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Abstract In this paper, we present the solution of the

Klein–Gordon equation. Klein–Gordon equation is the

relativistic version of the Schrödinger equation, which

is used to describe spinless particles. The He’s varia-

tional iteration method (VIM) is implemented to give

approximate and analytical solutions for this equation.

The variational iteration method is based on the in-

corporation of a general Lagrange multiplier in the

construction of correction functional for the equation.

Application of variational iteration technique to this

problem shows rapid convergence of the sequence con-

structed by this method to the exact solution. Moreover,

this technique reduces the volume of calculations by

avoiding discretization of the variables, linearization

or small perturbations.

Keywords Klein–Gordon equation · Variational

iteration method · Small perturbations · Mesh points

schemes · Quantum mechanics

1 Introduction

The Klein–Gordon equation (Klein–Gordon–Fock

equation) is the relativistic version of the Schrödinger
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equation, which is used to describe spinless particles.

It was named after Oskar Klein and Walter Gordon [1].

The Schrödinger equation for a free particle is

P2

2m
ψ = ih

∂

∂t
ψ,

where P = −ih∇ is the momentum operator (∇ is the

del operator). The Schrödinger equation suffers from

not being relativistically covariant, meaning it does not

take into account Einstein’s special relativity.

It is natural to try to use the identity from special

relativity

E =
√

P2c2 + m2c4,

for the energy; then, just inserting the quantum me-

chanical momentum operator, yields the free particle

wave equation

√
(−ih∇)2c2 + m2c4ψ = ih

∂

∂t
ψ.

This, however, is a cumbersome expression to work

with because of the square root. The square root term

introduces ambiguity. In addition, this equation, as it

stands, is nonlocal and furthermore, it does not satisfy

some of the conditions required by special relativity.

Klein and Gordon instead worked with the more gen-

eral square of this equation (the Klein–Gordon equation
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for a free particle), which in covariant notation reads

(�2 + μ2)ψ = 0,

where

μ = mc

h
,

and

�2 = 1

c2

∂2

∂t2
− ∇2.

This operator is called the d’Alembert operator. Today

this form is interpreted as the relativistic field equation

for a scalar (i.e., spin-0) particle.

The Klein–Gordon equation was allegedly first

found by Schrödinger, before he made the discovery

of the equation that now bears his name. He rejected

it because he could not make it include the spin of

the electron. The way Schrödinger found his equation

was by making simplifications in the Klein–Gordon

equation.

In 1926, soon after the Schrödinger equation was

introduced, Fock wrote an article about its generaliza-

tion for the case of magnetic fields, where forces were

dependent on velocity, and independently derived this

equation. Both Klein and Fock used Kaluza and Klein’s

method. Fock also determined the gauge theory for the

wave equation. The Klein–Gordon equation for a free

particle has a simple plane wave solution [1].

Authors of [2] used the properties of four explicit

finite difference schemes to integrate the nonlinear

Klein–Gordon equation. It turned out that the energy

conserving scheme is the most suitable to study the long

time behavior of the solutions. They observed undesir-

able characteristics in some of the numerical schemes,

in particular, a loss of spatial symmetry and the onset

of instability for large values of a parameter in the ini-

tial condition of the equation. In [3], an analysis of the

schemes described in [2] as applied to a linear prob-

lem is carried out, and these indicate that the instability

arises from the use of explicit finite difference schemes

rather than any failure of energy conservation. This

conjecture is further supported by an analysis of two

further schemes.

Lee in [4] investigated the numerical solution of the

following two dimensional Klein–Gordon equation by

collocation method

∂2u

∂t2
− �u + |u|αu = f,

where f in various areas of mathematical physics is a

source term independent of the solution u, and α > 0.

He showed the stability and convergence for using spec-

tral method.

In [5], a fully implicit and discrete energy con-

serving finite difference scheme for the solution of an

initial-boundary value problem of the nonlinear Klein–

Gordon equation is presented. A theoretical analy-

sis is performed, and it has been demonstrated that

the numerical scheme is particularly attractive when

long-time solutions are sought. In [6]; a C∞ global

existence for the following Klein–Gordon equation is

investigated

(� + m2)u = f (u, u′, u′′), (t, x, y) ∈ R+ × R × M,

u(0, x, y) = εu0(x, y), ∂t u(0, x, y) = εu1(x, y),

where M = (M, g) is a compact Riemannian manifold

without boundary, m ∈]0, ∞[, � = ∂2

∂t2 − ∂2

x2 − �g , is

the d’Alembertian on the waveguide, f is a polynomial

in (u, u′, u′′), u0 and u1 are real valued and belong to

C∞
0 (R × M), and ε > 0 is a small parameter.

