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Abstract Feedback control of piecewise smooth

discrete-time systems that undergo border collision

bifurcations is considered. These bifurcations occur

when a fixed point or a periodic orbit of a piecewise

smooth system crosses or collides with the border be-

tween two regions of smooth operation as a system

parameter is quasistatically varied. The class of sys-

tems studied is piecewise smooth maps that depend on

a parameter, where the system dimension n can take

any value. The goal of the control effort in this work

is to replace the bifurcation so that in the closed-loop

system, the steady state remains locally attracting and

locally unique (“nonbifurcation with persistent stabil-

ity”). To achieve this, Lyapunov and linear matrix in-

equality (LMI) techniques are used to derive a sufficient

condition for nonbifurcation with persistent stability.

The derived condition is stated in terms of LMIs. This

condition is then used as a basis for the design of feed-

back controls to eliminate border collision bifurcations

in piecewise smooth maps and to produce the desir-

able behavior noted earlier. Numerical examples that

demonstrate the effectiveness of the proposed control

techniques are given.
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1 Introduction

Stabilizing feedback control laws for piecewise smooth

discrete-time systems exhibiting border collision

bifurcations (BCBs) are developed. The class of piece-

wise smooth systems considered in the theory of BCBs

constitutes systems that are smooth everywhere except

along borders separating regions of smooth behavior,

where the system is only continuous. Border collision

bifurcations are bifurcations that occur when a fixed

point (or a periodic orbit) of such a piecewise smooth

system crosses or collides with the border between two

regions of smooth operation. The term border collision

bifurcation was coined by Nusse and Yorke [26]. Bor-

der collision bifurcation had also been studied in the

Russian literature, but under the name C-bifurcations,

by Feigin [11, 12]. The results of Feigin were intro-

duced to the Western literature in ref. [9].

Border collision bifurcations (BCBs) include bifur-

cations that are reminiscent of the classical bifurcations

in smooth systems such as the fold and period doubling

bifurcations. Despite such resemblances, border colli-

sion bifurcations present a much richer variety of pos-

sibilities than their smooth counterparts. Indeed, their

classification is far from complete, and certainly very

preliminary in comparison to the results available in

Springer



374 Nonlinear Dyn (2007) 50:373–386

the smooth case. In smooth maps, a bifurcation occurs

from a one-parameter family of fixed points when a real

eigenvalue or a complex conjugate pair of eigenval-

ues crosses the unit circle. In piecewise smooth (PWS)

maps, however, a discontinuous change in the eigenval-

ues of the Jacobian matrix evaluated at the fixed point

(or at a periodic point) occurs when the fixed point hits

the border. As a result, border collision bifurcations

for piecewise smooth systems in which the one-sided

derivatives on the border are finite are classified based

on the linearizations of the system on both sides of the

border at criticality.

Border collision bifurcations have been observed

both numerically and experimentally in applications

such as power electronic devices [6, 21, 32] and in stud-

ies of grazing impact in mechanical oscillators [8, 24].

Other applications of PWS discrete-time systems that

have been shown to exhibit BCBs include examples

from computer networks (e.g., [14, 28, 30]), eco-

nomics (e.g., [18]), biology (e.g., [29]). They have also

been noted to arise in controlled linear discrete-time

systems with PWS nonlinearity (e.g., [1]).

Border collision bifurcations in one-dimensional

PWS maps were considered in refs. [3, 22, 27]

and a complete classification was given. Nusse and

Yorke [26] studied border collision bifurcations of two-

dimensional piecewise smooth maps that occur when

a parameter is varied, and derived a normal form for

the corresponding piecewise-linear maps of any two-

dimensional piecewise smooth map with one border

and two regions. Furthermore, they presented many nu-

merical examples of such border collision bifurcations

and addressed the question of whether or not it would

be possible to give a classification of the border colli-

sion bifurcations using the two-dimensional piecewise

smooth normal form map (see ref. [26] for details).

