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Poincaré maps modeling and local orbital stability analysis
of discontinuous piecewise affine periodically driven systems

Abdelali El Aroudi · Mohamed Debbat ·
Luis Martinez-Salamero

Received: 26 April 2006 / Accepted: 12 September 2006 / Published online: 26 January 2007
C© Springer Science + Business Media B.V. 2007

Abstract This paper presents a methodology to study

the local stability of periodic orbits (orbital sta-

bility) in switched discontinuous piecewise affine

(DPWA) periodically driven multiple-input multiple-

output (MIMO) systems. The switched system of in-

terest has a bilinear state space representation where

the controller inputs are binary signals taking values in

the set {0,1}. These systems are characterized by a set

of affine differential equations together with switching

rules to commute between them. These switching rules

are described by switching functions that are periodic

in time and linear in state. The methodology is based

on obtaining a discrete time model (Poincaré map), its

steady state operation points, and its Jacobian matrix.

This provides a powerful tool for studying their stability

and to predict some kind of instability phenomena that

the system can undergo like subharmonic oscillations.

The proposed approach is applied to a power electronic

circuit which toggles among six different system equa-

tions with five switching boundaries within a switching

cycle.
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1 Introduction

Many problems in applied science and control engi-

neering result in the consideration of switched systems.

Variable structure system control, sliding mode control,

relay control, gain scheduling, bang–bang control, and

fuzzy logic control are examples of control techniques

that lead to a switched system. The common character-

istic for all of them is the switching between different

configurations. A special case of these systems is the

class of piecewise linear (PWL) systems. The last one

has been a subject of research in the systems and con-

trol community for a long time, see for example refs.

[1–6] and references therein. PWL switched systems

constitute a special class of hybrid systems [3, 7] and

arise often in practical control systems when some non-

linear components such as switching, dead-zone, satu-

ration, relays, and hysteresis are encountered. Most of

the PWL systems studied in the literature are charac-

terized by switching among linear configurations when

certain fixed boundaries in the state space are reached.

The stationary behavior of such systems could be an

equilibrium point at the origin or a more complex orbit

in its vicinity. The fundamental frequency component

of this orbit depends on the parameters of the system
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and are not fixed by the controller. Sometimes, the study

of such systems is carried out using the continuous time

approach from the equations describing the flow of the

system by assuming continuity in the vector field [8] or

by assuming the existence of sliding mode in the case

of discontinuous vector field (Filippov Systems) [9].

However, in many cases, the vector field is discontin-

uous but sliding mode may not always exist. This re-

sults in a handicap for making a rigorous mathematical

analysis of wide class of switched systems using con-

tinuous time approach. Very often, each configuration

is not linear but affine. Moreover, in many systems, the

boundaries are periodically moving in the state space

[10] and the vector field may be discontinuous at one

or more of the switching boundaries. The overall sys-

tem is called Discontinuous Piecewise Affine (DPWA)

periodically driven system. When the number of the

switching boundaries is more than 1, we are dealing

with multiple-input multiple-output (MIMO) DPWA

systems that are more general than simple PWL sys-

tems. DPWA systems are frequently encountered in

many fields of science and engineering, where rela-

tionships among relevant variables are affine in one

region but can be of different nature in some other re-

gions of the state space. The discontinuity of the vec-

tor field at the switching boundary implies that ẋ−
k the

derivative of the state variables just before switching

are different from the derivatives ẋ+
k just after switch-

ing. Examples of DPWA systems are ON–OFF sys-

tems like power electronic converters [11–18], chemi-

cal reactors [19], and variable structure control systems

[20–22].

The mathematical analysis of the system by using

averaging techniques is possible but this does not give

accurate conclusions about stability and performances

[23]. An alternative approach for studying a wide class

of these systems accurately is by using the discrete

time model which can be obtained from the differ-

ential equations describing the flow in the continuous

time domain. Although widely used, very few results

are available to analyze the stability of general MIMO

DPWA systems with Poincaré maps and very often the

study of these systems is done case by case. As a matter

of fact, properties of such systems like stability of the

stationary operating regime and dynamic performance

are inferred from extensive and very time-consuming

computer simulations. In refs. [10–13], Poincaré map

modeling was applied to DC–DC elementary power

converters with two or three switching configurations.

However, many power electronics circuits and other

systems could be characterized by more than three

cyclic configurations [18, 24]. The aim of this work

is to give a general methodology to obtain the Poincaré

map and its Jacobian matrix of a wider class of sys-

tems than those considered in refs. [1–9]. The fixed

point and the Jacobian matrix of this model are given

in closed form in terms of the stationary switching

instants. We will show that instabilities in the form

of generic bifurcations like flip bifurcation (FB) and

Neimark–Sacker bifurcation (NSB) can be detected

accurately. The proposed approach is applied to ana-

lyze the stability of a practical power electronic circuit

with six affine configurations and whose correspond-

ing vector field is discontinuous through the switching

boundary. The remainder of the paper is organized as

follows. Section 2 will deal with the problem descrip-

tion. In Section 3, we present a systematic procedure to

obtain the Poincaré map approach for MIMO DPWA

systems. The fixed points and the Jacobian matrix are

given in Section 4. An example is presented in Section

5. This example shows that the nominal periodic or-

bit of MIMO DPWA systems that are nonsmooth are

present at first bifurcation phenomena which are typi-

cal in smooth systems. However, after the occurrence

of the first bifurcation, many other nonsmooth bifurca-

tions like border collisions take place. This paper will

not discuss in detail the mathematical tools for nons-

mooth analysis. This will be a benefit to nonspecialist

readers and allowing at the same time to represent a

wide class of systems in a more accessible manner.

