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Abstract Modeling an impact event is often related

to the desired outcome of an impact oscillator study.

If the only intent is to study the dynamic behavior of

the system, numerous researchers have shown that sim-

pler impact models will often suffice. However, when

the geometric contours and material properties of the

two colliding surfaces are known, it is often of interest

to model the contact event at a greater level of com-

plexity. This paper investigates the application of a

finite time impact model to the study of a paramet-

rically excited planar pendulum subjected to a motion-

dependent discontinuity. Experimental and numerical

studies demonstrate the presence of multiple periodic

attractors, subharmonics, quasi-periodic motions, and

chaotic oscillations.
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1 Introduction

The behavior of piecewise smooth dynamical systems

has practical relevance to many areas of science and
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engineering. For instance, motion-dependent discon-

tinuities are often deliberately included in machinery

designs to accommodate part tolerances, a working

clearance, or the finite accuracy of a manufacturing

process [1, 2]. Other examples include gear trains with

backlash, systems with dry friction, and the application

of impact dampers for vibration amplitude reduction.

Much of the previous work on impacting systems has

focused on piecewise linear systems that have a dis-

continuity in the force–displacement relationship. Al-

though these systems are piecewise linear, the mere

presence of a discontinuity – in these otherwise lin-

ear systems – allows for the manifestation of highly

nonlinear behavior [3].

This paper examines the dynamic behavior of a para-

metrically excited planar pendulum that encounters a

barrier at the downward position – a mechanical sys-

tem with an archetypal motion-dependent discontinu-

ity (see Fig. 1). Studying the oscillatory behavior of

this system requires a proper model for the contact

event. The first level of modeling complexity consid-

ers a constant coefficient of restitution, which is often

estimated from empirical velocity data that may be im-

plemented to capture the response behavior associated

with a hard impact [4]. Alternatively, some researchers

have suggested the implementation of a velocity-

dependent coefficient of restitution or even model-

ing the impact event with an impulsive force [5, 6].

However, a conceptual problem exists for both alterna-

tives since the impact time duration is assumed to be

instantaneous.
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Fig. 1 Schematic diagram of the experimental pendulum fix-
ture, the potentiometer, and the polymer impact barrier (shown
in black). The above angular position is taken to be negative with
positive angles assumed to occur when the sphere is in contact
with the barrier

Modeling the impact as a finite time event is one al-

ternative to a coefficient of restitution approach. The

first level of complexity considers soft impact with

linear force–deformation and force–velocity relation-

ships. This type of model has been widely implemented

to study piecewise linear oscillators, e.g., see references

[7, 8], and provides a more realistic physical represen-

tation of an impact by including both a nonzero contact

time and a contact force that is motion and/or velocity

dependent [9]. In spite of these advantages, the typical

Kelvin–Voigt model does not correspond to the realis-

tic behavior encountered at the beginning and end of

impact [10, 11].

The next level of complexity considers conformal

contact of finite time duration where nonlinear force–

deformation and/or force–velocity relationships are im-

plemented. One of the the most prolific examples is that

of Hertzian contact between a rigid sphere and an elas-

tic half-space [12, 13]. The focus of this manuscript is

to study the dynamic behavior of a parametrically ex-

cited pendulum with finite time impact events that are

modeled by Hertz’s contact law for elastic conformal

contact along with a nonlinear force–velocity relation-

ship [10, 11]. Although nonlinear, these relationships

have the potential advantage of replicating the realistic

force relationships at the beginning and end of impact.

It is believed that the current work complements the

previous studies of references [4, 6, 14] who treat the

impact event as an instantaneous event, either by the

application of a coefficient of restitution or through the

incorporation of an impulse force.

The present work is organized as follows. The next

section describes the experimental impact oscillator

and the primary instrumentation used during the ex-

perimental study. The third section describes a model

for the parametrically excited pendulum and the impact

event. System identification of the experimental non-

linear system is separated into contact and noncontact

regimes. Approximate analytical solutions are applied

for the noncontact oscillations and numerical efforts

are applied to match the experimental behavior with the

observed impact oscillations. Experimental results and

numerical comparisons are then presented to study the

forced oscillations of a system that exhibits periodic,

subharmonic, quasi-periodic, and chaotic behavior.

2 Description of experimental apparatus

A schematic diagram of the experimental impact os-

cillator of interest is shown in Fig. 1. Measurements

of the pendulum’s angular oscillations were obtained

by supplying a constant voltage to a Novatechnik,1

model P2200, low-torque potentiometer and recording

the time varying voltage provided by the potentiome-

ter’s change in internal resistance. A unique feature

of this potentiometer is the internal conductive plastic

track, which provides a uniformly scaled analog volt-

age. This feature differs from the typical wire-wound

potentiometer that results in step voltage changes.