In ref. [25], the importance of such bifurcations for

continuous-time systems was addressed. The authors

of refs. [4, 31] proposed a classification for a class of

two-dimensional maps undergoing border collision by

exploiting the normal form. Other results on BCBs, in-

cluding special phenomena that cannot be described

here, are given in refs. [7, 10, 16].

It should be noted that work such as that in this paper

focusing on maps has implications for continuous-

time switched systems as well. Maps provide a con-

cise representation that facilitates the investigation of

system behavior and control design. They are also

the natural models for many applications. Moreover,

a control design derived using the map representation

of a continuous-time PWS system can be reinterpreted

so as to yield a continuous controller either analytically

or numerically.

In the present paper, a sufficient condition is derived

for nonbifurcation with persistent stability of piecewise

smooth maps of any given finite dimension n that de-

pend on a parameter. That is, a condition is found under

which a PWS map possesses a locally asymptotically

stable fixed point which is also the locally unique at-

tractor for all values of the bifurcation parameter in a

neighborhood of the critical value. This condition is

derived using Lyapunov and linear matrix inequality

(LMI) [5] methods. The derived condition is then used

as a basis for the design of feedback controls that elim-

inate BCBs in piecewise smooth maps and produce

desirable, locally stable behavior.

The paper proceeds as follows. In Section 2, brief

background material on BCBs is given. In Section 3,

Lyapunov analysis with the aid of LMIs is applied to

PWS maps undergoing BCBs, resulting in a sufficient

condition for nonbifurcation with persistent stability.

In Section 4, the results of Section 3 are used in the

synthesis of stabilizing feedback control laws and nu-

merical examples that demonstrate the results are given.

Concluding remarks are collected in Section 5.

2 Background on border collision bifurcations

Consider the one-parameter family of piecewise

smooth maps

f (x, μ) =
{

f A(x, μ), x ∈ RA

fB(x, μ), x ∈ RB
(1)

where f : Rn+1 → Rn is piecewise smooth in x ; f is

smooth in x everywhere except on the border (hyper-

surface �) separating RA and RB where it is only con-

tinuous, f is smooth in μ and RA, RB are the two

(nonintersecting) regions of smooth behavior. Of great

interest is the study of the dynamics of f at a fixed

point (or a periodic orbit) near or at the border �. If the

fixed point (or periodic orbit) is in RA (respectively,

RB) and is away from the border, then the local dy-

namics is determined by the single map f A (respec-

tively, fB). If, however, the fixed point is close to the

border, then jumps across the border can occur except

in an extremely small neighborhood of the fixed point.
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Therefore, for operation close to the border, both f A

and fB are needed in the study of the possible behav-

ior. For a fixed point at or near the border, the dynamics

is determined by the linearizations of the map on both

sides of the border.

Various types of BCBs occur in Equation (1) as

the bifurcation parameter μ is varied through a critical

value [2, 9, 25, 26]. Figure 1 is a schematic illustrating

sample bifurcation diagrams for various border colli-

sion bifurcations. Such bifurcations occurring in the

map (1) can be studied using the piecewise-linearized

representation [9]

x(k + 1) := F(x(k), μ)

=
{

Ax(k) + bμ, x1(k) ≤ 0

Bx(k) + bμ, x1(k) > 0
(2)

where A is the linearization of the PWS map f in RA at

a fixed point on the border approached from points in

RA near the border and B is the linearization of f at a

fixed point on the border approached from points in RB

and b is the derivative of the map f with respect to μ.

The coordinate system is chosen such that the sign of

the first component of the vector x determines whether

x is in RA or RB (a transformation to the form (2) is

given in ref. [15]). If x1 = 0, then x is on the border

separating RA and RB . The continuity of F at the border

implies that A and B differ only in their first columns.

The classification of BCBs depends on the eigenval-

ues of A and B [9]. A complete classification of BCBs is

only available for one-dimensional PWS maps [3, 27].

