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Abstract Mechanical systems are often nonlinear with

nonlinear components and nonlinear connections, and

mechanical damage frequently causes changes in the

nonlinear characteristics of mechanical systems, e.g.

loosening of bolts increases Coulomb friction nonlin-

earity. Consequently, methods which characterize the

nonlinear behavior of mechanical systems are well-

suited to detect such damage. This paper presents pas-

sive time and frequency domain methods that exploit

the changes in the nonlinear behavior of a mechanical

system to identify damage.

In the time domain, fundamental mechanics models

are used to generate restoring forces, which charac-

terize the nonlinear nature of internal forces in sys-

tem components under loading. The onset of nonlinear

damage results in changes to the restoring forces, which

can be used as indicators of damage. Analogously, in

the frequency domain, transmissibility (output-only)

versions of auto-regressive exogenous input (ARX)

models are used to locate and characterize the degree to

which faults change the nonlinear correlations present

in the response data. First, it is shown that damage

causes changes in the restoring force characteristics,

which can be used to detect damage. Second, it is shown

that damage also alters the nonlinear correlations in the
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data that can be used to locate and track the progress

of damage. Both restoring forces and auto-regressive

transmissibility methods utilize operational response

data for damage identification. Mechanical faults in

ground vehicle suspension systems, e.g. loosening of

bolts, are identified using experimental data.
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force . Nonlinear characterization . Nonlinear

frequency domain ARX models
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1 Introduction

Mechanical systems are often nonlinear as a result of

nonlinearities in the material properties and the com-

ponents. Additionally, the components are intercon-

nected through nonlinear connections, e.g., bolts, welds

and bushes. These connections lead to nonlinear be-

havior of the components and nonlinear interactions

within the system. Mechanical damage often causes

changes in the nonlinear behavior, e.g. loosening of

bolts increases Coulomb friction nonlinearity, or even

introduces nonlinearity. Consequently, methods that
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characterize the nonlinear behavior of systems are well-

suited for nonlinear mechanical damage identification.

Characterization of nonlinear vibrating systems is a

well-researched area with a significant amount of lit-

erature and techniques available. Some techniques are

based on frequency modulation, such as frequency de-

convolution [1], Hilbert transforms [2, 3] and wavelet

transforms [4]. These techniques utilize changes in

system natural frequencies with changes in response

amplitude for nonlinear characterization. In addition,

Leontaritis and Billings [5] have used correlation func-

tions in time to characterize nonlinear systems. Storer

and Tomlinson [6] used higher order frequency re-

sponse functions to characterize nonlinear structural

dynamic systems. Collis et al. [7] have also used higher

order spectra, bispectra and trispectra, to characterize

nonlinearities. Surace et al. [8] used the restoring force

method to characterize the nonlinear nature of auto-

motive shock absorbers and Audenino and Belingardi

[9] also recognized the merit of this method. Haroon

et al. [10, 11] used restoring forces to characterize the

nonlinearities as part of a system identification method-

ology in the absence of external input measurements.

McGee et al. [12] used drops in the ordinary spectral co-

herence functions associated with nonlinear frequency

permutations to characterize the nonlinearities in tire-

vehicle suspension systems in the absence of an input

measurement. Adams and Allemang [13] used discrete

frequency models [14] to derive an experimental fre-

quency domain nonlinear indicator function. Unlike or-

dinary spectral coherence functions, which only indi-

cate input–output relations at a single frequency, these

functions relate the error at each frequency to errors at

frequencies across the band of interest. This enables the

technique to distinguish between system nonlinearities

and bias errors localized in frequency.

This paper presents two nonlinear damage identi-

fication techniques that utilize passive response data

along with fundamental mechanics models to interro-

gate the nonlinear behavior of a vehicle suspension sys-

tem. The first one is the restoring force method, which

has its origins in the work by Masri et al. [15–18], who

used recursive least squares for linear parameter identi-

fication and a nonparametric method for expressing the

nonlinear characteristics (force-state maps) in terms of

orthogonal functions. Surace et al. [8] used it to char-

acterize the dynamic properties of automotive dampers

and Haroon et al. [10, 11] extended the technique to

nonlinear characterization and system identification of

mechanical systems in the absence of an input mea-

surement. The authors highlighted a valuable feature of

restoring forces; only response acceleration measure-

ments are needed to generate restoring force curves,

which is important for applying them to operating data.

Here, restoring forces are used to characterize the non-

linear internal loads of the components of a mechanical

system in terms of frequency and then changes in the

restoring forces with the onset and progression of dam-

age are used for damage detection.

The second method is based on the Discrete

Frequency Domain Models presented by Adams and

Allemang [14]. Adams [19] used these models to de-

velop frequency domain auto-regressive exogenous in-

put (ARX) models, which relate the frequency response

of a nonlinear system at each frequency to the input and

output spectra within a given frequency band. These

harmonic relationships indicate that the response of a

nonlinear vibrating system at a particular frequency,

ωk , X (ωk), is correlated with both the input(s) at that

frequency, F(ωk), and the response at sub and super-

harmonics of that frequency, X (ωk−i ) and X (ωk+i ).

