

different case of temporal random variations in the
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coefficient of internal damping. Namely, time-variant

part of this coefficient is assumed to be a stationary

random process which is broadband with respect to

the shaft’s natural bandwidth, however, has a negligi-

bly small value of its power spectral density (PSD) at

twice the natural frequency of the rotor. Thus, the the-

ory of Markov processes [4–6] may be applied includ-

ing the Fokker–Planck–Kolmogorov (FPK) equation

for the response probability density function (PDF).

This change in model of random excitation implies sig-

nificant changes in the response pattern which require

extension in the rotor’s model. Namely, rapid temporal

variations in the internal damping coefficient, as con-

sidered here, do not provide adequate time for transient

instability to develop in case of nominally stable rotor;

this can be clearly seen from the fact that the stationary

response PDF degenerates into Dirac delta-function at

zero which implies zero response in this case. Thus,

analysis is made here for the rotor which is nominally

unstable, i.e. one with mean value of the internal damp-

ing coefficient corresponding to steady rotation with

frequency beyond the threshold for dynamic instabil-

ity.

Thus, the above change in frequency content of the

temporal variations considered could not but influence

the adequate rotor’s model, requiring some nonlinear-

ity to be accounted for, which would restrict growth of

the response. Thus, positive cubic nonlinearity is in-

cluded here – either in external or “nonrotating” damp-

ing or in restoring force. The response analysis is made

then with the use of stochastic averaging method which

uncouples stochastic differential equations (SDEs) of

forward-whirl motion from those of backward whirl

(the latter is not excited at all). Furthermore, a sin-

gle first-order SDE is derived for a squared radius of

forward whirl so that the corresponding FPK equation

can be solved analytically. This results in stationary

PDF of the squared radius of whirl which is found to

correspond to the gamma-distribution in case of non-

linearity in damping. In the vicinity of the instability

threshold rotation speed, this PDF has a singularity at

zero whirl radius. The singularity is nonintegrable for

rotation speeds below the “nominal” instability thresh-

old, i.e. one for the rotor without random variations in

damping; this means that the radius of transverse re-

sponse is identically zero for dynamically stable shaft

in spite of the temporal random variations in the inter-

nal damping. On the other hand, the singularity in PDF

is integrable in case of dynamic instability. Thus, it is

found that the broadband random variations in the in-

ternal damping, as considered here, do not produce any

shift in the threshold for dynamic instability: boundary

for almost sure stability is the same as one for neu-

tral stability of the “nominal” shaft. On the other hand,

the rotor response within the instability domain may

be very significantly influenced by the variations, es-

pecially near the instability threshold. In particular, the

response may exhibit intermittency whereby very rare

high-level outbreaks in response alternate with very

long periods of almost zero response. The solution for

response PDF can be used for probabilistic descrip-

tion of the shaft behaviour, particularly in the case of

intermittency.

2 Analysis by stochastic averaging – case of
nonlinearity in damping

Consider a simple Jeffcott rotor with weightless shaft of

a stiffness K rotating with angular velocity ν. The hori-

zontal shaft carries a disk of mass m at its midspan and

possesses external or “nonrotating” damping and inter-

nal or “rotating” damping with corresponding damping

coefficients cn and cr , respectively; cubic nonlinearity

in the nonrotating damping will also be accounted for.

Furthermore, stationary zero-mean temporal random

variations in the coefficient of the internal damping

will be included in the equation of motion.

Let X(t) and Y(t) be lateral horizontal and verti-

cal displacements, respectively, of the disk’s centre

in the inertial frame with origin at the undeformed

shaft’s axis. Then, neglecting gravity force for suffi-

ciently high rotation speeds, one can write the follow-

ing single equation of motion for complex displacement

Z = X + iY , i = √−1 [1, 2]

Z̈ + 2(α + β(1 + ξ (t)) + γd |Z2|)Ż

+ �2 Z − 2iβ(1 + ξ (t))νZ = 0 (1)

Here, �2 = K/m, α = cn/2m, β = cr/2m and

γd > 0, whereas ξ (t) is a stationary zero-mean broad-

band random process with PSD �ξξ (ω). This PSD is

assumed to be a decreasing function which is broad-

band in the vicinity of zero frequency with respect to

the shaft’s natural bandwidth, as defined by its total

damping factor α + β; however, its values at ω ≥ 2�

are assumed to be negligibly small.
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In the absence of any temporal random variations of

parameters, Equation (1) – with ξ (t) ≡ 0 – clearly has

a trivial solution Z (t) ≡ 0. This solution is stable if ν <

ν∗, and unstable, if ν > ν∗, where ν∗ = � · (1 + α/β)

is instability threshold of the shaft; at this rotation

speed, Equation (1) with ξ (t) ≡ 0 has a neutrally stable

periodic solution with period 2π/� [1, 2]. The stochas-

tic system (1) will be studied here for the case where

the shaft operates at steady rotation speed. It will be as-

sumed to be lightly damped, with damping coefficients

α, β, γd being proportional to a small parameter.