For two-dimensional PWS maps, some results are

available that only address a class of two-dimensional

PWS maps [2, 16, 26, 31].

Although Feigin [9] studied general n-dimensional

PWS maps exhibiting border collisions, only very

general conditions for existence of a fixed point and

period-2 solutions before and after the border were

given. The classification scheme of ref. [9] does not

give any information about stability or uniqueness of

fixed points or period-2 orbits involved in the border

collision bifurcation nor does it give information about

higher period periodic orbits or chaos that might be

involved in a border collision bifurcation. Therefore,

in this paper, one of the main goals is to develop a

sufficient condition for nonbifurcation with persistent

stability that can be used in the design of stabilizing

feedback control laws. This is done in the next section

using Lyapunov and LMI techniques.

3 Lyapunov and LMI analysis of piecewise

smooth maps

Recently, many researchers have studied stability of

a fixed point of switched discrete-time linear systems

(e.g., [13, 20, 23]) as well as continuous time switched

systems (e.g., [19]). In all the referenced studies, Lya-

punov techniques were used to obtain sufficient con-

ditions for stability of the fixed point (or equilibrium

point) of a piecewise linear system. For instance, in

refs. [19, 23], quadratic as well as piecewise quadratic

Lyapunov functions were used in the analysis of sta-

bility of switched systems and also in the synthesis of

stabilizing controls. The authors are unaware of any

previous study using Lyapunov methods to analyze the

dynamics of switched systems depending on a param-

eter. Here, a quadratic Lyapunov function is used to

study border collision bifurcations in PWS maps and

to obtain sufficient conditions for nonbifurcation with

persistent stability in such maps.

Consider the piecewise-linearized representation of

PWS maps given in Equation (2). The sign of the first

component of the vector x determines whether x is in

RA or in RB . If x1 = 0, then x is on the border separating

RA and RB . The continuity of F at the border implies

that A and B differ only in their first columns. That is,

ai j = bi j , for j �= 1, where A = [ai j ] and B = [bi j ].

Assume that 1 is not an eigenvalue of either

A or B (so that both I − A and I − B are non-

singular). Formally solving for the fixed points

of Equation (2) yields xA(μ) = (I − A)−1bμ and

xB(μ) = (I − B)−1bμ. For xA(μ) to actually occur as

a fixed point, the first component of xA(μ) must be

nonpositive. That is,

xA1
(μ) = (e1)Tμ(I − A)−1b ≤ 0 (3)

where (e1)T = (1 0 · · · 0). Similarly, for xB(μ) to ac-

tually occur, one needs

xB1
(μ) = (e1)Tμ(I − B)−1b > 0. (4)

If, however, the first component of xA(μ) is positive,

then the fixed point is called a virtual fixed point. An

analogous situation occurs if the first component of
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Fig. 1 Schematic illustrating sample border collision bifurca-
tions. (a) BCB from a fixed point attractor to a period-8 attractor,
(b) BCB from a fixed point attractor to a chaotic attractor, (c)
BCB from a period-2 attractor to a period-5 attractor, (d) BCB

from a period-2 attractor to a period-27 attractor, (e) BCB from a
period-2 attractor to a chaotic attractor, (f) BCB from a period-3
attractor to a period-4 attractor

xB(μ) is nonpositive. Virtual fixed points are important

in studying the dynamics of a PWS map at or near the

border.

Let pA(λ) and pB(λ) be the characteristic polyno-

mials of A and B, respectively: pA(λ) = det(λI − A),

pB(λ) = det(λI − B).
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Using Cramer’s rule, the fixed points can be written

as

xA(μ) = (I − A)−1bμ

= adj(I − A)bμ

det(I − A)

= b̄A

pA(1)
μ, (5)

and

xB(μ) = (I − B)−1bμ

= adj(I − B)bμ

det(I − B)