Adams and Farrar [20] applied frequency domain ARX

models to damage identification by developing features

that can be used to detect changes in the nonlinear be-

havior of structural systems with the onset of damage.

Similar models are used here to detect and follow the

progress of damage in a mechanical system. When the

transmissibility version of the ARX models is used,

they can help to detect and locate damage. The reason

for this dual capability is that transmissibility functions

contain only the transmission zeros of the system and,

hence, are more sensitive to local changes in system

characteristics [21, 22].

In the following sections, the techniques described

above are explained in more detail and then used to

identify simulated damage in ground vehicle suspen-

sion systems.

2 Fault identification methods

2.1 Restoring forces

The restoring force is an internal force that opposes

the motion of an inertial element within a system,

e.g., the left-hand side of Newton’s Second Law for

a body with constant mass, m, and acceleration vector,

a:
∑

F = ma. The local stiffness and damping in a
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Fig. 1 Quarter car model

mechanical system resist the motion of a given inertia;

consequently, the forces in the stiffness and damping

elements are referred to as components of the restoring

forces. Individual nonlinearities have particular restor-

ing forces; therefore, the nonlinear nature of the inter-

nal forces can be characterized by the restoring forces

within a system.

An advantage of the restoring force technique is that

it only requires that the output accelerations of a sys-

tem be measured. Consider the two degree-of-freedom

quarter car model shown in Fig. 1. The equation of mo-

tion for the sprung mass, M2, provides the following

expression for the restoring force in the suspension:

M2 ẍ2 = − C2(ẋ2 − ẋ1) − K2(x2 − x1)

− K3x2 + N1[x1(t), x2(t), ẋ1(t), ẋ2(t)] (1)

where xk(t) are the displacements of the unsprung and

sprung masses, Mk , C2 is the suspension damping, Kk

are stiffness in the suspension and vehicle body and

N1[x1(t), x2(t), ẋ1(t)ẋ2(t)] denotes the nonlinear forces

in the suspension. The body stiffness to ground ac-

counts for the resistance supplied by the inertia of the

vehicle to the motion of a vehicle corner.

The plots between the acceleration of the sprung

mass and the relative velocity or the relative

displacement between the sprung mass and the un-

sprung mass allow the damping or stiffness restoring

force, respectively, in the suspension to be estimated.

Figure 2 shows the plots of the damping restoring force

regression for a particular input amplitude and fre-

quency showing the nature of the damping nonlineari-

ties observed in the strut of a suspension system of an

experimental vehicle test bed. The frequency character-

istics of the internal forces can be observed by plotting

the restoring forces at different frequencies. Restoring

force plots can be generated for any two response loca-

tions by using similar two degree-of-freedom models.

The main features of restoring forces that make them

suitable for nonlinear damage detection are,

(1) Restoring forces are determined by the damping

and stiffness (linear or nonlinear) of a system.

Structural damage often causes changes in these

system parameters and, consequently, the restoring

forces.

(2) Individual nonlinearities have distinct restoring

forces and damage often causes changes in the

nonlinear characteristics, which can be indictors

of damage.

The frequency dependent nature of restoring forces

dictates that the inputs should be narrowband so that

the characteristics, and changes in those characteris-

tics, can be observed at particular discrete frequencies.

Acceleration measurements are the most convenient
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Fig. 2 Nonlinear shock damping showing saturation at a certain relative clearance velocity (frequency 4.12 Hz)

measurements to make in experimental data analysis

and can also be integrated to estimate velocity and

displacement time histories; therefore, restoring force

methods are especially appropriate for experimental

purposes. Note, however, that the static (DC) compo-

nents of the velocity and displacement time histories

are lost in the integration process; consequently, cer-

tain types of nonlinearities such as quadratic stiffness

nonlinearities, which produce steady streaming (i.e., a

DC response), may be difficult to characterize.

2.2 Frequency domain nonlinear ARX models

The models, based on discrete frequency models

(DFMs) developed in [14] and applied in [19, 20], take

the form

Y (k) = B(k)U (k) +
∑

r,s ∈ �i

Ar,s(k)

× fr,s

(
Y

(
pr

qr
k

)
, Y

(
ps

qs
k

))
(2)

where k, r, s, (pr /qr )k, and (ps /qs)k are contained in

the set of real integers, �i , k is a simple frequency

counter (i.e. ω = k�ω), U (k) is the input, and B(k)

and Ar,s(k) are complex frequency coefficients. The

first term, the exogenous component, accounts for the

nominal linear dynamics and the second term, the auto-

regressive (AR) component, accounts for the nonlin-

ear frequency correlations. The rational number argu-

ments, (pr/qr )k, are used to represent different har-

monics of the excitation frequency. As stated earlier,

Equation (2) indicates that the harmonic response of a

nonlinear system at each frequency is correlated with

both the input and response at potentially all the har-

monics of the input frequency. This multidimensional

correlation is due to nonlinear feedback in the system.