Finally, some conclusions are drawn in the last section.

2 Discontinuous piecewise affine periodically

driven systems

Most dynamical systems found in control engineering,

power electronics circuits, and neurons can be consid-

ered as systems whose structure changes when some

conditions on the state variables and/or time are ful-

filled. In this work, we are interested in a class of

DPWA systems that are characterized by a finite num-

ber of affine dynamical models together with a set

of switching conditions to toggle among these mod-

els. This model description produces a partitioning of

the state space into different cells. Within each cell,

the dynamics are described generally by a different

affine equation. At boundaries between two adjacent
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Fig. 1 Partitioning of the state space into different cells. Each cell has a distinctive flow description

cells, the system switches from one affine configura-

tion to another and due to discontinuity of the vector

field smoothness is lost when a trajectory crosses these

boundaries which are called, therefore, nonsmoothness

sets or switching manifolds. Consider a MIMO DPWA

system with m inputs and M–1 switching conditions and

generally M different configurations within one switch-

ing cycle (Fig. 1). Let us suppose that the switching

from one configuration Ck to another one Ck+1 forms

a well determined and fixed sequence:

C1 → C2 · · · → CM → C1 → C2 · · · CM → · · · (1)

During each configuration, the system is governed

by an affine time-invariant equation of the following

form:

ẋ = Akx + Bk (2)

where x ∈ RN is the vector of state variables, and

Ak ∈ RN×N and Bk ∈ RN×1 are the system matrices

and vectors during each phase and whose components

are the system parameters. All eigenvalues of each ma-

trix Ak are assumed to be located in the left-half side

of the complex plane or have a single eigenvalue at the

origin. This assumption is related to the fact that each

affine configuration is a model of a dissipative physical

system.

Assumption . Throughout this paper, we assume that

the steady state regime is characterized by switching

functions so that in each cycle, M−1 actual switching

moments are present. If this is not the case, it means

that there are some skipped switching in the system for

one or more periods. This may lead to situations for

which the system is not working properly.

A compact form expression may be written as fol-

lows:

ẋ = Ax + Bxu + Cu + D (3)

where A ∈ RN×N , B ∈ RN×m, C ∈ RN×m, and D ∈
RN . u ∈ Rm is the vector of binary input signals. m is

the number of inputs in the system. Equation (3) is the

bilinear state space representation in which the control

inputs are binary signals taking values in the set {0,1}.

This is the general form of systems of interest in this

paper. Note that by giving to the components of u values

in the set {0,1}, we will get an equation of the form of

Equation (2).

These kinds of systems are more general than those

studied in refs. [3, 10–13] and other related works in

hybrid systems literature.

In open-loop systems, the entries in the vector input

u are external periodic piecewise constant signals uk ,

k = 1, . . . , m. In this case, the average value of output

variables during a switching cycle undergoes variations

under parameter changes. The control objective in this

kind of systems is to drive the system to a periodic

orbit with a fixed frequency in steady state and with a

desired average value of the state variables. This is ac-

complished by generating the driving signals uk from

the own state variables by comparing their correspond-

ing errors with suitable repetitive signals like in Pulse

Width Modulation (PWM) control method. Across the

switching manifolds, the system can be characterized

by different order of discontinuities in the vector field.

We have the following cases:

• systems with discontinuous state variables x, i.e.,

for some switching instant tk and corresponding

Springer



434 Nonlinear Dyn (2007) 50:431–445

switching manifold �k , one can have:

∀tk/x(tk) ∈ �k, x(t−
k ) �= x(t+

k ).

These systems are usually studied by the so-called

discontinuity map [24].

• systems with continuous state variables but discon-

tinuous vector fields i.e., for some switching instant

tk and corresponding switching manifold �k , one can

have:

fk(x(tk)) �= fk+1(x(tk)).

These systems are called Filippov systems and

are traditionally studied by using sliding mode if the

switching boundaries are fixed [21] and averaging

techniques [16] if the switching boundaries are period-

ically time varying like those considered in this paper.

The generalized Jacobian matrix, taking into account

discontinuity at the switching boundary, could also

be used [9]. Here, the first class of systems which are

discontinuous in the state x, are not considered. These

systems are called Impulsive Differential Equations

(IDE) and are characterized by a Dirac impulse func-

tion δ(x) in their vector fields. The switching moments

tk may be fixed a priori or given as a solution of a

switching equation like σ k (x, tk) = 0. If all tk are given

in a fixed pattern, the system is called open loop. If for

some k, tk is given as the result of a crossing between a

control signal sk and an external periodic signal hk , the

system is closed loop. This is the most important case

because many practical systems in industrial applica-

tions are designed to work in closed loop. Controller

design and stability analysis requires an appropriate

dynamics model. For DPWA systems, the switched

mode is highly nonlinear making the stability analysis

and control design a very difficult task. Because in these

systems, the dynamic model involves periodically

varying quantities even at steady state operation, one

way to get a constant steady state is by using a discrete

time model in the form of a Poincaré map. This can be

obtained by sampling the state variables at the switch-

ing period. The averaging techniques can also be used

to get a constant steady state but they are not accurate.

Discrete time modeling in the form of Poincaré map-

ping of these systems is usually restricted to systems

with low order and number of configurations. In the

following sections, we will give a general systematic

procedure to get the Poincaré map of these systems.