= b̄B

pB(1)
μ, (6)

where b̄A = adj(I − A)b and b̄B = adj(I − B)b. It can

be shown that b̄A1
= b̄B1

=: b̄1 [9]. To see this, re-

call that A and B differ only in their first columns

and adj(I − A) = (cof(I − A))T. Thus, the first row

of adj(I − A) is equal to the first row of adj(I − B),

which implies that (e1)Tadj(I − A)b = (e1)Tadj(I −
B)b =: b̄1. Thus, the first component of xA(μ) is

xA1
(μ) = b̄1

pA(1)
μ and the first component of xB(μ) is

xB1
(μ) = b̄1

pB (1)
μ. For the fixed point xA(μ) to occur

for μ ≤ 0, it is required that xA1
(μ) ≤ 0, i.e., b̄1

pA(1)
μ ≤

0 ⇐⇒ b̄1

pA(1)
> 0. Similarly, for the fixed point xB(μ)

to occur for μ > 0, it is required that xB1
(μ) > 0, i.e.,

b̄1

pB (1)
μ > 0 ⇐⇒ b̄1

pB (1)
> 0. Therefore, a necessary and

sufficient condition to have a fixed point for all μ is

pA(1)pB(1) > 0 which is assumed to be in force in the

remainder of the discussion.

Next, a change of variables is performed on

Equation (2) to simplify the analysis.

Case (1): μ ≤ 0. The fixed point of F is xA(μ) = (I −
A)−1bμ. Changing the state variable in Equation (2) to

z = x − xA(μ) yields after simplification

z(k + 1) =
{

Az(k), if z1(k) ≤ −xA1
(μ)

Bz(k) + cμ, if z1(k) > −xA1
(μ)

(7)

where c = (B − A)(I − A)−1b. In the new coordi-

nates, z = 0 is a fixed point for all μ ≤ 0. (Note that the

border zborder = {z: z1 = −xA1
(μ)}, varies as a func-

tion of μ.) Note that since B and A differ only in their

first columns, all elements of B − A are zero except for

the first column. Thus, cμ = (B − A)(I − A)−1bμ =
(B − A)xA(μ) = xA1

(μ)(B1 − A1), where the notation

Ai means the i th column of the matrix A.

Consider the quadratic Lyapunov function candidate

V (z) = zT Pz, where P = PT > 0. (8)

Existence of a P such that V (z) is a common

quadratic Lyapunov function (CQLF) for the linear

systems z(k + 1) = Az(k) and z(k + 1) = Bz(k) as-

sociated with System (2) will be the main condition

in the results obtained below. The forward difference

of V along trajectories of Equation (7) is �V (z(k)) =
V (z(k + 1) − V (z(k)). Two cases need to be consid-

ered: z1(k) ≤ −xA1
(μ) and z1(k) > −xA1

(μ).

Case (1.1): z1(k) ≤ −xA1
(μ)

�VL (z(k)) = V (z(k + 1)) − V (z(k))

= (Az(k))TPAz(k) − z(k)T Pz(k)

= z(k)T(ATPA − P)z(k). (9)

Case (1.2): z1(k) > −xA1
(μ)

�VR(z(k)) = V (z(k + 1)) − V (z(k))

= (Bz(k) + cμ)T P(Bz(k) + cμ)

−z(k)T Pz(k) = z(k)T(BT P B − P)z(k)

+2μcT P Bz(k) + μ2cT Pc

= z(k)T(BT P B − P)z(k)

+2xA1
(μ)(B1 − A1)TPBz(k)

+x2
A1

(μ)(B1 − A1)T P(B1 − A1). (10)

Combining Equations (9) and (10) yields

�V (z(k)) =
{

�VL (z(k)), if z1(k) ≤ −xA1
(μ)

�VR(z(k)), if z1(k) > −xA1
(μ)

(11)

From Equations (9) and (10), a necessary condition

for�V (z(k)) to be negative definite is that the following

two matrix inequalities hold:

ATPA − P < 0, (12)

BTPB − P < 0. (13)
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Moreover, the following claim, which asserts suffi-

ciency of Equations (12) and (13) for negative definite-

ness of �V (z(k)) is stated and proved.