Metcalfe and Sogge solved wave and Klein–Gordon

equations of the form

(�+ m2)u = Q(u, u′, u′′), (t, x, y) ∈ R+× Rn× �,

u(0, x, y) = εu0(x, y), ∂t u(0, x, y) = εu1(x, y),

u|∂� = 0,

where � = ∂2
t − �x − ��, x ∈ Rn , n ≥ 3, �x =∑n

j=1
∂2

∂x2
j
, �� denotes the standard Laplacian �� =∑d

j=1
∂2

∂y2
j
, � ∈ Rd denotes a nonempty, bounded do-

main with smooth boundary ∂�, and Q is a quadratic

function in its argument, and affine linear in u′′ [7].

The authors of this paper solved this high dimensional

problem by the classical argument of wave and Klein–

Gordon equations, i.e., uniform estimate and energy es-

timate in a fashion similar to that used by Klainerman

[8].

In [9], by using auxiliary equation method, sev-

eral types of new exact travelling wave solutions of

the nonlinear Klein–Gordon equation with quadratic
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nonlinearity

utt − α2uxx + βu − γ u2 = 0,

and with cubic nonlinearity

utt − α2uxx + βu − γ u3 = 0,

are constructed(α, β, and γ are known constants).

Kevrekidis and Konotop studied compactons con-

centrated on the discrete nonlinear Klein–Gordon

model of the form [10]

ün = �2un + f (un−1, un, un+1),

where �2un = un+1 + un−1 − 2un is the discrete

Laplacian (with unit spacing) and the nonlinearity is

assumed to be of the type

f (sun−1, sun, sun+1)

=
m∑

k=1

gk(sun−1, sun, sun+1)

=
m∑

k=1

sk gk(sun−1, sun, sun+1),

where s is any function of time.

In [11] the local and global existence and uniqueness

of weak solution of the damped Klein–Gordon equa-

tion with Dirichlet boundary condition is established.

The Klein–Gordon equation with damping term is de-

scribed by the following partial differential equation:

∂2 y

∂t2
+ α

∂y

∂t
− β�y + δ|y|γ = f,

where α, β, γ > 0, δ ∈ R are physical parameters,

and f is a forcing function. The existence and unique-

ness of the strong solutions of the Cauchy problem for

the above equation with Dirichlet boundary conditions

(with β = δ = 1) are studied in [12].

[13] deals with the numerical solution of the

damped nonlinear Klein–Gordon equation with Dirich-

let boundary condition using variational method and

finite element approximation.

In this work, we focus on the following Klein–

Gordon equation:

(� + m2)u = f (u, u′, u′′), (1.1)

u(x, 0) = u0(x), ∂t u(x, 0) = u1(x),

where x = (x1, . . . , xn) ∈ Rn , t ∈ R+ and � = ∂2

∂t2 −∑n
j=1

∂2

∂x2
j
.

The solution of this equation is presented by means

of variational iteration method, (VIM) and then, sev-

eral examples are given to show the efficiency of the

proposed method for solving this equation.

For simplicity in illustrating the procedure of varia-

tional iteration method, we rewrite f as f = f1 + f2,

where f1 is the linear part of f and f2 is the nonlinear

part of f if it exists.

The rest of this paper is organized as follows:

In Section 2, we review the procedure of varia-

tional iteration method and apply this technique to

Equation (1.1). To show the efficiency of this method,

we present some examples and numerical results in

Section 3. A conclusion is given in Section 4.

2 Variational iteration method

The He’s VIM, which is a modified general Lagrange

multiplier method, has been shown to solve effectively,

easily, and accurately a large class of linear and non-

linear problems. The main feature of the method is

that the solution of a mathematical problem with lin-

earization assumption is used as initial approximation

or trial function, then, a more highly precise approx-

imation at some special points can be obtained [14,

15]. This approximation converges rapidly to accurate

solution.