The linear forms of the functions fr,s(·) indicate in

what frequency ranges the nonlinear correlations exist

but may not describe all of the nonlinear dependencies

of the response on the input. On the other hand, when

the fr,s(·) are nonlinear functions of the harmonics of the

spectrum, Y(k), then the model can more fully describe

different types of nonlinear behavior. In summary, the

fr,s(·) determine the degree to which the frequency do-

main ARX model is able to describe the behavior of

the nonlinear system.

These models use frequency spectra of measured

signals and spectra are easier to obtain from signals

with broad frequency content; therefore, experimental

application of this technique is suited to broad-band

inputs (e.g., random).

Equation (2) can be written as,

Y (k) = Dp (3)
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where p are the exogenous and auto-regressive coef-

ficients and D contains the input and the terms fr,s(·).
The optimum set of ARX coefficients, the ones that

minimize the sum of the squared error, e(k) · e(k), is

given by the pseudo-inverse solution,
�

p, to the over-

determined Equation (3):

�

p = D+Y (k) = (DT D)−1 DT Y (k) (4)

where D+ is the pseudo-inverse of D and DT is the

transpose.

The order of the nonlinear ARX model is determined

by the number of auto-regressive (AR) terms that are

included in the function fr,s(·), on one side of the fre-

quency of interest, ωk . Two forms of the ARX model

are used in this paper.

First Order, Linear:

Y (k) = B(k)U (k) +
1∑

j=−1�=0

A j (k)Y (k − j) (5)

where, only correlations with one frequency above and

one frequency below the input frequency are consid-

ered.

First Order, Nonlinear:

Y (k) = B(k)U (k) + A−1(k)Y 3

(
k

3

)
+ A1(k)Y 3(3k)

(6)

where, correlations with the cubic sub- and super-

harmonics are considered.

The changes in the auto-regressive coefficients (re-

lated to nonlinear behavior) can be used as indicators

of damage, as damage often causes changes in the lin-

ear/nonlinear behavior of a structural system. A number

of other indicators can be used that signify the onset and

progression of damage in a system. The indicators used

in this paper are A j (k), the auto-regressive coefficients,

and 1 − ∣∣A jd /A jun

∣∣, where ‘d’ indicates damaged and

‘un’ indicates undamaged. 1 − ∣∣A jd /A jun

∣∣ indicate the

change in the nonlinear correlations compared to the

undamaged case.

2.2.1 Damage location

Equation (2) can easily be adapted for passive data

(output-only) by using the transmissibility function

formulation, where a measured output at a location

different than that for Y(k) is used as the input term,

U(k). Johnson and Adams [22] showed that transmis-

sibility functions could be used to effectively detect

and locate structural changes. Transmissibility func-

tions only contain the zeros, and not the poles, of dis-

crete frequency response functions (FRF), and there-

fore, contain information about more localized regions

of structures. For example, a two degree-of-freedom

system has an FRF matrix

H(ω) = 1

�(ω)

[
B11(ω) B12(ω)

B21(ω) B22(ω)

]
(7)

where �(ω) is the characteristic polynomial whose

roots are the system poles. The entries Bi j (ω) contain

the system zeros, which are a function of a few of the

total degrees of freedom in the system. Transmissibil-

ity is defined as the ratio of two response degrees of

freedom. The following equation shows that the char-

acteristic polynomial is cancelled in the transmissibility

calculation, and all that remains is the ratio of system

zeros:

Ti j(k)(ω) = Xik(ω)

X jk(ω)
=

Xi (ω)
Fk (ω)

X j (ω)

Fk (ω)

= Hik(ω)

Hjk(ω)
=

Bik (ω)
�(ω)

B jk (ω)

�(ω)

= Bik(ω)

B jk(ω)
(8)

Thus, acceleration response measurements can be

used to directly access information about the zeros of

the system FRFs. This property means that a trans-

missibility measurement across two discrete structural

degrees of freedom will primarily contain information

about the structural path between those two degrees

of freedom. Damage and other structural changes can

hence be detected and located within a sensor array.

3 Experimental setups

Laboratory experiments were performed on a full-

vehicle two-post shaker test rig and a vehicle corner

test rig with different damage mechanisms as described

below.
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3.1 Full-vehicle tests

Response data were taken on the front left suspension

system of an Isuzu Impulse using a hydraulic shaker ap-

paratus. A picture of the experimental setup is shown in

Fig. 3. The MTS R© hydraulic shakers, with a maximum

dynamic pressure of 3000 psi, an input frequency range

of 0–100 Hz and a maximum stroke of approximately

8 in., were used to excite the front left and right tire

patch of the car in the vertical direction. Tri-axial ac-

celerometers of nominal sensitivity 1 V/g were attached

at five locations on the suspension system, (a) bottom

of the strut, ẍ1(t) (unsprung mass), (b) the upper strut

connection with the body, ẍ2(t), (sprung mass) (c) steer-

ing knuckle-control arm connection, ẍ3(t), (d) control

arm, ẍ4(t) and (e) sway bar, ẍ5(t). It should be noted

that the actual system has more DOF than the model

in Fig. 1. Damage was introduced in the suspension

system of the Isuzu by loosening the bolt connecting

the steering knuckle to the control arm, through a ball

joint.