3 Poincaré map of the open-loop system

In open-loop systems the time moments tk are given

a priori and the switching from one configuration to

another is given in a fixed pattern. As Equation (2)

is affine and time invariant, a closed-form solution is

available and it can be written as:

x(t) = ϕk(t, x0) (4)

where x0 is an arbitrary initial condition. Assume that,

during one switching cycle, the system changes its

structure from fk to fk+1 when the trajectory ϕk starting

from initial condition xk−1 on a surface �k−1 reaches

�k at time instant tk , measured by starting from the be-

ginning of the kth cycle (Fig. 1). �k ; k = 1, 2, . . . , M ,

are switching manifolds that are given by fixed switch-

ing moments. During one switching cycle, local maps

Pk in the following form can be defined:

P1 : �0 → �1

xn → x(t1) := ϕ1(t1, xn)

P2 : �1 → �2

x(t1) → x(t2) := ϕ2(t2 − t1, x(t1))

P3 : �2 → �3 (5)

x(t2) → x(t3) := ϕ3(t3 − t2, x(t2))

...

PM : �M−1 → �0

x(tM−1) → xn+1 := ϕM (T − tM−1, x(tM−1))

where tk (k = 1, . . . , M − 1) are the switching instants

measured from the beginning of the switching cycle

and T is its period. A Poincaré map from �0 to �0, can

be defined as the composition of the M different local

mapping Pk , i.e:

P = PM ◦ PM−1 ◦ · · · P1. (6)

This map can be expressed as:

P : �0 → �0
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xn → xn+1 := P(τ , xn) = ϕM (T − tM−1, ϕM−1

× (tM−1 − tM−2, ϕM−2(. . .))) (7)

where τ = (t1, t2 tM−1)t is the vector of the switching

instants. As was mentioned earlier, we are considering

here that the switching is due to the existence of some

kind of T-periodic function. Thus, for the open-loop

system, we can have only nominal periodic orbits with

period T. Equilibrium points are possible only in the

evident case when the system remains blocked in some

configuration (without switching).

3.1 Existence conditions of periodic orbits

In a switched system with M different configurations,

different types of periodic orbits may exist. But only

some of them are desired from a practical point of view.

Among all the possible periodic orbits for the system,

the most interesting from an engineering point of view

is the nominal one which is characterized by switching

among M configurations during one switching cycle.

Definition . A periodic orbit that is characterized by M
and only M different configurations during one switch-

ing cycle is called M-modal periodic orbit. An M-modal

periodic orbit x∗(t) will exist if there exists a vector

(t1, t2, . . . , tM−1), such that the following conditions

hold:

1. x∗(kT ) = x∗((k + 1)T )∀k = 1, . . . , M
2. ẋ∗(t) = Akx∗(t) + Bk for t ∈ (tk−1, tk)

∀k = 1, . . . , M

3.2 Poincaré map for periodic orbits: fixed points

The usefulness of the Poincaré map results from the

fact that its fixed points X
∗

correspond to periodic or-

bits x
∗

of the continuous time-switched system and that

the stability properties are the same for both of them.

The piecewise affine character of this class of systems

allows us also to obtain the fixed points of P in terms of

time instants tk . Generally, function ϕk can be written

as:

ϕ(t, xk−1) = φk(t)xk−1 + ψ(t)Bk (8)

where matrices ø and ψ are given as follows:

φ(t) = eAt , ψ(t) =
∫ t

0

eAαdα (9)

Note that the matrix ψ is well defined by

Equation (9) even if A is singular. If A is invertible,

the matrix function ψ can be written as:

ψ(t) = A−1(φ(t) − 1) (10)

where 1 is the identity matrix with appropriate dimen-

sion. In the case of a singular matrix A, we have from

Equation (9) and using time series expansion of the

matrix exponential:

ψ(t)=
(

1t + At2

2
+ A2t3

6
+· · ·+ Ak tk+1

(k + 1)!
+ · · ·

)
.

(11)

Independently of whether A is invertible or not, the

expression of map P can be written in the following

form:

P : �0 → �0

xn → P(d, xn) = φM (dM )[φM−1(dM−1)

× (· · · φ2(d2)(φ1(d1)xn + ψ1(d1)B1)

+ ψ2(d2)B2) · · · + · · · ψM−1(dM−1)BM−1]

+ · · · + ψM (dM )BM (12)

where

d1 = t1
dk = tk − tk−1 for 2 < k < M − 1 and

dM = T − tM−1.

If we collect the time durations dk in a column vec-

tor d = (d1, d2,. . .,dM )t and perform some algebra,

Equation (12) can be written as follows:

P(d, xn) = 	(d)xn + 
(d) (13)

where

	(d) =
1∏

k=M

φk(dk) (14)
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and


(d) =
M−1∑
j=1

j+1∏
k=M

φk(dk)ψ j (d j )B j + ψM (dM )BM . (15)

A fixed point of P is a point X
∗

in the state space for

which we have X
∗ = P(X

∗
, d

∗
). Using the expression of

P, X
∗

can be expressed in terms of the vector of steady

state time durations d
∗
, corresponding to fixed points

X
∗

and matrices 	 and 
 evaluated at d
∗

X∗(d∗) = (1 − 	(d∗))−1 · 
(d∗). (16)

It should be noted here that the fixed point and hence

its associated M-modal periodic orbit exists and it is

unique whenever the inverse in Equation (16) exists, i.e,

if the matrix 1 − 	(d∗) is not singular. Note also that in

this case only one solution for the switching equations

may exist and this gives rise to only one fixed point X
∗
.

This is because the open-loop system is linear.

