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Abstract Approximate symmetries have been defined

in the context of differential equations and systems of

differential equations. They give approximately, con-

served quantities for Lagrangian systems. In this paper,

the exact and the approximate symmetries of the sys-

tem of geodesic equations for the Schwarzschild met-

ric, and in particular for the radial equation of motion,

are studied. It is noted that there is an ambiguity in the

formulation of approximate symmetries that needs to

be clarified by consideration of the Lagrangian for the

system of equations. The significance of approximate

symmetries in this context is discussed.
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1 Introduction

Much of the development of geometry has been driven

by its application to kinematics and dynamics [1, 2]. Of

special relevance for our purposes here is the develop-

ment of Lie symmetry methods [3]. In geometry they

yield isometries [4]. They also provide methods for

solving differential equations [5]. Symmetries are very

useful because of their role in giving conservation laws

through Noether’s theorem [6]. The system of geodesic

equations inherits the symmetries of the manifold and

has an additional dilation algebra [7]. Often a manifold

does not possess some symmetry but nearly does so.

These “approximate symmetries” of manifolds should

give valuable information about them. Methods have

been developed for determining the approximate sym-

metries of ordinary differential equations ODEs [8, 9]

and systems of differential equations (DEs) [10]. Sym-

metries have also been extensively used in the general

theory of relativity [11]. The Schwarzschild metric

has much fewer symmetries (four generators) than the

Minkowski metric. However, one would expect that

in the limit of small gravitational mass we should re-

cover the “lost” symmetries. Hence, we should expect

to find some “approximate isometries”. They can be

looked for by “crossing the bridge” provided by [7]

from geometry to differential equations and looking at
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the approximate symmetries of the system of geodesic

equations.

In this paper, we look at the approximate sym-

metries of the system of geodesic equations for the

Schwarzschild metric. Interesting insights emerge from

looking at a single “reduced” equation from the sys-

tem, i.e. the radial orbital equation. In the rest of this

section, a very brief review of symmetries and approx-

imate symmetries for systems of differential equations

is given to establish the notation used. In Section 2,

isometries are discussed as symmetries in the geomet-

rical context and as the symmetries of the Lagrangian

for the arc length. This leads to the consideration of ap-

proximate isometries. Then the Schwarzschild metric

is discussed in Section 3 and a summary and discussion

is given in Section 4.

The isometries are given by the Killing equation

Lkg = 0, (1)

which can be written in component form as

gab,ckc + gackc
,b + gbckc

,a = 0, (2)

where gab are the components of the metric tensor g
and ka are the components of the Killing vector field k,

which gives the isometry and the Einstein summation

convention, where repeated indices are summed over,

has been used.

On the other hand, the symmetries of a system of

ODEs

E
(
s; x(s), x′(s), x′′(s), . . . , x(n)(s)

) = 0, (3)

under point transformations

(s, x) −→ (ξ (s, x), η(s, x)), (4)

are given by operators

X = ξ
∂

∂s
+ η.

∂

∂x
+ η(1).

∂

∂x′ + · · · + η(n).
∂

∂x(n)
, (5)

such that on the solution of E = 0 we have

XE = 0. (6)

If

E = E0 + εE1 + O(ε2) (7)

and ∃ an X0 such that

X0E0 = 0, (8)

and we can define X1 such that

X1E0 = −X0E1, (9)

so that

XE := (X0 + εX1)E = O(ε2), (10)

then X0 + εX1 is called a first-order approximate sym-
metry of E = 0 (see [8–10]).

2 Isometries and approximate isometries

Isometries are vector fields along which the metric is

left invariant. In other words, the metric transported

along a curve to which the isometry is tangent, remains

unchanged. The transport is provided by using Taylor’s

theorem with the directional derivative in the exponen-

tial. However, the derivative used has to be the geo-
metrical, Lie derivative [11] and not the usual intrinsic

derivative (which is the contraction of the vector field

with the covariant derivative). Thus, for an isometry k,

we require that

g(a + k) = exp(Lk)g(x)|x=a = g(a). (11)

This requirement is equivalent to the Killing

Equation (1) which can be written in component form

as (2).

The metric tensor g defines the arc length along a

curve

ds2 = dx · g · dx, (12)

so that we have

1 = gabẋa ẋb. (13)

This can be regarded as an equation for a Lagrangian

dependent on xa and its derivative ẋ a , L[xa, ẋ a] = 1,

as gab is a function of xa , which yields the geodesic

equations

ẍ a + �a
bc ẋb ẋ c = 0, (14)
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as the Euler–Lagrange equations, where

�a
bc = 1

2
gad (gbd,c + gcd,b − gbc,d ). (15)

Consequently, all isometries are symmetries of the

geodesic equations. Since Noether symmetries yield

conservation laws, isometries give quantities that are

conserved under the motion.