3.2 Vehicle corner tests

The setup consisted of a Dodge Dakota shock mod-

ule, steering knuckle, lower and upper control arms

Fig. 3 Full-vehicle shaker test setup

Fig. 4 Vehicle corner test rig

and tie rod (Fig. 4). A vertical input was applied to the

steering knuckle through a MTS R© hydraulic shaker.

Tri-axial acceleration measurements were made at the

clevis joint (where the shock module attaches to the

lower control arm), ẍ1(t), top shock mount, ẍ2(t), and

the input location, ẍ3(t). The vertical, longitudinal and

lateral loads at the top shock mount were also avail-

able, and they were utilized as in F2 = M2 ẍ2. Dam-

age was introduced by making a cut in one of the clevis

ears.

Sine sweep inputs were used to generate the restor-

ing forces and broad-band random inputs were used

for the ARX models. The acceleration signals were

recorded with an Iotech R© portable data acquisition sys-

tem converted into ‘.mat’ files and integrated offline in

MATLAB R© to estimate the velocity and displacement

responses. The Iotech R© system allowed a wide range of

sampling frequencies and the application of high and/or

low pass filters to remove noise and aliasing. The signal

processing parameters are given in Tables 1 and 2.
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Table 1 Signal processing parameters for sine sweep input

Chirp Chirp rate Number of time Sampling frequency, Low pass filter

Test range (Hz) (Hz/s) points, Nt Fs (Hz) (LPF) cut-off (Hz)

Full-vehicle 0–15 0.025 360,000 600 100

Vehicle corner 0–35 0.058 360,000 600 100

Table 2 Signal processing parameters for random input

Time points, Frequency Sampling freq., Number of Overlap LPF cut-off

Test Nt content (Hz) Fs (Hz) averages, Navg (%) (Hz)

Full-vehicle 180,000 0–35 600 100 50 100

Vehicle corner 168,000 0–20 600 100 50 100

4 Damage detection

4.1 Bolt loosening

Damage was introduced in the suspension system of

the ISUZU by loosening the bolt connecting the steer-

ing knuckle to the control arm, through a ball joint

(Fig. 5), from an initial torque of 400 in-lb to 250 in-lb,

then 100 in-lb and finally removing the bolt completely.

Self-loosening is often a problem in bolted joints, es-

pecially in joints under cyclic transverse loading [23].

This has great importance in automotive applications

since the fasteners generally represent the largest single

cause of warranty claims faced by automobile manu-

facturers [24].

Fig. 5 Bolt damage location

4.1.1 Restoring forces

In order to characterize the nonlinear internal loads

of the suspension system, the quarter car model of

Fig. 1 was used to generate velocity (damping) and dis-

placement (stiffness) restoring force curves, for the un-

damaged case. Figure 2 shows a representative restor-

ing force curve, in the vertical direction between the

top strut mount (ẍ2(t)), and the steering knuckle-

control arm connection (ẍ3(t)), for an input ampli-

tude of 0.5 mm. It shows the top strut mount accel-

eration versus the velocity difference between the top

mount and the steering-knuckle control arm connec-

tion. The restoring force curve shows a nonlinear damp-

ing characteristic with both saturation (Coulomb fric-

tion damping curve) and hysteresis. Figures 6 and 7

show the frequency characteristics of the damping and

stiffness restoring forces between the top mount and the

steering-knuckle control arm connection. The damping

force initially has a central hysteresis loop, but as the

frequency increases the force takes on the shape of a

Coulomb friction curve, then a piecewise-linear char-

acteristic and finally it becomes primarily linear with

some hysteresis. The stiffness force shows primarily

hysteresis with backlash at certain frequencies.

The same restoring force curves were generated for

the different damage cases to study the change in the

nonlinear internal forces with progression of damage.

Figures 8 and 9 show the change in the frequency char-

acteristics of the damping and stiffness restoring forces

with the progressive loosening of the bolt. The inter-

mediate cases (loosened bolts, 250 in-lb (. . .), 100 in-lb

(- - -)) show a change in the nonlinear characteristics at

higher frequencies (the frequency at which the restoring
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Fig. 6 Frequency characteristic of damping internal force in the strut (a) 4.05 Hz, (b) 4.17 Hz, (c) 6.67 Hz and (d) 12.5 Hz

Fig. 7 Frequency characteristic of vertical stiffness internal force in the strut (a) 4.05 Hz, (b) 4.5 Hz, (c) 6.67 Hz and (d) 12.5 Hz
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Fig. 8 Change in frequency characteristic of vertical damping internal force in the strut with damage. Bolt torques: Undamaged,
400 in-lb (——), 250 in-lb (· · ·), 100 in-lb (– – –) and no bolt (– .–. –). Frequency: (a) 4.09 Hz, (b) 4.17 Hz, (c) 4.26 Hz and (d) 4.67 Hz