Solution to the SDE (1) may, now, be sought in the

form

Z = Z+ exp(i�t) + Z− exp(−i�t),

Ż = i�[Z+ exp(i�t) − Z− exp(−i�t)] (2)

Here, Z+ and Z− are complex amplitudes of the for-

ward and backward whirl, respectively, which should

be slowly varying functions of time because of the

adopted assumptions. Therefore, the stochastic aver-

aging method can be applied after the basic equation

is reduced to a form with small parameter on the right-

hand side [4–6]. This reduction can be implemented by

resolving the relations (2) for Z+ and Z− and differen-

tiating as described in [7] so that

Ż+ = 1

2

d

dt

[
Z + Ż

i�
exp(−i�t)

]
= 1

2i�
(Z̈ + �2 Z ) exp(−i�t)

= 1

2i�
[−2(α + β(1 + ξ (t)) + γd |Z2|)Ż

+ 2iνβ(1 + ξ (t))Z ] exp(−i�t)

= −[α + β(1 + ξ (t)) + γd{|Z2
+| + |Z2

−|
+ Z+ Z∗

− exp(2i�t) + Z− Z∗
+ exp(−2i�t)}]

× [Z+ exp(i�t) − Z− exp(−i�t)] exp(−i�t)

+
(
β

ν

�

)
(1 + ξ (t))[Z+ exp(i�t)

+ Z− exp(−i�t)] · exp(−i�t)

∼=
[

(α + β)

(
ν

ν∗
− 1

)
− γd |Z2

+|
]

Z+

+ β

(
ν

� − 1

)
Z+ς (t) (3)

where a star in superscript denotes complex conjugate

quantities; similarly,

Ż− ∼= −
[

(α + β) ·
(

1 + ν

ν∗

)
+ γd |Z2

−|
]

Z−

−β

(
ν

� + 1

)
Z−ς (t) (4)

The last, approximate equalities in the SDEs (3)

and (4) are actually obtained by applying principle

of stochastic averaging according to the Stratonovich–

Khas’minsky theorem [4–6]. For terms without ran-

dom excitation, the corresponding averaging over the

period resulted just in neglecting terms with complex

exponent factor exp(2i�t) and exp(−2i�t). As for the

terms with random process ξ (t), only those without the

above complex exponent factors are retained in the lim-

iting white-noise approximation of the stochastic aver-

aging method [4–6] since these factors bring quantity

�ξξ (2�) into the corresponding drift coefficients, and

this quantity is assumed to be negligibly small; in the

retained terms, ς (t) may be regarded as an equivalent

white noise with intensity factor σ 2 = 2π�ξξ (0).

Thus, the limiting SDEs (3) and (4) are found to be

completely uncoupled. The latter of these, which de-

scribes backward whirl of the rotor, has the obvious

trivial solution Z− ≡ 0 which is almost surely stable

at any value of rotation speed. Therefore, analysis of

the complex SDE (3), which describes forward whirl,

may provide complete description of motion. Thus,

two equivalent SDEs for real and imaginary parts Z+R

and Z+I of Z+ may be written accordingly and trans-

formed to a single SDE for squared radius of forward

whirl

V = |Z2| = |Z2
+| = Z2

+R + Z2
+I = X2 + Y 2 (5)

where the last equality is obtained from the condition

Z− ≡ 0 which implies Ẋ = −�Y, Ẏ = �X . As long

as the SDE (3) is a “physical” one, i.e. in Stratonovich

sense [5, 6], common rule for transformation of vari-

ables can be used rather than Ito’s formula [6] so

that

V̇ = 2(Z+R Ż+R + Z+I Ż+I ) = − f (V ) + h(V )ς (t)

(6)
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where

f (V ) = 2

[
−(α + β)

(
ν

ν∗ − 1

)
+ γd�

2V

]
V

and

h(V ) = 2β

(
ν

� − 1

)
(7)

Concluding this section, it seems relevant to present

some comments on behaviour of shafts with more

general types of damping nonlinearity. Thus, let the

state-dependent part of the damping coefficient γd |Z2|
in the governing Equation (1) be replaced by γd ·
g(|Z2|, |Ż2|). The resulting approximate SDEs (3) and

(4) would then be coupled in general. For example, in

case g = γd |Ż2|, the corresponding nonlinear terms in

the SDEs (3) and (4) would be γd�
2(|Z2

+| + 2|Z2
−|)Z+

and γd�
2(|Z2

−| + 2|Z2
+|)Z−, respectively. It may be ex-

pected, however, that the above analysis of the SDE (3)

with Z− ≡ 0 would still be valid – at least if the inten-

sity of random excitation is not too high – as long as in

case ς (t) ≡ 0, the solution Z− ≡ 0 would be the only

one for the extended SDE set (3), (4) with nonlinear

parametric coupling as described. Of course, stochas-

tic stability analysis of the response with Z− ≡ 0 for

this set requires a separate study.