Claim: (Sufficiency of LMIs (12)–(13) for a decreasing

Lyapunov function)

If the matrix inequalities (12)–(13) are satisfied with

P = PT > 0, then �V (z(k)) given by Equation (11) is

negative definite.

Proof: Assume that there is a P = PT > 0 such

that Equations (12)–(13) are satisfied. Then, �VL =
zT(AT P A − P)z < 0 ∀z �= 0. It remains to show

that �VR < 0. Let z = (z1, z2)T, where z1 ∈ R and

z2 ∈ Rn−1. Note that �V is continuous for all z.

Continuity of �V follows from the continuity of

V and continuity of the map (7). Since �VL < 0

(�VL = 0 if and only if z = 0) and �V is continu-

ous for all z, it follows that �VR < 0 at the border

{z1 = −xA1
(μ)} (since lim(z1,z2)→(−x−

A1(μ),z2) �VL =
lim(z1,z2)→(−x+

A1(μ),z2) �VR). It remains to show that

�VR < 0 for all z in the region z1 > −xA1
(μ) (note

that −xA1
(μ) > 0). Completing the squares in Equa-

tion (10), �VR(z) can be rewritten as follows:

�VR(z) = zT(BT P B−P)z + 2xA1
(μ)(B1− A1)TPBz

+x2
A1

(μ)(B1 − A1)T P(B1 − A1)

= (z − α)T(BTPB − P)(z − α)

−αT(BTPB − P)α

+x2
A1

(μ)(B1 − A1)T P(B1 − A1) (14)

where α = −xA1
(μ)(BTPB − P)−1 BT P(B1 − A1).

Let N ⊂ Rn such that N is convex and contains the

origin (for example, a ball). Since the fixed point

xA(μ) is close to the origin for small μ, the hyperplane

z1 = −xA1
(μ) slices the neighborhood N . Consider

�VR(z) restricted to N . The second derivative of

�VR(z) with respect to z (i.e., its Hessian matrix) is

∇2�VR = 2(BTPB − P) < 0. Thus, �VR(z) is strictly

concave on N , i.e., for every z, y ∈ N , and θ ∈ (0, 1),

�VR(θ z + (1 − θ )y) > θ�VR(z) + (1 − θ )�VR(y).

Note that �VR(0) = x2
A1

(μ)(B1 − A1)T P(B1 − A1)

> 0. Next, it is shown that �VR < 0 ∀z ∈ N with

z1 > −xA1
(μ). By way of contradiction, suppose

there is a y ∈ N , with y1 > −xA1(μ), such that

�VR(y) > 0. Since �VR(z) is strictly concave, it

follows that �VR(z) is positive along the line seg-

ment connecting 0 and y: �VR(θ · 0 + (1 − θ )y) >

θ �VR(0)︸ ︷︷ ︸
>0

+(1 − θ ) �VR(y)︸ ︷︷ ︸
>0

> 0, ∀θ ∈ (0, 1). But,

along the line connecting z = 0 with z = y, there is

a point z∗ with z∗
1 = −xA1

(μ) where �VR(z∗) < 0,

which is a contradiction. Thus, �VR(z) < 0 for all

z ∈ N with z1 > −xA1
(μ) > 0. �

The following proposition summarizes the results so

far.

Proposition 1. The forward difference of V = zT Pz,
with P = PT > 0, along trajectories of Equation (7)
with μ ≤ 0 is negative definite (i.e., �V (z) < 0) if and
only if the following matrix inequalities hold:

ATPA − P < 0, (15)

BTPB − P < 0. (16)

Case (2): μ > 0. The fixed point of F is xB(μ) = (I −
B)−1bμ. Changing the state variable in Equation (2) to

z = x − xB(μ) yields after simplification

z(k + 1) =
{

Az(k) + cμ, if z1(k) ≤ −xB1
(μ)

Bz(k), if z1(k) > −xB1
(μ)

(17)

where c = (A − B)(I − B)−1)b. In the new coordi-

nates, z = 0 is a fixed point for all μ > 0. (Note that the

border zborder = {z: z1 = −xB1
(μ)}, varies as a function

of μ.) Note that since B and A differ only in their first

columns, all elements of A − B are zero except for

the first column. Thus, cμ = (A − B)(I − B)−1bμ =
(A − B)xB(μ) = xB1

(μ)(A1 − B1).