Fig. 9 Change in frequency characteristic of vertical stiffness internal force in the strut with damage. Bolt torques: Undamaged,
400 in-lb (——), 250 in-lb (· · ·), 100 in-lb (– – –) and no bolt (– .–. –). Frequency: (a) 2.66 Hz, (b) 2.71 Hz, (c) 2.75 Hz and (d) 3.16 Hz
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Fig. 10 Bolt preload as a function of the number of turns

force corresponding to 100 lb-in bolt torque changes

is the highest) compared to the undamaged case, and

the most severe damage case (bolt removed) changes

characteristic at a lower frequency than the undamaged

case. For example, in Fig. 8a at 4.09 Hz, the damping

restoring force corresponding to the case with no bolt

has already taken on the shape of a Coulomb friction

curve while the restoring forces for the other three cases

only show a hysteresis loop. The undamaged restoring

force assumes the Coulomb friction form at a later fre-

quency of 4.17 Hz and the loosened bolt cases do not

begin to take this form until 4.26 Hz. This same be-

havior is observed for different input amplitudes. The

stiffness restoring force also exhibits a change in fre-

quency behavior. In Fig. 9a (2.66 Hz) the undamaged

case and the case with no bolt show backlash while

the loose bolt cases show primarily linearity with some

hysterisis. Significant backlash does not appear for the

loose bolt cases until 2.75 Hz (Fig. 9c). Damage has

caused a fundamental change in the frequency behav-

ior of the internal nonlinear loads. As the frequency

characteristics of the damping internal load changes to

the appearance of a Coulomb friction damping load, it

seems that the loosened bolt restricts the relative ve-

locity, and increases friction, which causes the system

to stay in the central hysteresis loop longer in terms of

frequency. On the other hand, the lack of a bolt allows

greater relative velocity and the characteristic of the

force changes at a lower frequency.

The restoring force curves also show that once the

damping restoring force curves have become piecewise

linear and the stiffness restoring forces exhibit back-

lash for all cases, there is a difference in the areas of

the curves (Figs. 8d and 9d). It is clearer for the damp-

ing load in Fig. 8d where there is a decrease in area as

the bolt is loosened. This decrease in area signifies a

decrease in the internal load. This is the case for the

damping and stiffness restoring forces for all frequen-

cies beyond the initial range where the changes in the

characteristics occur.

To understand these results the mechanism of bolted

joints must be considered. As a nut is rotated on a bolt’s

screw thread against a joint, the bolt is extended. This

extension generates a tension force or bolt preload. The

reaction to this force is a clamp force that causes the

joint to be compressed. The number of turns of the bolt

affects the preload and the typical preload versus turn

behavior is shown in Fig. 10. Equation (9) relates the

bolt preload to the turn angle [24]:

Fp = θ
( p

360

) (
Kbolt K j

Kbolt + K j

)
(9)

Springer



Nonlinear Dyn (2007) 50:387–408 397

where p is the thread pitch, Kbolt is the bolt stiffness,

and K j is the joint material stiffness. The equation

shows that as the bolt is loosened, the preload decreases,

which results in a decrease in the clamp force on the

joint. Thus, the internal load between the lower ball

joint and the top mount decreases as the bolt is loos-

ened and is the lowest when the bolt is removed com-

pletely. This accounts for the decrease in the area of

the restoring force curves with loosening of the bolt

(Fig. 8d).

It should be noted that in generating the restoring

force curves using the acceleration rather than the force

of a component the resulting plots are scaled by the

component mass, M. It is also assumed that the mass re-

mains constant throughout, which may not be the case.

Therefore, it is possible that changes in effective mass

due to degrees of freedom acting between measure-

ments taken across a damaged component are partially

responsible for the observed changes in the restoring

force curves. For example, the path between the lower

ball joint and the top strut mount has a mode of vibra-

tion between 4 and 5 Hz. A change in mass would cause

the frequency of this mode to change, which could in

turn affect the frequency characteristics of the restoring

forces.

4.1.2 Frequency domain nonlinear ARX models

The models were applied using random input data with

a Gaussian distribution for various input amplitudes

ranging from 0.5 to 6.0 mm RMS displacements of the

wheel pan (i.e., tire patch of the Isuzu).

First, the first-order, linear model in Equation (5)

was applied to the data from points which had the dam-

age location in their path, and the damage features were

estimated. Figure 11 shows the estimated damage fea-

ture 1 − |A jd /A jun | for the vertical motion data from

points x2 and x3, with x3 taken as the input, U (k).

Figure 11 shows the quantity 1 − |A jd /A jun | for

A1(k). Any nonzero value shows a change in the auto-

regressive coefficients and is an indicator of change

in nonlinearity. There is an obvious change in the 40–

55 Hz range where the 100 lb-in torque case exhibits

more nonlinear correlation than the other cases. It can

be seen that the 250 lb-in torque case does not introduce

any significant changes in the nonlinear correlations,

and the undamaged case and the case with no bolt have

very similar behavior. The coefficients A−1(k) show the

same trends. Figure 12 shows a typical self-loosening

sequence of a bolted joint due to transverse cyclic load-

ing [23]. The symbol P represents the clamping force,

Fig. 11 1-Mag(A1d (ω)/A1un(ω)) for first-order linear model (vertical direction); 250 lb-in torque (– – –), 100 lb-in torque (· · ·) and no
bolt (–.–.–)

Springer



398 Nonlinear Dyn (2007) 50:387–408

Fig. 12 Self-loosening sequence of a bolted joint due to transverse cyclic loading; percentage preload loss (——), nut rotation (degrees)
(· · ·). (Jiang et al. [23] – reprinted with the permission of ASME)

P0 represents the initial clamping force or preload, and

θ is the rotation angle of the nut against the bolt. This

figure is relevant as the loading on the ball joint bolt in

the suspension system of the vehicle under investiga-

tion is primarily transverse. Two distinct stages can be

identified in the figure. During the first stage, there is

very little relative motion between the nut and the bolt.