The potentiometer was housed in a rigid base fix-

ture and connected to a stainless steel, l = 50 mm long,

threaded rod that was inserted into a 19 mm diame-

ter stainless steel sphere. The total mass of assem-

bled pendulum was measured to be m = 32.6 g. The

pendulum base fixture was machined from aluminum

7050-T6 and mounted onto an air bearing shake ta-

ble that was connected to an APS Dynamics, model

113, shaker (see Fig. 2). During the forced oscilla-

tion experiments, the motion of the shake table was

measured with a Micro-Epsilon, model LD-1605-100,

analog laser displacement sensor. To aid in the con-

struction of experimental Poincaré sections, a Terahertz

1 Commercial equipment is identified for completeness and does
not necessarily imply endorsement by the authors.
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Fig. 2 Diagram of the
electromagnetic shaker and
experimental fixture that
was fastened to the air
bearing shake table

Technologies, model LT-850, laser tachometer was

used to provide a once per period timing signal.

3 Impacting pendulum model

This section derives the governing equations for a hor-

izontally shaken pendulum that encounters a barrier

when the pendulum angular position is θ > 0 (see

Fig. 1). The impact condition is modeled as a finite time

process where a rigid sphere penetrates a viscoelastic

material. The kinetic energy for the pendulum, hori-

zontally shaken at an excitation frequency of �, is

T = 1

2
m[(A� cos �t − L θ̇ cos θ )2 + (L θ̇ sin θ )2]

(1)

where A is the amplitude of the displacement-

controlled excitation, m is the pendulum mass, and L
is the pendulum effective length. Here, the pendulum

effective length refers to the distance between the pen-

dulum pivot point and the pendulum system center of

mass, which consists of the pendulum shaft and sphere.

Because the mass in any physical system is distributed

along the pendulum shaft and bob, the effective length

differs from the total length, l, and becomes an un-

known parameter.

To develop the governing equation with Lagrange’s

method, it is necessary to obtain an expression for the

potential energy when not in contact with the barrier

V = mgL(1 − cos θ ). (2)

Writing Lagrange’s equation in terms of the general-

ized coordinate, θ , gives

d

dt

(∂T

∂θ̇

)
− ∂T

∂θ
+ ∂V

∂θ
= 0. (3)

The resulting equation of motion that describes the pen-

dulum oscillations during both contact and noncontact

regimes is

θ̈ + 2ζωθ̇ − A�2

L
sin �t cos θ + ω2 sin θ

+ H (θ )
l Fc(θ )

mL2
= 0, (4)

where Fc(θ ) is the contact force that occurs at distance

l from the pendulum pivot point, ζ is the damping ra-

tio, ω = √
g/L is the pendulum natural frequency, and

H (θ ) is the Heaviside step function that obeys

H (θ ) =
{

1 for θ < 0

0 for θ ≥ 0
(5a)

3.1 Modeling the impact event

Various models can be implemented to investigate the

dynamic behavior of an impact oscillator. In partic-

ular, a coefficient of restitution model can be im-

plemented under the assumption of an instantaneous

impact. While the simplest approach is to assume

a constant coefficient of restitution, a more accu-

rate approach requires experimentally determining a

velocity-dependent coefficient of restitution. However,

one should consider that this type of model neglects the

finite time required for an impact to occur (see Fig. 3).

An apparent disconnect also occurs when attempting

to relate an empirically or experimentally determined

coefficient of restitution to common material properties

such as the elastic modulus and/or parameters describ-

ing the material’s viscoelasticity.

This paper models the contact force expression

based upon the work of Hunt and Crossley [10].

The resulting expression contains nonlinear elastic and
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Fig. 3 Schematic diagram
of a single impact event of
duration tc that reaches a
maximum angle of θmax is
shown in graph (a). Graph
(b) provides a representative
phase space diagram for the
nonsmooth behavior of the
unforced impact oscillations

viscoelastic forces,

Fc(θ ) = 4E
√

R

3

(
1 + μol θ̇

)
(l sin θ )3/2 , (6)

where E is the elastic modulus of the material bar-

rier, μo is a material viscoelastic constant, and R is

the spherical pendulum radius. This model incorpo-

rates Hertz’s contact law for elastic conformal contact

[12], while replicating the realistic force relationships

at the beginning and end of of impact [10]. A primary

assumption for this contact model is that the spherical

pendulum can be treated as a rigid indenter. However,

this assumption is justified since the modulus of the

stainless steel sphere is orders of magnitude greater

than the estimated modulus of the polytetrafluoroethe-

lyne barrier.