Consider the same quadratic Lyapunov function can-

didate as in Equation (8) earlier:

V (z) = zT Pz, where P = PT > 0.

The forward difference of V along trajectories of

Equation (17) is �V (z(k)) = V (z(k + 1) − V (z(k)).

There are two cases: z1(k) ≤ −xB1
(μ) and z1(k) >

−xB1
(μ). (Note that xB1(μ) > 0 from Equation (4).)

Case (2.1): z1(k) ≤ −xB1
(μ)

�VL (z(k))

= V (z(k + 1)) − V (z(k))

= (Az(k) + cμ)T P(Az(k) + cμ) − z(k)T Pz(k)
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= z(k)T(ATPA−P)z(k)+2μcTPAz(k)+μ2cTPc

= z(k)T(ATPA − P)z(k)

+2xB1
(μ)(A1 − B1)TPAz(k)

+x2
B1

(μ)(A1 − B1)T P(A1 − B1). (18)

Case (2.2): z1(k) > −xB1
(μ)

�VR(z(k)) = V (z(k + 1)) − V (z(k))

= (Bz(k))TPBz(k) − z(k)T Pz(k)

= z(k)T(BTPB − P)z(k). (19)

Combining Equations (18) and (19) yields

�V (z(k)) =
{

�VL (z(k)), if z(k) ≤ −xB1
(μ)

�VR(z(k)), if z(k) > −xB1
(μ)

(20)

Proposition 2. (Necessary and sufficient conditions

for a decreasing Lyapunov function)

The forward difference of V = zT Pz, with P = PT >

0, along trajectories of Equation (17) with μ ≥ 0 is
negative definite (i.e., �V (z) < 0) if and only if the
following matrix inequalities hold:

ATPA − P < 0, (21)

BTPB − P < 0. (22)

Proof: Necessity follows from Equations (18)

and (19), and the proof for sufficiency is similar to that

for the case μ ≤ 0 earlier. �

By combining Proposition 1 and Proposition 2, the

main result of this paper is obtained.

Proposition 3. (Sufficient condition for nonbifurca-

tion with persistent stability in n-dimensional PWS

maps)

The PWS map (2) has a globally asymptotically stable
fixed point for all μ ∈ R if there is a P = PT > 0 such
that

ATPA − P < 0,

BTPB − P < 0.

Corollary 1. If at μ = 0 the origin of the map (2) is
quadratically stable, i.e., can be shown to be stable
using a quadratic Lyapunov function V = xT Px with

P > 0, then the fixed point depending on μ on both
sides of the border is attracting and no bifurcation oc-
curs from the origin as μ is varied through zero.

Later, a numerical example is given to demonstrate

how the Lyapunov and LMI techniques considered in

this section can be applied.

Example 1. Consider the three-dimensional PWS map

x(k + 1) =
{

Ax(k) + bμ, x1(k) ≤ 0

Bx(k) + bμ, x1(k) > 0
(23)

where

A =

⎛⎜⎝0.4192 0.3514 0.3473

0.2840 −0.2733 −0.3107

0.1852 −0.2224 −0.3974

⎞⎟⎠ ,

B =

⎛⎜⎝−0.60 0.3514 0.3473

0.56 −0.2733 −0.3107

−0.90 −0.2224 −0.3974

⎞⎟⎠ andb=

⎛⎜⎝ 1

0

0

⎞⎟⎠ .