We can follow the procedure for defining approx-

imate symmetries of differential equations to define

approximate isometries. Writing K = k + εl and G =
g + εh, where K and G are the isometry generator and

the metric for the space under consideration and k and

g are the exact isometries and the metric for the space

whose isometries are known. If Equation (1) holds, we

can define the approximate isometry l by the require-

ment that it also hold to O(ε2) with G and K replacing

g and k. This yields to the equation in component form,

lcgab,c + lc
,bgab + lc

,agbc

= −(
kchab,c + kc

,bhac + kc
,a

)
hbc. (16)

On the other hand, we could have used the approxi-

mate symmetries of the geodesic equations, excluding

the re-parameterization symmetries, to define the ap-

proximate isometries. This procedure could, in princi-

ple, bring in non-Noether approximate symmetries due

to the possibility of the re-parameterization symmetry

of geodesics “mixing with” the approximate symmetry

in much the same manner as they did for the system

of geodesic equations in flat spaces. It is not entirely

clear that this would, indeed, occur or what signifi-

cance (if any) should be attached to such symmetries.

For the Noether symmetries we expect that the approx-

imate symmetries should yield approximate conserva-

tion laws and hence, we would get approximately con-

served quantities. Consequently, it would be useful to

apply the latter procedure to a specific case and check

what occurs. Here, we use it for the Schwarzschild

metric.

3 Approximate symmetries for the
Schwarzschild metric

The isometries of Minkowski space have the Poincarè

algebra, so(1, 3) ⊕s R4, where ⊕s stands for the

semidirect sum (denoting that the operations in the

sub-algebras do not commute). Note that so(1, 3) is

isomorphic to so(3) ⊕ so(3). This algebra corresponds

to the conservation of angular momentum (one of the

so(3)s), “spin angular momentum” (the other so(3))

and the (linear) energy-momentum (R4). The symme-

try generators are

X0 = ∂/∂t,

X1 = cos φ∂/∂θ − cot θ sin φ∂/∂φ,

X2 = sin φ∂/∂θ + cot θ cos φ∂/∂φ,

X3 = ∂/∂φ, (17)

with the symmetry algebra R ⊕ so(3) corresponding

to the conservation of energy and angular momentum;

and

X4 = sin θ cos φ
∂

∂r
+ cos θ cos φ

r

∂

∂θ

− csc θ sin φ

r

∂

∂φ
, (18)

X5 = sin θ sin φ
∂

∂r
+ cos θ sin φ

r

∂

∂θ

+ csc θ cos φ

r

∂

∂φ
, (19)

X6 = cos θ
∂

∂r
− sin θ

r

∂

∂θ
, (20)

which give the conservation of linear momentum and

X7 = r sin θ cos φ

c

∂

∂t
+ ct

(
sin θ cos φ

∂

∂r

+ cos θ cos φ

r

∂

∂θ
− csc θ sin φ

r

∂

∂φ

)
, (21)

X8 = r sin θ sin φ

c

∂

∂t
+ ct

(
sin θ sin φ

∂

∂r

+ cos θ sin φ

r

∂

∂θ
+ csc θ cos φ

r

∂

∂φ

)
, (22)

X9 = r cos θ

c

∂

∂t
+ ct

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
, (23)

which give the conservation of spin angular momentum

due to Lorentz invariance.

The symmetry algebra for the geodesic equations

is sl(4, R), which has many symmetries that do not
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correspond to conservation laws, arising from the “mix-

ing” of the geodesic re-parameterization generators

with the Noether symmetry generators. On account

of the extra symmetries of the geodesic equations one

would expect that it should be the direct definition of ap-

proximate isometries, by Equation (16), which would

be useful.

The field of a point gravitational source at rest at the

origin is given by the Schwarzschild metric [12]

ds2 = eν(r )dt2 − e−ν(r )dr2 − r2dθ2 − r2 sin2 θdφ2,

(24)

where

eν(r ) = 1 − 2GM/c2r, (25)

and G is Newton’s gravitational constant, M is the mass

of the point gravitational source and c is the speed of

light in vacuum. This metric has four isometries X0, X1,

X2 and X3, corresponding to the conservation of energy

and angular momentum. The geodesic equations have

the symmetries given by the above isometry algebra

added to the dilation algebra d2, generated by the re-

parameterization allowed for the geodetic parameter.