4 Unforced oscillations

This section describes the work to identify the model

parameters of the physical system that correspond to

the governing equation of the previous section. The

parameter identification process and unforced oscilla-

tion experiments are separated into two distinct steps:

(1) the unforced experimental tests are performed with

the impact barrier removed to identify parameters ζ , L ,

and ω from Equation (7); and (2) the unforced impact

oscillations are compared with numerical simulation

to obtain parameter estimates for E and μo of Equa-

tion (6). The equation for the unforced impact oscilla-

tor, which is given by

θ̈ + 2ζωθ̇ + ω2 sin θ + H (θ )
l Fc(θ )

mL2
= 0, (7)

will be further discussed throughout this section.

A summary of the expected behavior for the un-

forced oscillations of the impacting pendulum is shown

Fig. 3. This schematic diagram illustrates that contact

will occur over a finite duration time, tc, and that the

penetration depth, for a given set of colliding bodies, is

dependent upon the preimpact states of the system. Ad-

ditionally, this graph provides a phase space diagram

of the unforced oscillations. In contrast to the smooth

phase space of a continuous dynamical system, the vec-

tor field that describes a discontinuous dynamical sys-

tem will be nonsmooth.

4.1 Unforced and nonimpacting oscillations

When the barrier is removed, the contact force of Equa-

tion (7) can be set to zero, Fc(θ ) = 0. Obtaining an ap-

proximate analytical solution to Equation (7) requires

an expansion of the sin θ term into a Taylor series about

the downward position,

ω2 sin θ ≈ ω2

(
θ − 1

6
θ3

)
= ω2θ + βθ3, (8)

where β = −ω2/6 and the terms of the order O
(
θ5

)
have been truncated from the expansion. After substi-

tuting Equation (8) into Equation (7), the approximate

equation of motion can be written as

θ̈ + 2ζωθ̇ + ω2θ + βθ3 = 0. (9)

The method of averaging is then applied by assuming

a solution in the following solution form

θ (t) = a cos (ωt + φ) = a cos ψ, (10)
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Fig. 4 Unforced oscillation
time histories presented to
illustrate: (a) the match
between the approximate
analytical solution (x) and
the experimental data (solid
line) for the unforced
pendulum in the absence of
a barrier; and (b) an
example experimental
impact oscillation data set
(solid line) plotted against
numerical data (dashed line)

where ψ = ωt + φ. Applying the averaging equations

[15], will result in the following expressions for slow

variations of a and φ,

ȧ = 1

2πω

∫ 2π

0

sin θ f (a cos ψ, −aω sin ψ)

dθ = −ζωa, (11a)

φ̇ = 1

2πωa

∫ 2π

0

cos θ f (a cos ψ, −aω sin ψ) dθ

= 3a2β

8ω
. (11b)

The amplitude and phase relationships are obtained af-

ter solving for a and φ, respectively. Once β = −ω2/6

is substituted back into the integrated equations, the

resulting relationships are

a = a0e−ζωt , (12a)

φ = a2
0

32ζ

(
e−2ζωt − 1

) + φ0, (12b)

where a0 and φ0 are constants of integration. If the sys-

tem is started from rest with an initial angular displace-

ment of ϑ0, the resulting transient solution becomes

θ (t) = ϑ0e−ζωt cos

(
ωt + ϑ2

0

32ζ

(
e−2ζωt − 1

))
, (13)

which is in direct agreement with the multiple scales

analysis of reference [16]. Ten independent free-fall

oscillation tests were recorded for 10 s time intervals

at a sample rate of 300 Hz. Using different start an-

gles, the estimated parameters were averaged over the

total number of records to minimize the influence of

experimental noise. Figure 4 shows the result of one

experimental test with an overlay of a nonlinear least

squares solution, which illustrates the good agreement

(see method in reference [17]). The estimated effec-

tive pendulum length was L = 46 ± .01 mm and the

estimated damping ratio was ζ = 0.007 ± .0001 with

a 95% confidence level.

4.2 Unforced impact oscillations

This section describes the methods applied to estimate

the elastic and viscoelastic parameters associated with

the finite time impact model from experimental data.