The later stage is characterized by backing-off of the

nut and rapid loosening of the clamping force with rel-

ative motion between the bolt and the joint. The second

of the two loose bolt conditions (100 lb-in torque) that

is simulated in the experiments belongs to the second

stage. These stages of bolt loosening suggest that there

is a critical value of the preload at the junction of the two

stages seen in Fig. 12 where relative motion occurs at

the joint and nonlinear correlations increase. The indi-

cators discussed show that as the bolt is loosened, the

nonlinearity in the path between x2 and x3 increases,

due to the increased friction between the bolt and the

ball joint caused by relative motion (Hess et al. [25,

26], showed that loosening and relative motion can oc-

cur in the presence of vibration). This friction force is

governed by the equation for friction between surfaces

in contact, Equation (10):

Ff = μN (10)

where μ is the coefficient of friction (static or kinetic)

and N is the normal load between the joint threads.

When the bolt is completely loosened or actually re-

moved from the joint the normal load goes to zero as

there is no contact load and this source of friction force

is no longer active, resulting in the nonlinearity in the

path between the two measurement locations returning

to the original undamaged level.

The increase in friction due to the relative motion

between the bolt and the joined components results

in an increase in the nonlinear frequency correlations

seen in Fig. 11. On the other hand, the removal of the

source of increased friction (namely, the bolt) results in

the nonlinear correlations returning to the undamaged

levels. This behavior is similar to the behavior observed

in the restoring forces. The intermediate damage cases

have different characteristics from the undamaged case

and the most severe case (no bolt) behaves similar to

the undamaged case.

The lateral direction data exhibits the same pattern

but to a lesser extent than the vertical direction, as

shown in Fig. 13, which is on the same scale as the verti-

cal case. The longitudinal direction indicator (Fig. 14)

shows the least change. In fact, it is almost insignif-

icant compared to the other two cases. The cause of

this is that the bolt axis is in the longitudinal direction.
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Fig. 13 1-Mag(A1d (ω)/A1un(ω)) for first-order linear model (lateral direction); 250 lb-in torque (– – –), 100 lb-in torque (· · ·) and no
bolt (–.–.–)

Fig. 14 1-Mag(A1d (ω)/A1un(ω)) for first-order linear model (longitudinal direction); 250 lb-in torque (– – –), 100 lb-in torque (· · ·) and
no bolt (–.–.–)
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Fig. 15 1-Mag(A1d (ω)/A1un(ω)) for first-order linear model applied to points with no damage in their path (vertical direction); 250 lb-in
torque (– – –), 100 lb-in torque (· · ·) and no bolt (–.–.–)

Loosening of the bolt causes motion about the longi-

tudinal axis (motion along the longitudinal axis is re-

stricted because the bolt still applies some clamping

force); hence, the vertical and lateral directions show

greater changes in nonlinear correlations. So, the axis

of the bolt can also be identified.

As explained earlier, the output-only formulation of

the nonlinear ARX models allows the damage to be

located due to increased sensitivity to changes in local

dynamics. To verify this, the first-order linear model

was applied to data from locations which did not have

the damage in their path. Figure 15 shows the estimated

indicator 1 − ∣∣A jd /A jun

∣∣ for the data from points on the

control arm and the sway bar. It is clear that there are

no significant changes in the nonlinear correlations in

the path between these two points. Hence, the damage

has been located.

A first-order nonlinear model was also applied to the

data. A cubic form of the nonlinear model (Equation

(6)) was chosen as opposed to a quadratic form be-

cause the Coulomb friction nonlinearity changes with

the loosening of the joint as discussed earlier. This

discontinuous nonlinearity can be approximated with

odd polynomial functions (i.e., x3, x5, etc.). In addition,

symmetric nonlinearities (Figs. 6 and 7) tend to result

in odd harmonics. It was observed that although there

were significant quadratic harmonic correlations, they

did not show any significant changes with damage be-

cause the damage primarily affects Coulomb friction.

The same trends as before were observed (Fig. 16), with

the nonlinear correlations increasing for the 100 lb-

in case and decreasing when the bolt is removed. In

fact, the 100 lb-in torque case shifts the nonlinear cor-

relation with the third super-harmonic (Fig. 16b) of

the input excitation at about 7.5 to 8 Hz. The auto-

regressive coefficients also show an interesting result;

the super-harmonic frequency correlations are much

stronger than the sub-harmonic correlations. This re-

sult suggests that the nonlinear feedback due to the

third super-harmonic of the forced response of the sys-

tem (which is symptomatic of nonlinear behavior) is

much greater than the sub-harmonic. In the nonlinear

model we are assuming than the nonlinearity is cubic in

nature, hence, if the forcing function is harmonic (e.g.,

cos (ω t)) the cube of the function gives frequency com-

ponents at the forcing frequency and the third multiple.