Note that conservation of linear momentum is “lost”

as a test particle put at a finite distance from the grav-

itational source will start to move. Further, the “spin

angular momentum” conservation is also “lost”, as the

motion of the test particle will no longer be Lorentz

invariant in the field of the gravitating source.

Considering the definition of approximate symme-

tries by Equation (16), with ε defined to be 2GM/c2,

we obtain a system of 10 linear first-order partial differ-

ential equations for l, of which 7 are nonhomogeneous.

Due to this non-homogeneity there is no guarantee that

there is any (even the trivial) solution. However, if there

is, then the “00” part of Equation (16) is

l0
,0 = − 1

2r2
(k1 − 2rk0, 1). (26)

Here the k0 and k1 are, respectively, the time and radial

components of a general linear combination of the full

set of Xs given above. As is easily seen, there will be

six arbitrary parameters in the expression for l0
,0. This

corresponds to a 6-parameter energy re-scaling sym-

metry (for the flat 3-space) that is not contained in the

“lost” symmetries. Though it would be interesting to

explore the significance of the resulting set of sym-

metries, it is clear that they will not be what we were

looking for here. These symmetries are for the met-

ric tensor itself and not for the Lagrangian constructed

from it. For the Lagrangian giving the equations of

motion, which yield the conserved quantities, we must

look for the (Noether) symmetries of the geodesic

equations.

To avoid dealing with the full system of equations,

we can first use the above symmetries to reduce the

system to a single orbital equation

d2u

dφ2
+ u = G M

h2
+ 3G M

c2
u2, (27)

where h is the classical angular momentum per unit

mass and u = 1/r . In the classical limit c → ∞ it gives

the classical orbital equation. This has only one sym-

metry, corresponding to the conservation of azimuthal

angular momentum, ∂/∂φ apart from the symmetry of

the dilation group. We can now look at the approximate

symmetries of this equation, with the small parameter

ε = 2G M/c2. This equation has two stable approxi-

mate symmetries

Xa1 = sin φ∂/∂u + ε(2 sin φ∂/∂φ + u cos φ∂/∂u),

Xa2 = cos φ∂/∂u − ε(2 cos φ∂/∂φ − u sin φ∂/∂u).

(28)

At best, only some of the exact symmetries “lost”

in going from Minkowski to Schwarzschild space have

been recovered. Since the orbital equation had been

derived by using the symmetries to restrict the mo-

tion to an (arbitrarily chosen) equatorial plane, it could

be expected that all of them will reappear as ap-

proximate symmetries in the full system of geodesic

equations

ẗ + ν ′ ṫ ṙ = 0, (29)

r̈ + 1

2
(eν)′(eνc2 ṫ2 − e−ν ṙ2) − reν(θ̇2 + sin2 θφ̇2)

= 0, (30)

θ̈ + 2

r
ṙ θ̇ − sin θ cos θφ̇2 = 0, (31)

φ̈2 + 2

r
ṙ φ̇ + 2 cot θ θ̇ φ̇ = 0. (32)
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Here ν ′ is given by

ν ′ = 2GM/c2r2

1 − 2GM/c2r
. (33)

A problem arises in setting up the equations

for the approximate symmetries for the system of

Equations (29)–(32). In Equation (33) we can write

ν ′ = ε/r2 + O(ε2), (34)

as the lowest order approximation, instead of the correct

expression

ν ′eν = ε/r2. (35)

One would then tend to cancel off the extra eν left in

the equation. The result is not the same as taking the

correct expression! The problem is still worse. There is

another term with ν ′e−ν . Which way should this term

be included? We could have taken the approximation to

just be −ν ′, or as that term with e−2ν , or keep it with the

e−ν . To get the “correct” one we need to go back to the

first principles in the formulation of geodesic equations

as the Euler–Lagrange equations for extremising the arc

length with the Lagrangian gi j ẋ i ẋ j , requiring that the

metric be static and spherically symmetric. In that case,

we must treat the eν as one function and e−ν as a totally

distinct function, as they are varied separately. In that

case, we get Equation (30) as

r̈ + ε

2r2
c2 ṫ2 − ε

2r2
ṙ2 − r

(
1 − ε

r

)
(θ̇2 + sin2 θφ̇2)

= 0. (36)

With the “correct” expression used, one recovers the

previous conservation laws as approximate conserva-

tion laws. The new approximate (variational) symmetry

generators are exactly the same as the exact symme-

try generators that were “lost” due to the gravitational

field. Note that Lorentz invariance is recovered as an

approximate symmetry in the gravitational field. So the

‘trivial’ (in the sense that they are epsilon multiples of

the exact symmetries) approximate symmetries provide

all the known conservation laws approximately. That is,

the conservation laws are approximately inherited by

the perturbed geodesic equations of the Schwarzschild

metric.