The eigenvalues of A and B are

{0.5653, −0.7413, −0.0755} and {0.0395, −0.6551 ±
j 0.4246}, respectively. Although both A and B are

Schur stable matrices, it cannot be concluded that no

bifurcation for Equation (23) occurs at μ = 0.

A common quadratic Lyapunov function V =
xT Px , with P = PT > 0 that satisfies the conditions

of Proposition 3 exists for this example. To wit:

P =

⎛⎜⎝ 1.6304 0.1559 −0.1313

0.1559 1.3200 0.4436

−0.1313 0.4436 1.3266

⎞⎟⎠
is obtained using the MATLAB LMI toolbox. Thus, the

PWS map (23) has a unique attracting fixed point for

all μ (see Fig. 2).

4 Feedback control design

In this section, the results of Section 3 are used in the

design stabilizing feedback control laws. It is impor-

tant to emphasize that for this approach to apply, the

control action should not introduce discontinuity in the

map. This is because, as discussed in the Introduction,
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Fig. 2 Bifurcation diagram
for Example 1. Each solid
line represents a path of
stable fixed points

the definition of BCBs requires that the system map be

continuous at the border, and thus the results presented

here on nonbifurcation with persistent stability also ap-

ply only under this condition. Therefore, to maintain

continuity of the map after control is applied, it is as-

sumed that the input vectors on both sides of the border

are equal. In this work, the input vectors are both taken

to be equal to b (the derivative of the map with respect

to the bifurcation parameter.)

Simultaneous feedback control is considered first,

followed by switched feedback control design.

4.1 Simultaneous feedback control design

In this control method, the same control is applied on

both sides of the border. The purpose of pursuing stabi-

lizing feedback acting on both sides of the border is to

ensure robustness with respect to modeling uncertainty.

Moreover, transformation to the normal form is not re-

quired when simultaneous control is used. All that is

needed is a good estimate of the Jacobian matrices on

both sides of the border.

Consider the closed-loop system using static linear

state feedback

x(k + 1)=
{

Ax(k) + bμ + bu(k), if x1(k) ≤ 0

Bx(k) + bμ + bu(k), if x1(k) > 0
(24)

u(k) = gx(k) (25)

where g is the control gain (row) vector.

The following proposition gives stabilizability con-

dition for the border collision bifurcation with this type

of control policy.

Proposition 4. If there exist a P = PT > 0, and a
feedback gain (row) vector g such that

P − (A + bg)T P(A + bg) > 0 (26)

P − (B + bg)T P(B + bg) > 0 (27)

then, any border collision bifurcation that occurs in
the open-loop system (u ≡ 0) of Equation (24) can be
eliminated and persistent stability is guaranteed using
simultaneous feedback (25). Equivalently, if there exists
a Q and y such that

(
Q AQ + by

(AQ + by)T Q

)
> 0, (28)(

Q B Q + by
(B Q + by)T Q

)
> 0, (29)

then any border collision bifurcation that occurs in
Equation (24) can be eliminated using simultaneous
feedback (25). Here Q = P−1 and the feedback gain is
given by g = y P.
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Proof: The closed-loop system is given by

x(k + 1) =
{

(A + bg)x(k) + μb, if x1(k) ≤ 0

(B + bg)x(k) + μb, if x1(k) > 0

(30)

Using Proposition 3, a sufficient condition to eliminate

the BCB is the existence of a P = PT > 0 such that

P − (A + bg)T P(A + bg) > 0 (31)

P − (B + bg)T P(B + bg) > 0 (32)

where g is the control gain to be chosen.

Next, inequalities (31)–(32) are shown to be equiv-

alent to Equations (28)–(29) using the Schur comple-

ment [5, 23]. It is straightforward to show that

P − (A + bg)T P(A + bg) > 0

⇐⇒ P−1 − (A + bg)P−1(A + bg)T > 0,

and P − (B + bg)T P(B + bg) > 0

⇐⇒ P−1 − (B + bg)P−1(B + bg)T > 0.