(cos(ωt))3 = 3

4
cos (ωt) + 1

4
cos (3ωt) (11)
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Fig. 16 Auto-regressive coefficients A−1(ω) (sub-harmonic) and A1(ω) (super-harmonic) for first order nonlinear model; coefficients
for undamaged case, 400 lb-in (—-), and damaged cases, 250 lb-in (– – –), 100 lb-in (· · ·) and no bolt (–.–.–)

Equation (11) shows that there are no sub-multiple

components. The super-harmonic correlations interact

with the forced response components at other excitation

frequencies to produce sub-harmonic correlations via

frequency combinations. The resulting sub-harmonic

correlations are weaker in this case. The response of

the system is primarily forced because the data was

collected for a broad-band input after the system had

reached steady-state., i.e. the system transients had died

out.

4.2 Cut in a member

Damage was introduced in a Dodge Dakota suspen-

sion sub-system by making a cut in a coil-over-shock-

module clevis ear as shown in Fig. 17. Similar damage

has been observed by automotive suspensions compo-

nents suppliers during durability testing of coil-over-

shock modules. The system was run through a durabil-

ity schedule using vehicle operating test files supplied

by the OEM.

Fig. 17 Initial cut in shock clevis

4.2.1 Restoring forces

As before, sine sweep (0.058 Hz/s) input data was col-

lected at regular intervals to generate the restoring

forces. Figure 18 shows the frequency characteristics of

the damping internal force along the axis of the shock.

The damping force changes from piecewise linear at
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Fig. 18 Frequency characteristic of vertical damping internal force along the axis of the shock module (a) 7.8 Hz, (b) 19.5 Hz, (c)
27.2 Hz and (d) 29.2 Hz

lower frequencies to primarily hysteretic at higher fre-

quencies.

Figure 19 shows the change in the internal damp-

ing force with the initial damage. There is a reduction

in the internal load with a change in slope signifying

an increase in the damping. Two undamaged restor-

ing forces are presented to show that the change with

damage is greater than the variability from test to test.

Durability tests were run for two days with the system

shut-off over night. Figure 20 shows the change in the

internal force with usage due to damage at the end of

the first day of testing and the change after the system

has been allowed to rest. As the test progresses, the

damping internal force not only decreases but the non-

linear characteristic also changes. This change can be

attributed to the crack-like behavior of the cut, where

it ‘breathes’ as the cyclic load is applied. It is interest-

ing to note that the area of the restoring force curve

and, thus, the internal load actually increases after the

system has been allowed to rest. The reason for this is

that when testing is stopped for a significant amount

of time, the load in the members redistributes and it

is redirected when the testing resumes. Figure 20 also

shows that when the system is allowed to rest there is

a permanent change in the internal force. In this case,

there is an increase in the amount of damping as the

slope increases. It will be shown later that although us-

age also causes a change in the internal loading, the

redistribution of the internal loads after external load

is removed results in the same amount of loading as

before external load is applied. At the end of the dura-

bility tests, the clevis ear was cut through completely

(Fig. 21). Figure 22 shows how this affects the internal

damping force. This causes a decrease in the internal

force and an increase in the damping as the area de-

creases and the slope increases. Damage has changed

the magnitude and nonlinear characteristic of the in-

ternal damping force of the shock module. The reason

that the change is not more dramatic for the complete

cut is that the clevis collapses onto the ear and contact

is maintained. Hence, it only results in a change in the

amount of internal force.

Change in internal loads with usage. In order to study

the effect of usage on the internal loads of components

and verify that damage causes a permanent change in

the internal loads full-vehicle tests were run on the

2-post shaker setup. Sweep data was collected at the
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Fig. 19 Change in internal damping force of the shock module with initial damage (29.2 Hz); baseline 1 (——), baseline 2 (– – –) and
initial cut (· · ·)

Fig. 20 Change in internal damping force of the shock module with damage (29.2 Hz); Initial damage (——), progressed damage
(– – –) and permanent change after rest (· · ·)
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Fig. 21 Complete cut in shock clevis

beginning and then high amplitude broadband input

tests were run continuously for 10 h. Data was col-

lected at the end of the tests and again after the vehicle

sat idle for 24 h. Figure 23 shows the change in the ver-

tical damping internal load of the sway bar link along

with the variation from baseline to baseline. The inter-

nal load increases with usage but returns very close to

the initial state upon removal of the external load(s).

The differences between the final load and the base-

line are comparable to the variation from baseline to

baseline. It is clear from this result and the results from

the previous damage scenario that the internal loads

change with both usage and damage, but the change

due to damage is permanent. When the external load

is removed, the internal loads are redistributed result-

ing in a change in the restoring force area, but some

residual load remains because of the presence of dam-

age. Similar behavior is seen for other locations in the

suspension system. Thus, the permanent change in the

internal loads is an indicator of the level of damage.

4.2.2 Frequency domain nonlinear ARX models

The linear and nonlinear models were applied using

random inputs, with a frequency content of 0–20 Hz,

to the steering knuckle.