In [16], the applications of the present method to

coupled Schrodinger–(KdV) and shallow water equa-

tions are provided. The Bratu’s problem, which has

various important applications in science and engineer-

ing is easily solved in [17] with high accuracy by the

variational iteration method. The variational iteration

technique is employed to solve the nonlinear dispersive
equation, which is a nonlinear partial differential equa-

tion that arise in the process of understanding the role

of nonlinear dispersion and in the forming of struc-

tures like liquid drops and exhibits compactons [18].
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In [19], the generalized Burgers–Fisher and Burgers
equations have been analyzed using the variational

iteration method. In [20], the solution for the gener-

alized regularized long wave equation, which is an

alternative description of nonlinear dispersive waves

to the more usual KdV equation based on variational

iteration method is exactly obtained. The variational

iteration technique is employed in [21] for solving three

types of nonlinear partial differential equations such as

coupled Schrodinger–KdV, generalized KdV and shal-

low water equations. The exact and numerical solu-

tions obtained by variational iteration method for these

three important models of mathematical physics are

compared to that obtained using Adomian decomposi-

tion method. The results reported by these authors [21]

show that the variational iteration method is a power-

ful mathematical tool for finding the exact and numeri-

cal solutions of nonlinear partial differential equations.

Authors of [22] used the variational iteration procedure

to solve several kinds of interesting nonlinear partial

differential equations such as coupled nonlinear reac-

tion diffusion equations, Hirota–Satsuma coupled KdV

system and Drinefel’d-Sokolov-Wilson equations. The

approximate solutions obtained by this method are

compared with the exact solutions. The obtained re-

sults [22] show that the variational iteration method is

of high accuracy, efficient and can overcome the dif-

ficulties arising in calculating Adomian polynomials

in decomposition technique of Adomian [23]. Author

of [24] employed the variational iteration method for

determining rational solutions for the KdV, the K (2,

2), the Burgers, and the cubic Boussinesq equations.

This approach is used to solve numerically the har-

monic wave generation in a nonlinear, one-dimensional

elastic half-space model subjected initially to a pre-

scribed harmonic displacement [25]. Recently, authors

of [26] employed this technique for solving several

problems in calculus of variations. In [27], He’s vari-

ational iteration method is used for computing an un-

known time-dependent parameter in an inverse quasi-

linear parabolic partial differential equation. This ap-

proach is successfully and effectively applied to de-
lay differential equations [28], autonomous ordinary

differential equations [29], Blasius equation [30], etc.

The convergence of variational iteration technique of

He is proved in [31] for various partial differential

models.

It is shown in [32] that the application of VIM to a

special kind of nonlinear differential equations leads to

calculation of unneeded terms and more time consumed

in repeated calculations for series solutions. A modified

VIM is introduced to eliminate the shortcomings and

in [33] the Padé technique was successfully linked with

this modification.

The idea of this method is constructing a correc-

tion functional by a general Lagrange multiplier. The

multiplier in the functional should be chosen such

that its correction solution is superior to its initial ap-

proximation(trial function) and is the best within the

flexibility of trial function, and accordingly, we can

identify the multiplier by variational theory. The ini-

tial approximation can be freely chosen with possible

unknowns, which can be determined by imposing the

boundary/initial conditions.

To illustrate the procedure of this approach, we con-

sider the following general differential equation

Lu + Nu = g, (2.1)

where L is a linear operator, N is a nonlinear operator,

and g(t) is an inhomogeneous term.

According to the variational iteration method, the

terms of a sequence {un} are constructed such that this

sequence converges to the exact solution. The terms of

uns are calculated by a correction functional as follows:

un+1(t) = un(t) +
∫ t

0

λ{Lun(s) + Nũn(s) − g(s)} ds,

(2.2)

where λ is the general Lagrange multiplier, which can

be identified optimally via the variational theory, the

subscript n denotes the nth approximation and ũn is

considered as a restricted variation, i.e., δũn = 0. For

linear problems, the exact solution can be obtained by

only one iteration step due to the fact that the Lagrange

multiplier can be exactly identified. In nonlinear prob-

lems, in order to determine the Lagrange multiplier in

a simple manner as possible, the nonlinear terms have

to be considered as restricted variations.