The stability of periodic orbits x
∗

is the same as for

fixed points X
∗

of the map P. This can be investigated

using the Jacobian matrix DP of the map P. This matrix

relates how an infinitely small perturbation near X
∗

at the beginning of a switching cycle causes a final

perturbation at the end of the same cycle. The fixed

point X
∗
and then the periodic solution will be stable

if the eigenvalues (the characteristic multipliers) of the

Jacobian matrix lie inside the unit circle.

The piecewise affinity and time invariance of the

system allow the obtaining of DP in closed form in

terms of tk . In the open loop case, all these time instants

are given in a fixed pattern, and DP can be expressed

as the product of the Jacobian matrix of each local

map. By differentiating Equation (13) with respect to

the discrete state variables xn , we obtain the Jacobian

matrix DP as:

DP = 	(d) =
1∏

k=M

φk(dk). (17)

It can be observed in this case that the asymptotic

stability of the switched system will be assured if each

affine configuration is asymptotically stable. That is to

say, if all matrices Ak have all eigenvalues in the left-

half side of the complex plane, all the eigenvalues of

	(d
∗
) will be inside the unit circle.

4 Stability of periodic orbits in the

closed-loop system

In closed-loop systems, some of the time instants tk
depend on the state variables linearly or by some non-

linear form depending on the controller. Let us suppose

that, in the closed-loop system, the switching functions

σ k defining the switching manifolds �k can be written

as the difference between a state dependent function sk

(x) and a time-dependent T-periodic function hk , i.e:

�k = {x ∈ Rn/σk(t, x) := sk(x) − hk(t) = 0} (18)

Generally, functions sk defining the switching mani-

folds �k could take any form. However, for the sake of

clarity, we will suppose here that they are linear func-

tions of the errors of the state variables and, thus, they

can be written as sk (x) = Kk (Xref,k-x), where Kk are

suitable feedback coefficients during the switching kth

subinterval that are selected with the purpose to control

some output variables and Xref,k is the vector of the ref-

erence trajectory in the kth subinterval. The functions

hk are, without loss of generality, piecewise linear T-

periodic signals of time that are used together with the

error signals to get a desired stationary average value

of the output variables and the desired switching pe-

riod T for the state variables. Note that as the switching

condition is given by a nonlinear equation, there can

exist more than one set of switching instants and there-

fore more than one M-modal periodic orbit. Next, we

focus on the presence of a M-modal periodic orbit for

the system in closed loop. Given such a periodic orbit,

the switching instants in each period, determined by

the feedback, are fixed in steady state. Once these fixed

instants are known, the associated periodic orbit can

be computed. Hence, the stationary switching instants

are determined by the associated periodic orbit through

the applied switching functions, and conversely, the sta-

tionary switching instants determine the periodic orbit.

Therefore, in order to compute the periodic orbit and

the associated stationary switching instants, we have to

find a solution for a set of transcendental equations con-

sisting of the equations imposed by the stationary orbit

that depend on the stationary switching instants, and

the equation by which the stationary switching instants

can be obtained from the feedback based on the periodic

orbit. As these equations are nonlinear, it turns out that

depending on the value of the parameters there can be

more than one periodic orbit, some of which would not
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be necessarily stable. Moreover, the stability issue is

now a local matter, whereas in the open-loop situation

stability was global. Usually, it is not possible to obtain

a closed-form expression for these instants. Obtaining

the fixed point X∗ requires solving a set of transcen-

dental equations σ (X∗, τ ∗) = 0 where σ (X∗,τ ∗) is a

vector of switching functions given by:

σ(τ ∗, X∗)

=

⎛⎜⎜⎜⎜⎜⎝
K1(Xref,1 − P1(X∗, t∗

1 )) − h1(t∗
1 )

K2(Xref,2 − P2 ◦ P1(X∗, t∗
1 , t∗

2 )) − h2(t∗
2 )

...

KM−1(Xref,M−1 − PM−1 ◦ PM−2 ◦ · · · ◦
P1(X∗, t∗

1 , t∗
2 , . . . t∗

M−1)) − hM−1(t∗
M−1)

⎞⎟⎟⎟⎟⎟⎠
(19)

where X∗ is given by Equation (16). Therefore, a

root finding algorithm should be applied to Equation

(19) to obtain τ ∗ = (t∗
1 , t∗

2 , . . . t∗
M−1). For instance, the

least squares method can be used after substituting

the local mappings Pk by their expressions. The prob-

lem can be treated as an optimization process where

the objective function to be minimized is σ (τ ∗) and

the parameters to be optimized are switching time

instants tk , (k = 1, . . . , M − 1), with the constraints

0 < tk < T . The process can be started from M − 1

equidistant switching instants in the interval (0, T), i.e:

τ 0 = ( T
M , 2T

M , · · · (M−1)T
M )t . The optimal solutionτ ∗ for

the vector of switching instants is then substituted in

Equation (16) to obtain the fixed point X∗. Once this

fixed point is located, its stability analysis may be car-

ried out by studying the local behavior of the map P

in its vicinity. In closed-loop systems, switching time

instants tk depend on the discrete state variables xn in

a nonlinear form. The dependence of these instants on

the discrete state variables changes the nature of the

map P from a linear map to a nonlinear one. The ex-

pression of the Jacobian matrix DP is also modified by

the presence of terms containing the derivative of the

vector of switching instants τ with respect to the vec-

tor of the discrete state variables xn . In this case, the

expression of the Jacobian matrix becomes:

DP = 	(d) + ∂P

∂τ

∂τ

∂xn
. (20)

Note that if the open loop system is stable, it is the

second term in the expression of the Jacobian matrix

that could introduce instability into the system. This

fact can be explored in designing a stable closed-loop

system by adjusting the parameters appearing in this

term in order to make it as small as possible. However,

some performances could be lost as we are then making

the system to operate like in open loop. It is worth

mentioning here that in the case of a digital controller,

closed-form expression of τ in terms of xn is available

and then explicit differentiation of τ with respect to xn

is possible. In this case, we have:

tk = Kk(Xref,k − xn). (21)

From Equation (21), we have

∂σ(τ ∗, X∗)

∂xn
= −

⎛⎜⎜⎜⎝
K1

K2

...