First, the first-order, linear model in Equation (5)

was applied to the data from points which had the dam-

age location in their path, and the complex coefficients

were estimated. Figure 24 shows the estimated auto-

regressive coefficient, A1(k), for the vertical motion

Fig. 22 Change in internal damping force of the shock module with damage (29.2 Hz); progressed damage with 1/4 cut (——), and
complete cut (· · ·)
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Fig. 23 Change in internal damping force of the sway bar link with usage (34 Hz); Baseline 1 (——), baseline 2 (– .–. –), after 10 h of
testing (– – –) and after 24 h of idle time (· · ·)
Fig. 24 Vertical direction
auto-regressive coefficients
for first order linear model
(clevis damage);
coefficients for undamaged
case (—-), initial cut (– – –),
progressed damage Day 1
(· · ·) and final cut (–.–.–)

data from points x1 and x2, with x1 taken as the input,

U (k).

Figure 24 shows the change in the nonlinear corre-

lations with the initial damage, the progressed damage

at the end of the first day of durability testing and af-

ter the final cut. It is clear that correlations with the

next highest frequency decrease as the damage is intro-

duced and then grows. The clearest indication is around
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Fig. 25 Longitudinal
direction auto-regressive
coefficients for first-order
linear model (clevis
damage); coefficients for
undamaged case (——),
initial cut (– – –), progressed
damage Day 1 (· · ·) and
final cut (–.–.–)

Fig. 26 Lateral direction
auto-regressive coefficients
for first order linear model
(clevis damage);
coefficients for undamaged
case (—–), initial cut (– – –),
progressed damage Day 1
(· · ·) and final cut (–.–.–)

15 Hz. The changes in the nonlinear correlations with

the final cut are more dramatic compared to the change

in the internal loads. The final cut actually causes the

nonlinear correlations to increase significantly across

the entire frequency range, because although contact

is maintained there is relative motion due to the cyclic

loading. Thus, the changes in the nonlinear frequency

correlations provide a better indication of the effect of

complete failure of the clevis.

The longitudinal direction data (Fig. 25) shows that

the nonlinear correlations decrease with damage below

15 Hz. In this direction, the final cut causes the correla-

tions to decrease further rather than increasing. Another

difference is that the nonlinear frequency correlations
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Fig. 27 Vertical direction
auto-regressive coefficients
A−1(ω) (sub-harmonic) and
A1(ω) (super-harmonic) for
first-order nonlinear model;
coefficients for undamaged
case (——), initial cut
(– – –), progressed damage
Day 1 (· · ·) and final cut
(–.–.–)

actually increase in the 15–23 Hz range, and are highest

for the final cut. The lateral direction (Fig. 26) shows

a similar pattern to the longitudinal direction with no

dramatic increase in the nonlinear correlations with the

final cut.

The reason that only the vertical direction indicators

show a dramatic increase in nonlinear frequency corre-

lations with the final cut is that the motion of the shock

module is primarily along that direction, and the clevis

and the clevis ear maintain contact even after the com-

plete cut. Consequently, there is significant rattling as

the system vibrates, leading to an increase in the nonlin-

ear behavior. There is slipping between the surfaces in

the longitudinal and lateral directions, but the relative

motion is restricted by the rigidity of the components.

The increase in nonlinear correlations due to friction is

only apparent in the higher frequency range for the lon-

gitudinal direction. The differing changes for the three

directions provide information about the direction of

the cut in the clevis.

The cubic form of the first-order, nonlinear model

(Equation (6)) was also applied to the data for this

damage scenario. In this case, the quadratic harmonic

correlations were not only significant but also showed

changes with damage because the restoring force

curves have significant asymmetry (Figs. 19, 20 and

22), which changes with damage (Fig. 20). However,

only the results of the cubic model are discussed here.

The vertical direction coefficients (Fig. 27) show that,

unlike the bolt damage case, the sub-harmonic corre-

lations (Fig. 27a) are much stronger than the super-

harmonic correlations (Fig. 27b). In this case, the sys-

tem nonlinearities result in super-harmonic correlations

interacting with the forced response components at

other excitation frequencies to produce stronger sub-

harmonic correlations via frequency combinations. The

same trends as the linear model are observed, with the

super-harmonic correlations increasing significantly

with the final cut, but the sub-harmonic correlations

actually become almost zero. The longitudinal and lat-

eral directions show the same trends as the linear model

and also have stronger sub-harmonic correlations than

super-harmonic correlations.

5 Conclusions

It was shown that methods which characterize the non-

linear nature of mechanical systems can be used to de-

tect and locate nonlinear mechanical damage. Restor-

ing forces (time domain) were used to detect changes

in the nonlinear internal forces and frequency domain

nonlinear ARX models were used to track changes in

the nonlinear frequency correlations with the progress

of different damage mechanisms introduced in auto-

motive suspension systems. An important feature of

these methods is that an input measurement is not re-

quired; measurements of output accelerations suffice.
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In fact, it was shown that only using the outputs in the

ARX models allows damage to be located due to the

increased sensitivity to local dynamics of the system.
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