Thirty repeated experimental trials, see sample result

in Fig. 4b, were performed during the course of this

study. The procedure for each experimental trial re-

quired positioning the pendulum to the vertical loca-

tion and allowing it to free-fall and repeatedly strike

the barrier until the oscillations ceased. The motivation

for the numerous trials came from the need to capture

multiple realizations of the relatively short duration im-

pact, where each trial was recorded at a different sample
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rate. For instance, measurements at the lowest sample

rate, 100 Hz, provided data with minimal measurement

noise, but it was difficult to capture an adequate number

of data samples during contact. At the highest sample

rate, 200 kHz, a large number of contact samples were

captured, but the measurement noise was prohibitively

large. Therefore, only the experimental records sam-

pled between 5–40 kHz were used for numerical com-

parison.

Numerical simulation of Equation (7) was combined

with a nonlinear least-squares optimization to estimate

the parameters for the finite time impact model. Two

primary challenges for an effective numerical simula-

tion are discontinuity detection and the ability to pre-

cisely determine the time step required to reach the

surface of discontinuity. The numerical studies for this

paper were performed using a fourth-order predictor-

corrector Runge–Kutta algorithm along with the ap-

proach proposed by Henon [18]. In this method, the

role of the independent variable (time) and dependent

variable (displacement) are exchanged for a single inte-

gration step to determine the precise time step to reach

the discontinuity point. This allows one to keep the

numerical integration error within the tolerance of the

Runge–Kutta procedure. As shown in Fig. 4, for the

estimated parameters E = 2 MPa and μo = 0.75 s/m,

comparable results are obtained.

5 Forced oscillations

This section describes the experimental results for the

forced oscillatory behavior of the impacting pendulum

system and compares select results with numerical sim-

ulation. A nondimensionalized version of the govern-

ing equation, Equation (4), was used during numeri-

cal studies. This equation is obtained by introducing a

nondimensional time, τ = �t ,

θ ′′ + 2ζηθ ′ − β sin τ cos θ + η2 sin θ

+ γ H (θ )(1 + μθ ′)θ3/2 = 0, (14)

where the following parameter substitutions have been

implemented

η = ω/�, (15a)

β = A

L
, (15b)

γ = 4E
√

R

3m�2L2
l5/2, (15c)

μ = μol�. (15d)

5.1 Experimental investigation

Experimental tests were performed by either incre-

mentally varying the shaker amplitude or the excita-

tion frequency while recording time history data of

the pendulum angular position, the shaker amplitude,

and the laser tachometer timing pulse at a sample

rate of 500 Hz. During the first series of experimen-

tal tests, the excitation frequency was set to 2 Hz and

the shaker amplitude was incrementally varied. With

regards to the nondimensionalized system presented in

Equation (14), this corresponds to variations in β while

holding the other parameters to the following constant

values μ = 0.471, η = 1.162, and γ = 1.888 × 104.

Figure 5 shows three example tests where periodic at-

tractors were observed. Each row provides a 5 s snap-

shot of the 30 s recorded time history and a FFT (fast

Fourier transform) diagram that elucidates the pres-

ence of multiple superharmonics. Apart from the data

records shown, several other shaker amplitudes were

surveyed and shown to still provide periodic data with

several superharmonics.

A second series of experimental tests were per-

formed by slowly varying the shaker amplitude while

fixing the excitation frequency to a constant 10 Hz. The

corresponding model parameters for Equation (14) are:

μ = 2.356, η = 0.232, and γ = 755.5. Figure 6 shows

a snapshot of the time series alongside the frequency

spectrum for each experimental trial. It is interesting to

note that each of these examples, denoted by cases d–f,

illustrate the presence of period-two and period-three

subharmonics. In addition, the motion complexity was

observed to increase for some shaker amplitudes due to

the increased presence of incommensurate frequencies

or quasi-periodic motions [20].

Figure 7 shows three examples where chaotic be-

havior was suspected during the experimental trials. In

each example presented, the excitation frequency was

set to 10 Hz and the angular oscillations were sampled

at 500 Hz for a time interval of 360 s. A 15 s snapshot of

the recorded time history is shown along with the corre-

sponding Poincaré section in Fig. 7. Since only angular

displacements were recorded, visualization of the qual-

itative features of each chaotic attractor required the
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Fig. 5 Experimental time
series and frequency spectra
graphs recorded for the
pendulum system at an
excitation frequency of
2 Hz, η = 1.162. The
excitation amplitudes for
the above three cases
defined by: (a) β = 0.375,
(b) β = 0.458,
(c) β = 0.685

Fig. 6 Experimental time
series and frequency spectra
graphs recorded for the
pendulum system at an
excitation frequency of
10 Hz, η = 0.232. The
excitation amplitudes for
the above three cases
defined by: (d) β = 0.030,
(e) β = 0.064,
(f) β = 0.078

application of delayed embedding techniques to recon-

struct a topologically equivalent phase space in angular

displacement θ (tn) versus delayed angular displace-

ment θ (tn + �t) coordinates. Following the methods

suggested in [19], algorithms were developed to graph

the mutual information function for the time series and

the same time series shifted by �t . The first minimum

of the mutual information graph was used as the time

shift or delay between the original time series and the

θ (t + �t) time series that are presented in Fig. 7.