3 Solution for the PDF of squared whirl radius

As long as the problem is reduced now to a single first-

order Stratonovich SDE (6) for the squared whirl ra-

dius V(t), the analytical solution is available to the FPK

equation for its stationary PDF p(V) [5]. Namely

p(V ) = C

h(V )
exp

[
− 2

σ 2

∫
f (V )

h2(V )
dV

]
(8)

where C is a constant that should be obtained from nor-

malization condition of p(V) on [0, ∞). Substituting

expressions (7) into the general solution (8) and evalu-

ating integrals yields the following explicit expression

for the PDF of scaled whirl radius which is normalized

in [0, ∞) for the case where ν − ν∗ is positive:

p(z) = ((ε))−1zε−1e−z

where

z = γd�
2V

[βσ (ν/� − 1)]2

and

ε = (α + β)(ν/ν∗ − 1)

[βσ (ν/� − 1)]2
(9)

Here,  is the gamma-function. Thus, it can be

seen that at rotation speeds beyond instability thresh-

old, the squared radius of (forward) whirl V(t) is a

gamma-distributed stationary random process. Below

this threshold, that is for ε < 0, the function p(V) as

presented in relation (8) still satisfies the FPK equa-

tion; however, its singularity at V = 0 is not integrable.

This solution which, actually, is degenerated into the

Dirac delta-function δ(V ) implies the absence of any

response in the stochastically stable system (6).

Thus, it can be seen that present broadband random

variations with restricted PSD in the coefficient of in-

ternal damping of a two-degrees-of-freedom (TDOF)

rotor do not produce any shift in the instability bound-

ary. In this respect, the present case is different from that

of random variations in natural frequency of a single-

degree-of-freedom (SDOF) system which may produce

such a shift in the boundary for negative-damping-type

instability [4]; that shift, due to stochastic parametric

instability, is proportional to value of variations’ PSD

at twice the natural frequency.

Furthermore, mean value of the squared radius of

whirl is found to be insensitive to the level of random

variations and equal to the squared whirl radius V0 of

the rotor with constant internal damping, the latter be-

ing defined as a nonzero root of f (V) that is of drift or

“nonstochastic” part of the right-hand side of the SDE

(7). Indeed, using property of gamma-function for eval-

uating the integral of expression (8), one can obtain the

following after substituting expressions (9):

〈V 〉 = [βσ (ν/� − 1)]2〈z〉
γd�2

= (α + β)(ν/ν∗ − 1)

γd�2
=V0,

where

〈z〉 =
∫ ∞

0

zp(z) dz = (ε + 1)

(ε)
= ε (10)

and angular brackets denote expectation operator.
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On the other hand, influence of damping variations

on the response pattern may be very significant espe-

cially in case of operation just slightly beyond the insta-

bility threshold that is for small ν − ν∗. In particular,

the response may be of an intermittent nature within

range of small ε whereby very rare high-level out-

breaks in response alternate with very long periods of

almost zero response. Actually, the gamma-distributed

response with integrable singularity in its stationary

PDF has been derived originally in [4] for a nonlin-

early damped SDOF system with random parametric

excitation. However, correlation between this type of

PDF and intermittent nature of the response has been

established for that system much later [8]. Such a cor-

relation has also been established in [9], where solu-

tion in the form of product of gamma-distributions had

been obtained for population sizes of two interacting

species described by the Lotka–Volterra model as used

in population dynamics. It had been suggested in [5, 9]

to describe the degree of intermittency for a stationary

gamma-distributed process by ratio of stay times above

and below its mean value. Thus, for the present process,

V(t) with PDF (9), this ratio is found to be

λ= Prob {V > V0}
Prob {V < V0} =

∫ ∞
V0

p(V ) dV∫ V0

0
p(V ) dV

= (ε, ε)

(ε) − (ε, ε)

(11)

where function  that depends on two arguments is

the incomplete gamma-function. Both asymptotic for-

mulae for complete and incomplete gamma-functions

and direct numerical calculations show that λ → 0 with

ε → 0 [9].