KM−1

⎞⎟⎟⎟⎠ (22)

In the case of analogue control methods, explicit

differentiation of τ with respect to xn is not possible.

However, the implicit function theorem allows us to

write:

∂τ

∂xn
= −

(
∂σ

∂τ

)−1 (
∂σ

∂xn

)
. (23)

Then, the expression of DP becomes:

DP = Φ(d) − ∂P

∂τ

(
∂σ

∂τ

)−1 (
∂σ

∂xn

)
(24)

where σ is the column vector [σ k], k = 1, . . . , M − 1,

given by:

σ(τ , xn)

=

⎛⎜⎜⎜⎜⎜⎝
K1(Xref,1 − P1(xn, t1)) − h1(t1)

K2(Xref,2 − P2 ◦ P1(xn, t1, t2)) − h2(t2)
...

KM−1(Xref,M−1 − PM−1 ◦ PM−2 ◦ · · · ◦
P1(xn, t1, t2, . . . tM−1)) − hM−1(tM−1)

⎞⎟⎟⎟⎟⎟⎠
(25)

By substituting the local mappings Pk by their cor-

responding expressions and differentiating the vector
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of switching functions σ with respect to xn we obtain:

∂σ(τ , xn)

∂xn
=

⎛⎜⎜⎜⎜⎜⎝
K1φ1(t1)

K2φ2(t2 − t1)φ1(t1)
...

KM−1

1∏
k=M−1

φk(tk − tk−1)

⎞⎟⎟⎟⎟⎟⎠ (26)

Likewise, by differentiating σ with respect to τ we

obtain:

∂σ(τ , xn)

∂τ

=

⎛⎜⎜⎜⎝
−K1ẋ−

1 − ḣ1(t1) 0 · · · 0

−K2φ2�ẋ1 −K2ẋ−
2 − ḣ2(t2) · · · 0

...
...

. . .
...

−KM−1�ẏ1 −KM−1�ẏ2 · · · −KM−1ẋ−
M−1 − ḣM−1(tM−1)

⎞⎟⎟⎟⎠
(27)

where

�ẋk = ẋ−
k − ẋ+

k

ẋ−
1 = A1P1(xn) + B1

ẋ+
1 = A2P2(xn) + B2

ẋ−
2 = A2P2 ◦ P1(xn) + B2

ẋ+
2 = A3P2 ◦ P1(xn) + B3

...

ẋ−
M−2 = AM−2PM−2 ◦ PM−3 ◦ · · · ◦ P1(xn) + BM−2

ẋ+
M−2 = AM−1PM−2 ◦ PM−3 ◦ · · · ◦ P1(xn) + BM−1

ẋ−
M−1 = AM−1PM−1 ◦ PM−2 ◦ · · · ◦ P1(xn) + BM−1

�ẏi =
i+1∏

k=M
φk(dk)�ẋi .

Note that as the vector field is discontinuous, the

state variables derivative ẋ−
k just before switching are

different from the derivatives ẋ+
k just after switching.

This is reflected in the fact that �ẋk �= 0 in this kind of

systems. If such discontinuities do not exist, the matrix
∂σ
∂τ

will be diagonal. Finally, the partial derivative of

the map function P with respect to τ can be obtained

from Equation (12) in the same way:

∂P

∂τ
= (�ẏ1 �ẏ2 · · · ẋ−

M−1) (28)

The continuity at the switching boundary will make

all the components of Equation (28) null except the last

one. This would simplify the computing of the Jacobian

matrix for systems that do not present discontinuity at

the switching boundary.

The stability analysis of the nominal periodic orbit

of the closed loop system, represented by X∗, can be

carried out by using the eigenvalues of DP evaluated

at the fixed point X∗. This can be done by solving the

characteristic equation for the fixed point X∗ which is

given by:

det(DP − λ1) = 0 (29)

A well-known condition for instability is that one of

the eigenvalues has a modulus greater than 1. At a bi-

furcation point, the modulus of λ = 1 and we can write

λ = ejθ . There are three standard ways for eigenvalues

to leave the unit circle in the case of the smooth map

P. For θ = π , flip bifurcation (FB) takes place, while

for θ = 0, saddle-node bifurcation (SNB) can occur in

which a pair of periodic orbits coalesce and disappear.

For other values of θ , a Neimark–Sacker bifurcation

(NSB) is possible.

5 Example: A four-level DC–DC buck power

electronics converter under a MIMO PWM

controller

The use of the Poincaré map to study the stability of

periodic orbits in a power electronic circuit and to an-

alyze their bifurcations was first done by Hamill et al.

[25] where the deterministic model of the elementary

(two level) DC–DC buck converter under a voltage-

mode Pulse Width Modulation (PWM) control was ad-

dressed. It was shown in ref. [25] that the Poincaré map

of the switched system, although very complex, does

not involve discontinuities associated to the switching

actions and results in a continuous map that can be
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used to analyze accurately the stability of nominal peri-

odic orbits. In the following subsections, we will apply

the discrete time formulation presented previously to a

four-level DC–DC buck converter. Note that the map P

is smooth whenever the number of configurations does

not change and the sequence is always the same.