If we apply this procedure to Equations (1.1), (2.2)

reduces to:

un+1(x, t) = un(x, t) + ψn(x, t), (2.3)
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where ψn is in the following form:

ψn(x, t) =
∫ t

0

λ

{
∂2un

∂s2
(x, s) + m2un(x, s) − f1

−
n∑

j=1

˜∂2un

∂x2
j

(x, s) − f̃2

}
ds. (2.4)

By taking variation of (2.3) with respect to the indepen-

dent variable un and making the correction functional

stationary, λ, the Lagrange multiplier, will be speci-

fied. Then, starting with an initial approximation, we

can identify the next approximations successively.

3 Test examples

In this section, we present some examples with analyti-

cal solution to show efficiency of the method described

in previous section for solving Equation (1.1).

3.1 Example 1

As the first example, consider Equation (1.1) with

m = 2, n = 3(x = (x1, x2, x3)), f = 5u, and the fol-

lowing initial conditions

u(x, 0) = x1x2x3, (3.1)

∂u

∂t
(x, 0) = −x1x2x3. (3.2)

u(x, t) = x1x2x3e−t is the exact solution of this

equation. We apply variational iteration method to this

equation. To construct the correction functional, it is

sufficient to use (2.3) and (2.4):

un+1(x, t) = un(x, t) + ψn(x, t),

where

ψn(x, t) =
∫ t

0

λ

{
∂2un

∂s2
(x, s) + 4un(x, s) − 5un(x, s)

−
3∑

j=1

˜∂2un

∂x2
j

(x, s)

}
ds.

Taking variation with respect to the independent vari-

able un and making the correction functional stationary,

we obtain

δun+1(x, t) = 0,

and therefore, we have:

δun(x, t) + δ

∫ t

0

λ

{
∂2un

∂s2
(x, s) − un(x, s)

−
3∑

j=1

˜∂2un

∂x2
j

(x, s)

}
ds

= δun(x, t) + λδ
∂un

∂s
(x, s)|s=t − λ′δun(x, s)|s=t

+
∫ t

0

(λ′′ − λ)δun(x, s)ds = 0.

These conditions imply the following stationary con-

ditions:

δun : 1 − λ′(t) = 0,

δ
∂un

∂t
: λ(t) = 0,

δun : λ − λ′′ = 0,

and therefore, we get

λ(s) = −1

2
(et−s − es−t ).

As a result, we have the following variational iteration

formula

un+1(x, t) = un(x, t) + ψn(x, t),

where

ψn(x, t) = −
∫ t

0

1

2
(et−s − es−t )

{
∂2un

∂s2
(x, s)

− un(x, s) −
3∑

j=1

∂2un

∂x2
j

(x, s)

}
ds.

We start with initial approximation u0(x, t) = a + bt ,
where a and b are constant in t . Regarding initial con-

ditions (3.1) and (3.2), a and b can be considered as

a = x1x2x3 and b = −x1x2x3. By the above iteration
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formula, we have:

u1(x, t) = u0(x, t) + ψ0(x, t),

where

ψ0(x, t) = −
∫ t

0

1

2
(et−s − es−t )

{
∂2u0

∂s2
(x, s)

− u0(x, s) −
3∑

j=1

∂2u0

∂x2
j

(x, s)

}
ds

= −x1x2x3 + x1x2x3t + x1x2x3e−t ,

and therefore,

u1(x, t) = x1x2x3e−t ,

which is the exact solution.

3.2 Example 2

Consider Equation (1.1) with m = 1, n = 2(x = (x1,

x2)), f = −2 + u, and the following initial conditions

u(x, 0) = x2
1 + x2

2 , (3.3)

∂u

∂t
(x, 0) = x2

2 . (3.4)

The exact solution of this equation is

u(x, t) = x2
1 + x2

2 + x2
2 t + 1

3
t3 + t2.

To apply the variational iteration method to this

equation, according to (2.3) and (2.4), we have:

un+1(x, t) = un(x, t) + μn(x, t), (3.5)

where

ψn(x, t) =
∫ t

0

λ

{
∂2un

∂s2
(x, s) −

2∑
j=1

˜∂2un

∂x2
j

(x, s) + 2

}
ds.