Yet another potential indicator of intermittency in

a stationary random process is provided by condition

that its ratio of standard deviation to mean value is

very large compared with unity. Evaluating relevant

weighted integral of p(V) to find the mean square of

V(t) and using expression (9), one can obtain this ratio

as

[〈V 2〉 − 〈V 〉2]
1/2

〈V 〉 = [〈z2〉 − 〈z〉2]1/2

〈z〉 = 1√
ε

where

〈
z2

〉 =
∫ ∞

0

z2 p(z), dz = (ε + 2)

(ε)
= ε(ε + 1) (12)

This indicator of intermittency can be used in cases

where the analytical solution for the response PDF is

not available but method of moments as based on direct

SDE calculus can be applied. Thus, in present case,

expression (10) can be derived by equating to zero the

expectation of the right-hand side of the Stratonovich

SDE (6) after transformation of variable u = ln V is

applied. And expression for 〈V 2〉 can be obtained by

direct equating to zero the expectation of the right-hand

side of the Stratonovich SDE (6) and using formula for

Wong–Zakai correction [6] to calculate the expectation

〈V ξ (t)〉.

4 The case of nonlinearity in restoring force

In this section, rotor with “stiffening” nonlinearity in

restoring force rather than in damping is considered

with its model being the same otherwise. Thus, the

equation of motion is written as

Z̈ + 2 [α + β + β · ξ (t)] Ż + �2(1 + γ f |Z2|)Z

− 2iβ[1 + ξ (t)]νZ = 0 (13)

Response analysis follows similar lines as for the

case of nonlinear damping but with an important mod-

ification which is dictated by properties of the periodic

solution for the shaft without any random variations of

parameters [2]. Solution to Equation (13) with ξ (t) ≡ 0

for the case ν > ν∗ may be represented in the form

Z (t) = R exp (i�t)

where

� = νβ

α + β
= �ν

ν∗

and

γ f R2 =
(

ν

ν∗

)2

− 1

so that

�2 = �2(1 + γ f V )
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where

V = R2 (14)

Expressions (14) for � and radius of whirl R has

been obtained here by substituting expression for Z(t)
into Equation (12) and equating to zero the imaginary

and real parts, respectively, of the resulting coefficients

of Z(t). The solution (14) clearly describes forward

whirl of the shaft operating at rotation speed beyond

the instability threshold.

The solution to the full SDE (13) is now represented

in the form similar to expression (2) but with frequency

of oscillations being dependent, now, on the squared

whirl radius according to relation (14):

Z = Z+ exp(i�t) + Z− exp(−i�t),

Ż = i�[Z+ exp(i�t) − Z− exp(−i�t)],

� = �(1 + γ f V )1/2 (15)

The whole procedure for analysis by stochastic aver-

aging is now repeated with � replaced by �(V ), where

V(t) is slowly varying function which is held fixed dur-

ing averaging over the period. This results in the SDE

(6) with

f (V ) = −2(α + β)

[
ν

ν∗
√

1 + γ f V
− 1

]
V

and

h(V ) = 2β

(
ν

�
√

1 + γ f V
− 1

)
V (16)

The corresponding general solution (8) may once

again be qualified to represent the stationary PDF p(V)

of V(t) provided it satisfies conditions for integrability

both at zero and at infinity. The former of these con-

ditions is clearly seen to be the same as for the case

of nonlinearity in damping – the shaft without random

variations in damping should be unstable in the linear

approximation; moreover, intermittent behaviour may

be expected once again for small ν − ν∗. The latter

condition may be satisfied for the present case of stiff-

ening nonlinearity in restoring force which means that

this nonlinearity may restrict growth of whirl radius in

case of instability (in the linear approximation). This

fact is well known for shafts without random varia-

tions in damping [2]; however, the variations may bring

in a destabilizing effect due to nonlinearity in the ex-

pression (16) for h(V), thereby reducing domain where

steady-state response does exist.

5 Conclusions

Transverse response of a Jeffcott rotor with nonlin-

ear external damping and broadband temporal random

variations of internal damping has been studied using

theory of Markov processes and asymptotic stochas-

tic averaging method. The latter leads to two reduced

SDEs for complex amplitudes of forward and backward

whirl. These SDEs are found to be completely uncou-

pled as long as PSD of the randomly varying coefficient

of internal damping has a negligibly small level at twice

the natural frequency of the rotor. The SDE of backward

whirl has the almost surely stable trivial (zero) solution

at any rotation speed whereas nontrivial solution to the

SDE of the forward whirl does exist if rotation speed of

the shaft exceeds its threshold for dynamic instability.

Analytical solution is obtained for the FPK equation

for stationary PDF of the squared whirl radius of the

shaft which corresponds to forward whirl of the rotor.

At rotation speeds just slightly above the instability

threshold, this response PDF has integrable singular-

ity at zero which corresponds to intermittent nature in

the response and can be described using the analyti-

cal solution for its PDF. Similar results have also been

obtained for the case of nonlinearity in restoring force.
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