4 Summary and discussion

In this paper, we used the connection between sym-

metries of geodesics and the underlying spaces [7] to

propose that one could usefully define approximate

isometries by carrying the approximate symmetries of

the system of geodesic equations over to the manifold

on which the geodesics lie. This was applied to the

Schwarzschild metric and the approximate symmetries

were interpreted.

One might have expected that the same method that

was used for defining approximate symmetries of dif-

ferential equations could have been used to define ap-

proximate isometries directly. However, the resulting

approximate isometry will not, in general, provide an

approximately conserved quantity. The approximate

isometry, when applied to the Lagrangian giving the

geodesic equation, will not give a conservation to O(ε2)

due to the action of the approximate symmetry gener-

ator on the ẋ term in the Lagrangian

L[x, ẋ] = g.ẋẋ := gi j ẋ
i ẋ j . (37)

For the direct definition it would only be provided by

some application of the variational principle, which is

provided by the Einstein field equations for the ex-

act isometry but is not provided by any consideration

taken for the approximate isometry. (It is possible that

the problem noted here is related to the fact that the

Schwarzschild metric, regarded as a perturbation of the

Minkowski is unstable in the limit of zero perturbation.)

This is why we need to “cross the bridge” to carry the

concept of approximate symmetries of geodesic equa-

tions to the approximate isometry.

The first point to note is that the exact isometries

“lost” due to the gravitational mass, are recovered as

approximate isometries of those metrics with the “cor-

rect” definition. This is reasonable. If the gravitational

field were made negligible, then to the lowest order

the isometries should come up approximately. From

the radial orbital equation we were already able to see

that the linear momentum in the equatorial plane is

approximately conserved. This strongly indicated that

the full linear momentum would be approximately con-

served but that needed to be seen by computing the

approximate variational symmetries of the full set of

geodesic equations. Further, the exact form of the con-

served linear momentum could not be seen in the or-

bital equation and the conservation of the spin angular
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momentum was not seen there at all. Obtaining the

approximate symmetries from the full set of geodesic

equations is a difficult task and it would be useful if

one could find some means to obtain more information

from the reduced equation.

The problem of ambiguity of the form of equation

to be used for approximate symmetries was noted and

it was pointed out that the “correct” form comes from

consideration of the Lagrangian for the geodesic equa-

tions. Only if that form is used, do we obtain the ap-

proximate conservation laws.

A point worth marking is the difference between the

conservation laws obtained for the perturbed system of

equations and the perturbed single, orbital, equation.

In the system we get the exactly conserved quantities

as the approximately conserved quantities. However,

in the reduced form, with the orbital equation, we see

that the conservation law gets modified, so that the ap-

proximately conserved quantity has a part related to the

unperturbed conserved quantity. It is not clear that this

separation will hold for other spacetimes, like gravita-

tional wave spacetimes.

It is worth mentioning that the interplay of physics

and mathematics in the link between the geometry and

the differential equations, is also useful in the reverse

direction. Physics told us to expect the approximate

symmetries of the geodesic equations. As such, from

purely physical considerations we should, in principle,

be able to identify the approximate symmetries for the

system of geodesic equations for a given metric. This

could help us to formulate more general criteria for

the existence of approximate symmetries of geodesic

equations in a manner similar to that in which geometric

considerations helped in formulating the criteria for

linearizability of second-order quadratically semilinear

systems of ODEs [13].

Finally, we stress that the insights obtained here en-

courages one to hope that further insights could be

obtained for other metrics. One direction to proceed

would be to take well-understood metrics to further es-

tablish the link that has been indicated here. The other

would be to use that link to better understand metrics

whose physics is not so well understood. In particular,

gravitational wave spacetimes would be worth examin-

ing for their approximate symmetries. It would, partic-

ularly, be interesting to see if the approximate conser-

vation obtained in relativity corresponds to what would

be expected on the basis of the pseudo-Newtonian [14]

and the extended pseudo-Newtonian [15] formalisms.

Since the latter gives the momentum imparted to test

particles by gravitational waves [16], the insights from

the approximate symmetry analysis would provide a

useful check.
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