By the same manipulation as previous example, we can

obtain the following stationary conditions:

δun : 1 − λ′(t) = 0,

δ
∂un

∂t
: λ(t) = 0,

δun : λ′′ = 0,

which yield

λ(s) = s − t.

Consider u0(x, t) = a + bt , where a and b are constant

in t and with respect to the initial conditions (3.3) and

(3.4), can be considered as a = x2
1 + x2

2 and b = x2
2 .

By the above formula, u1 is obtained in the following

form

u1(x, t) = u0(x, t) + ψ0(x, t),

where

ψ0(x, t) =
∫ t

0

(s − t)

{
∂2u0

∂s2
(x, s)

−
2∑

j=1

∂2u0

∂x2
j

(x, s) + 2

}
ds

= 1

3
t3 + t2,

and therefore,

u1(x, t) = x2
1 + x2

2 (1 + t) + 1

3
t3 + t2,

which is the exact solution.

3.3 Example 3

In this example we solve Equation (1.1) with m =
√

3
8

,

n = 1(x = (x)), f = 0, and initial conditions

u(x, 0) = sin

(
1

8
x

)
, (3.6)

∂u

∂t
(x, 0) = −1

4
sin

(
1

8
x

)
. (3.7)

The exact solution of this equation is:

u(x, t) = sin

(
1

8
x

)(
cos

(
1

4
t

)
+ sin

(−1

4
t

))
.
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Table 1 Comparison of the exact and approximate values by VIM in Example 3

(x, t) Exact value Approximate value by VIM Absolute error

(−5, 5) 0.37075405851278 0.37075405355941 4.953372212401774 × 10−9

(−4, 4) 0.14438795611141 0.14438795565649 4.549206011894569 × 10−10

(−3, 3) −0.01833197994970 −0.01833197997004 2.033529594713812 × 10−11

(−2, 2) −0.09850562396599 −0.09850562396624 2.463723669521301 × 10−13

(−1, 1) −0.08995387519190 −0.08995387519190 1.387778780781446 × 10−16

(0, 0) 0 0 0

(1, 1) 0.08995387519190 0.08995387519190 1.387778780781446 × 10−16

(2, 2) 0.09850562396599 0.09850562396624 2.463723669521301 × 10−13

(3, 3) 0.01833197994970 0.01833197997004 2.033529594713812 × 10−11

(4, 4) −0.14438795611141 −0.14438795565649 4.549206011894569 × 10−10

(5, 5) −0.37075405851278 −0.37075405355941 4.953372212401774 × 10−9

0
1

2
3

4
5

0
1

2
3

4
5
0

1

2

3

4

5

x 10

t
x

Fig. 1 Plot of absolute
error in Example 3

To solve this equation by variational iteration method,

we use (2.3) and (2.4):

un+1(x, t) = un(x, t) + ψn(x, t),

where

ψn(x, t)

=
∫ t

0

λ

{
∂2un

∂s2
+ 3

64
un(x, s) −

˜∂2un

∂x2
(x, s)

}
ds.

Such as previous examples, we obtain the following

stationary conditions:

δun : 1 − λ′(t) = 0,

δ
∂un

∂t
: λ(t) = 0,

δun : λ′′ + 3

64
λ = 0,

and therefore, we get

λ(s) = 8
√

3

3
sin

(√
3

8
(s − t)

)
.

We consider initial approximation u0 as u0(x, t) =
a + bt , where a and b are constant in t . Regarding ini-

tial conditions (3.6) and (3.7), a and b can be considered

as a = sin( 1
8
x) and b = − 1

4
sin( 1

8
x).

By the above recurrent formula, we get u1, u2, u3,

u4 and consider u4 as an approximation of the exact

solution. Numerical results by this approximation are

summarized in Table 1 and the absolute error function

|u4(x, t) − u(x, t)| is plotted in Fig. 1. These results

show the high accuracy of the approximate solution

obtained by the variational iteration method.

4 Conclusion

In this work, the variational iteration method has

been successfully implemented to the Klein–Gordon
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equation. Application of this procedure shows that the

proposed method is very simple and straightforward.

Furthermore, this approach unlike the mesh points

schemes [35] does not provide any linear or nonlin-

ear system of equations. It does not require any dis-

cretization, linearization, or small perturbations [36],

and therefore, is capable of greatly reducing the size

of calculations while still maintaining high accuracy of

the numerical solution.
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