5.1 System description

In order to validate the analytical expressions presented

in the previous sections, let us consider the four-level

DC–DC buck converter presented in Fig. 2. There are

eight (23) different valid configurations depending on

the state of the switches S1, S2, and S3 and diodes D1,

D2, and D3. Different sequences and therefore different

M-modal periodic orbits are possible depending on the

duty cycles of the command signal and phase shift be-

tween them. These sequences define different operat-

ing modes of the converter. For a duty cycle between

33 and 50% and a phase shift of 2π /3 between the com-

mand signals, the system toggles among six different

affine and time-invariant configurations. These config-

urations are given in the Appendix. In order to perform

the switch mode operation of the converter and with

the purpose of regulating the output voltage vo and the

flying capacitor voltages vc,1 and vc,2, the duty cycles

of the command signals must be controlled. The Pulse

Width Modulation technique plays the role of the ba-

sic control method in power electronics systems. In the

traditional PWM control, the duty cycles of the com-

mand signals u1, u2, and u3 are varied according to the

error signals to control the output variables. The sim-

plest analog form of generating fixed frequency PWM

is by comparison with a linear slope waveform such

as a triangular periodic signal in such a way that the

output signal goes high/low when the control signal

is higher/lower than the triangular signal. This is im-

plemented using a comparator whose output voltage

goes to a logic 1 when one input is greater than the

other. Other signals with straight edges can be used

for modulation. A failing ramp carrier will generate

PWM with leading edge modulation. When the control

signal sk is smaller (resp. greater) than the sawtooth

ramp voltage hk , the switch is OFF (resp. ON). As the

system contains three controlled switches, this modu-

lation strategy should be applied for the three switches.

The ramp carriers are phase shifted in such a way that

the control signal s1 is compared with the ramp car-

rier signal h1(t), the control signal s2 is compared with

h2(t) = h1(t − T/3) while the signal s3 is compared

with the sawtooth ramp signal h3(t) = h1(t − 2T/3),

where T is the period of the ramp signal which coin-

cides with the switching period. In the case of a digital

PWM control, this will also be the sampling period.

Obtaining the expression of the control signals is

challenging as the system is multi-input multi-output

(MIMO). A MIMO control design may be the work

of another research in this area and it is beyond the

scope of this paper. We will consider here a purely pro-

portional control with the aim to minimize the error

Fig. 2 Four-level DC–DC
buck converter and its PWM
MIMO controller
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between the outputs and their references values. In

order to control the voltage vC,1 to 2vin/3, iL to iref

and vC,2 to vin/3, we consider the error signals e1 =
2Vin/3 − vc,1, e2 = iref − iL , and e3 = vc,2 − 0.5vc,1.

Then, the control signals to be compared with the repet-

itive signals hk are as follows:

s1(x) = kv,1e1 + ki e2

s2(x) = ki e2

s1(x) = kv,2e3 + ki e2

(30)

where ki , kv,1, and kv,2 are feedback coefficients. It

is worth noting that due to the phase shift among the

repetitive signals hk , two of the switching instants are

synchronous and are given in a fixed pattern. These are

t2 = T /3 and t4 = 2T /3. The other remaining switch-

ing instants are asynchronous and they are obtained as

the solution of the equation resulting from the crossing

of the control signals sk with the ramp periodic func-

tions hk . These periodic functions have the following

expressions:

h1(t) = Vu − (Vu − Vl)
t

T
mod 1

h2(t) = Vu − (Vu − Vl)
t − T/3

T
mod 1

h3(t) = Vu − (Vu − Vl)
t − 2T/3

T
mod 1

(31)

In order to get an output voltage regulation, the sig-

nal iref is taken from the output voltage controller. If

a purely proportional controller is used, this reference

current is given by:

iref = ko(Vref − vo) (32)

where ko is the proportional gain.

5.2 Orbital stability analysis

In order to perform the orbital stability analysis of the

earlier-described system, let us choose the following

values of the parameters: input voltage Vin = 30 V, ca-

pacitance C1 = 20 μF, capacitance C2 = 20 μF, out-

put capacitance Co = 20 μF, inductance L = 100 μH,

load resistance R = 5 �, reference voltage Vref =
20 V,1 switching period is selected to be T = 50 μs.

1 Note that the use of a purely proportional controller will intro-
duce a static error in the output voltage whose average value will

The lower and the upper values of the repetitive volt-

ages are Vl = 0 and Vu = 5 V. The feedback coeffi-

cients ki and ko are set to 1, kv,1 and kv,2 are taken

equal: kv,1 = kv,2 = kv and kv is considered as a design

parameter that should be adjusted to obtain a stable be-

havior. The switching sequence is the following: C1 →
C2 → C3 → C4 → C5 → C6, which corresponds to

(u1, u2, u3) = {(0, 1, 0), (0, 1, 1) (0, 0, 1), (1, 0, 1),

(1, 0, 0) and (1, 1, 0) }. This sequence gives rise to a

6-modal periodic orbit in the stationary state. Figure 3

shows the time-domain waveforms of the 6-modal pe-

riodic orbit. The results are obtained both from direct

time-domain simulation and by means of reconstruct-

ing the data from the fixed point of the Poincaré map.