5.2 Numerical comparisons

This section describes numerical investigations per-

formed for comparative study with the observed

experimental behavior. As discussed previously,
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Fig. 7 Experimental time
series and Poincaré sections
for three experimental trials
at an excitation frequency of
10 Hz, η = 0.232. The
excitation amplitudes for
the above three cases
defined by: (G) β = 0.022,
(H) β = 0.114,
(I) β = 0.120

numerical algorithms used a fourth-order predictor-

corrector Runge–Kutta approach along with the pro-

posed method of Henon [18] for finding the surface of

discontinuity. Figure 8 shows the first set of compar-

ative examples. Numerical studies show comparable

time series and frequency content as the results of cases

(a) β = 0.375 and (c) β = 0.685 of Fig. 5 . However,

the spectral amplitudes at each frequency do differ from

those observed experimentally. The numerical study of

case (d) β = 0.030 proved to have multiple periodic

attractors with the closest comparable result shown in

the bottom graphs of Fig. 8. When comparing these re-

sults to the experimental data of Fig. 6, both examples

display period two behavior and contain strong sub-

harmonic content. However, the experimental example

is shown to contain an additional subharmonic of the

order three.

In the final set of comparisons, the chaotic exper-

imental examples are studied numerically. Figure 9

shows the results of the numerical studies carried

out for the experimental trials of Fig. 7. The numer-

ical result for case (g) β = 0.022 is shown to ex-

hibit period-doubling behavior and differs from the

chaotic behavior of the experimental system. Due

to this apparent disagreement, a number of initial

conditions were attempted. However, each numeri-

cal trial resulted in the same periodic attractor with

subharmonic motion, but detailed basins of attraction

were not constructed. The results of the final two

cases, (h) β = 0.114 and (i) β = 0.120, are shown to

qualitatively match the observed experimental chaotic

behavior. In fact, a large number of initial condi-

tions were investigated and found to yield chaotic

behavior.

6 Summary and conclusions

This paper examines the dynamic behavior of a

parametrically excited planar pendulum subjected to

a motion-dependent discontinuity. Nonlinear force–

deformation and force–velocity relationships previ-

ously suggested in the literature are investigated as a

prescribed model for an impact event that is of finite

time duration. This approach is in contrast to model-

ing the contact event with a coefficient of restitution

or as a sharp impulse. While one may question the

need for this additional modeling complexity, the ob-

servation of the authors was that a constant coefficient

of restitution model provided a poor match between

the experiment and numerical studies. One reason for

this result is that a viscoelastic material was used for

the impact barrier; this type of material has a velocity-

dependent impact force and seems to significantly al-

ter the contact time for low to intermediate impact

velocities.

Since the dynamics of this system are piecewise

smooth, the task of system identification was divided
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Fig. 8 Numerically
generated time series and
frequency spectra graphs for
comparison with the
experimental cases
(a) β = 0.375 and
(c) β = 0.685 of Fig. 5 and
case (d) β = 0.030 of Fig. 6.

Fig. 9 Numerically
generated time series and
and Poincaré sections for
comparison with the
experimental cases
(g) β = 0.022,
(h) β = 0.114, and
(i) β = 0.120 of Fig. 7.

into two separate tasks, which consisted of identifying

the model parameters during contact and out of contact.

More specifically, the results of an averaging solution

are combined with a gradient-based optimization rou-

tine for the out-of-contact motions and the application

of third-order smoothing splines, numerical simulation,

and gradient-based optimization are used to identify

model parameters during contact.

Experimental efforts include the fabrication of an

experimental system and carrying out forced and un-

forced experimental trials. Numerical and experimen-

tal studies demonstrate the presence of multiple pe-

riodic attractors, chaotic oscillations, subharmonics,

and quasi-periodic behavior. While not every exper-

imental behavior is replicated with numerical study,

reasonable agreement is found between the numerous
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experimental and numerical cases studied when apply-

ing a finite time model for contact.
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