As can be seen, there is a good concordance between

the results. In order to study the stability of this orbit,

the loci of the eigenvalues λ(DP) of the Jacobian matrix

DP are plotted when the parameter kv is increased. This

parameter is swept in the range (0.2, 1.6). The results

are shown in Fig. 4a. From the locus of the eigenval-

ues, we can deduce that the system presents a FB as the

parameter kv is increased. Since one of the eigenvalues

crosses the unit circle from (−1, 0) at a critical value

of kv,cri ≈ 0.85, it is expected that the system under-

goes a FB at this point. Time-domain simulations using

exact circuit description are used to check the results.

Figure 4b shows the bifurcation diagram of the induc-

tor current. It can be observed that the critical value of

the kv is kv,cri ≈ 0.85. This value agrees well with the

result obtained from the stability analysis based on the

Jacobian matrix of the Poincaré map. However, note

that after the 6-modal periodic orbit loses its stability

by a smooth FB, some nonsmooth bifurcations in the

form of a border collision (BC) can occur afterwards.

These BC bifurcations take place due to the fact that

the system loses smoothness for a certain value of the

bifurcation parameter.

The loss of smoothness is due to a structural change

in the model of the system. More specifically, the satu-

ration of the command input uk during some cycles is

the main cause of nonsmoothness. NSB can also take

place for other bifurcation parameters or for other val-

ues of the fixed parameters. For instance, if the output

capacitance Co is relatively small, the system has the

tendency to lose stability by a NSB. Figure 5a shows

the loci of the eigenvalues as the bifurcation param-

be less than Vref. In our case, the duty cycles obtained taking into
account the static error are in the range of (33, 50)%.
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Fig. 3 Stationary periodic waveforms of the state variables (a) from simulation of the switched model during four switching periods
(transient was removed) and (b) from the reconstruction of the fixed point of the Poincaré map during one switching cycle

Fig. 4 (a) Eigenvalues loci of the Jacobian matrix of the Poincaré
map corresponding to a four-level converter as the parameter kv

is increased. The eigenvalues of the open loop system are also

indicated by small circles. (b) Bifurcation diagram taking kv as
a bifurcation parameter showing a FB

eters as the bifurcation parameter kv is swept in the

same range as before but with Co = 10 μF. However,

in this case, two of the eigenvalues of the closed-loop

system crossing the unit circle are complex conjugates.

The bifurcation diagram of this case is shown in Fig.

5b, where a NSB can be observed. After this bifurca-

tion, the trajectory of the system in the steady state is

a torus and which with further changes in the bifur-

cation parameter can undergo a BC bifurcation result-

ing in a nonsmooth torus (quasiperiodic behavior or

phase-locked loop) or in a chaotic attractor. Note that

in order to explain the nonsmooth torus breakdown,

the model should take into account the saturation ef-

fect of the duty cycles. Clearly, our model used to de-

rive the Jacobian matrix does not include such effect

and cannot explain the border collision bifurcations.

However in the saturation region, the corresponding

Poincaré map model is linear because the switching

instants are constants and do not depend on the state

variables. The linearization of the Poincaré map in the

Springer



442 Nonlinear Dyn (2007) 50:431–445

Fig. 5 (a) Eigenvalues loci of the Jacobian matrix of the Poincaré
map corresponding to a four-level converter as the parameter kv

is increased. The eigenvalues of the open-loop system are also

indicated by small circles. Co = 10 μF. (b) Bifurcation diagram
taking kv as a bifurcation parameter showing a NSB

saturating and the nonsaturating regions will give rise

to a piecewise affine map that could be used to ana-

lyze the nonsmooth bifurcation of high periodic orbits

of the system. In this paper, we are considering only

the first bifurcation since it is the most important from

the design point of view. The analysis of the postbifur-

cations, most of them being classified in the category

of BC bifurcations, is beyond the scope of this paper.

Readers interested in the phenomenon of the border col-

lision torus breakdown are referred to the recent papers

[26, 27].

6 Conclusions

We have presented a systematic procedure to obtain

the Poincaré map of MIMO DPWA dynamical systems

with continuous state variables and discontinuous vec-

tor field. This model is in the form of a Poincaré map

and it can be obtained by a composition of different

local mappings built in local cells between two adja-

cent switching boundaries. We obtained that although

the actual system is discontinuous, the corresponding

Poincaré map is smooth if the number of configurations

does not alter. In this case, only conventional bifurca-

tions FB, NSB, and SN can take place. Bifurcations of

the fixed points are closely related to the loss of sta-

bility when a parameter is varied. The Poincaré map

can be used to study accurately the stability of peri-

odic orbits of the switched system as obtained from its

exact general continuous-time dynamical model. The

expression of the fixed point and the Jacobian matrix

are given in closed form in term of system matrices

and steady state switching time instants. In closed-loop

systems, these time instants can be obtained numeri-

cally by using a root finding algorithm. For instance,

the least square method can be used. The methodology

proposed in this work is a suitable systematic proce-

dure to the analysis of the orbital stability of a DPWA

system independently of its dimension and the number

of its configurations. The combination of closed-form

expressions and numerical procedures allows the anal-

ysis of the influence of the parameters on the behavior

of the system. Details on computing some matrices and

vectors appearing in the model are discussed. The pro-

posed approach is applied to a nontrivial power elec-

tronic DC–DC converter which uses six configurations

during one switching cycle. The results of the stabil-

ity analysis by using the eigenvalues of the Jacobian

matrix have been confirmed by time-domain simula-

tions of the exact circuit diagram description. A good

agreement between numerical simulation and theoret-

ical prediction has been obtained. Most of nonlinear

phenomena that are undergone by the nominal peri-

odic orbit of DPWA switched systems are classified into

standard bifurcations like FB, NSB, and SNB. In this

paper, we have attempted to provide some analytical ex-

pressions to detect accurately these local bifurcations.
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Other nonstandard bifurcations as, for example, BC bi-

furcations are also possible and they can only occur

when the number of configurations during one switch-

ing cycle may vary or the switching sequence is modi-

fied. In our opinion, the formality and generality of our

presentation are necessary because of their applicabil-

ity to a wide class of switched systems. Future research

aims to apply the approach to analyze the stability of

general multilevel converters and to orient it to the sys-

tem design using discrete time control theory. Global

stability and experimental validation is also a subject

of further study.

Appendix

1.1 Configurations of the four-level DC–DC

buck converter

• Configuration C1, (OFF, ON, OFF): During this con-

figuration, the inductor L is discharged, capacitor

C2 is charged, and C1 capacitor is discharged. The

system matrix A and vector B for this configuration

are:

A1 =

⎛⎜⎜⎜⎝
0 − 1

L
1
L − 1

L
1

Co
− 1

RCo
0 0

− 1
C1

0 0 0

0 0 0 0

⎞⎟⎟⎟⎠ , B1 =

⎛⎜⎜⎝
0

0

0

0

⎞⎟⎟⎠
(A.1)

• Configuration C2, (OFF, ON, ON) During this con-

figuration, the inductor L is charged, capacitor C1 is

still discharging, and C2 capacitor charge is main-

tained. The system matrix A and vector B for this

configuration are:

A2 =

⎛⎜⎜⎜⎝
0 − 1

L
1
L 0

1
Co

− 1
RCo

0 0

− 1
C1

0 0 0

0 0 0 0

⎞⎟⎟⎟⎠ , B2 =

⎛⎜⎜⎝
0

0

0

0

⎞⎟⎟⎠
(A.2)

• Configuration C3, (OFF, OFF, OFF): During this con-

figuration, the inductor L is discharged, capacitor C1

and C2 charges are maintained. The system matrix A

and vector B for this configuration are:

A3 =

⎛⎜⎜⎜⎝
0 − 1

L 0 1
L

1
Co

− 1
RCo

0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎠ , B3 =

⎛⎜⎜⎝
0

0

0

0

⎞⎟⎟⎠ (A.3)

• Configuration C4, (ON, OFF, ON): During this

configuration, the inductor L and capacitor L1 are

charged while capacitor L2 is discharged. The system

matrix A and vector B for this configuration are:

A4 =

⎛⎜⎜⎜⎜⎝
0 − 1

L
1
L

1
L

1
Co

− 1
RCo

0 0

0 0 0 0

− 1
C2

0 0 0

⎞⎟⎟⎟⎟⎠ , B4 =

⎛⎜⎜⎝
Vin

L
0

0

0

⎞⎟⎟⎠
(A.4)

• Configuration C5,(ON, OFF, OFF): During this con-

figuration, the inductor L is discharged, capacitor L1

is still charging, and L2 capacitor charge is main-

tained. The system matrix A and vector B for this

configuration are:

A5 =

⎛⎜⎜⎜⎝
0 − 1

L − 1
L 0

1
Co

− 1
RCo

0 0
1

C1
0 0 0

0 0 0 0

⎞⎟⎟⎟⎠ , B5 =

⎛⎜⎜⎝
Vin

L
0

0

0

⎞⎟⎟⎠
(A.5)

• Configuration C6, (ON, ON, OFF): During this con-

figuration, the inductor is charged the L1 capacitor

charge is maintained while L2 is charged. The sys-

tem matrix A and vector B for this configuration

are:

A6 =

⎛⎜⎜⎜⎜⎝
0 − 1

L 0 − 1
L

1
Co

− 1
RCo

0 0

0 0 0 0
1

C2
0 0 0

⎞⎟⎟⎟⎟⎠ , B6 =

⎛⎜⎜⎝
Vin

L
0

0

0

⎞⎟⎟⎠
(A.6)
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1.2 Switching functions σk for the four-level

DC–DC buck converter

The switching instants tk are given by solving the equa-

tion resulting from the crossing of the repetitive peri-

odic signals hk with the control signals sk . These control

signals are given by:

s1(x) = kv,1e1 + ki e2

s2(x) = ki e2

s1(x) = kv,2e3 + ki e2

.

(A.7)

In compact form, the control signals sk can be written

as:

sk(x) = Kk(Xref,k − x) (A.8)

where Kk are the vector of feedback coefficients that

will be given later and Xref,k are the vector of the ref-

erence values of the output variables during the kth

subinterval that are given by:

Xref,1 =

⎛⎜⎜⎝
0

Vref

0.66Vin

0

⎞⎟⎟⎠ , Xref,2 =

⎛⎜⎜⎝
0

Vref

0

0

⎞⎟⎟⎠ ,

Xref,3 = Xref,2 (A.9)

Note that some elements in the Xref and Kk vector are

null because only some of the state variables are to be

controlled by feedback. The remaining state variables

will be directly related to these controlled variables.

The control signals are compared with three saw-

tooth signals with lower value Vl, upper value Vu , pe-

riod T and providing 2π /3 phase shift among them. The

expressions of the switching functions are as follows:

σ1(t, x) = s1(x) − h1(t)
σ2(t, x) = s2(x) − h2(t)
σ3(t, x) = s3(x) − h3(t).

(A.10)

The expressions for the vector of the feedback vectors

Kk are given by:

K1 = ( ki −ki ko kv,1 0 )

K2 = ( ki −ki ko 0 0 )

K3 = ( ki −ki ko 0.5kv,2 kv,2 )

(A.11)
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