The nonlinear matrix inequalities shown earlier are

transformed into LMIs using the Schur complement

[5, 23]:

P−1 − (A + bg)P−1(A + bg)T

= P−1 − (A + bg)P−1 P P−1(A + bg)T

= P−1−(AP−1+bg P−1)P(AP−1+bg P−1)T > 0

⇐⇒
(

P−1 AP−1 + by
(AP−1 + by)T P−1

)
> 0.

Similarly,

P − (B + bg)T P(B + bg) > 0

⇐⇒
(

P−1 B P−1 + by
(B P−1 + by)T P−1

)
> 0

by similar reasoning. �

The following proposition states that if a CQLF ex-

ists in one coordinate system, another CQLF exists in a

different coordinate system arrived at using a simul-

taneous similarity transformation applied to both A
and B.

Proposition 5. (CQLF and similarity transformations)

Suppose V = xT Px (with P = PT > 0) is a com-
mon quadratic Lyapunov function for both of the ma-
trices A and B (i.e., ATPA − P < 0 and BT P B −
P < 0). Then Ṽ = xT P̃x with P̃ = (T −1)T PT −1 =
P̃T > 0 is a common quadratic Lyapunov function for
Ã = TAT−1 and B̃ = TBT−1 (i.e. ÃT P̃ Ã − P̃ < 0 and
B̃T P̃ B̃ − P̃ < 0). In other words, if a CQLF exists in
one coordinate system, another CQLF exists if a si-
multaneous change of coordinates is applied to both A
and B.

Proof: See ref. [15]. �

Remark 1. The switching control design presented ear-

lier does not depend on the border separating the two

regions of smooth behavior. Thus, transformation to the

normal form is not required before the control design.

4.2 Switched feedback control design

Consider the closed-loop system using static piecewise

linear state feedback

fμ(x(k)) =
{

Ax(k) + bμ + bu(k), if x1(k) ≤ 0

Bx(k) + bμ + bu(k), if x1(k) > 0

(33)

where

u(k) =
{

g1x(k), x1(k) ≤ 0

g2x(k), x1(k) > 0
(34)

with the restriction that g1 and g2 may only differ in

their first component, i.e., g1i = g2i , i = 2, 3, . . . , n.

This condition is imposed to maintain continuity along

the border {x : x1 = 0}.

Proposition 6. If there exists a P = PT > 0, and feed-
back gains g1 and g2 with g1i = g2i , i = 2, 3, . . . , n
such that

P − (A + bg1)T P(A + bg1) > 0, (35)

P − (B + bg2)T P(B + bg2) > 0, (36)

then any border collision bifurcation that occurs in the
open-loop system (u ≡ 0) of Equation (33) can be elim-
inated using switching feedback (34). Equivalently, if
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there exists a Q, y1 and α ∈ R such that

(
Q AQ + by1

(AQ + by1)T Q

)
> 0, (37)

(
Q B Q + by1

(B Q + by1)T Q

)

− α

(
0 b(e1)T Q

Qe1bT 0

)
> 0, (38)

then any border collision bifurcation that occurs in
Equation (33) can be eliminated using switching feed-
back (34). Here, Q = P−1 and the feedback gains are
given by g1 = y1 P and g2 = g1 − α(e1)T.

Proof: The closed-loop system is given by

x(k + 1) =
{

(A + bg1)x(k) + μb, if x1(k) ≤ 0

(B + bg2)x(k) + μb, if x1(k) > 0

(39)

Using Proposition 3, a sufficient condition to eliminate

the BCB is the existence of a P = PT > 0 such that

P − (A + bg1)T P(A + bg1) > 0 (40)

P − (B + bg2)T P(B + bg2) > 0 (41)

where g1, g2 are the control gains to be chosen. In-

equalities (40), (41) are equivalent to

(
Q AQ + by1

(AQ + by1)T Q

)
> 0 (42)

(
Q B Q + by2

(B Q + by2)T Q

)
> 0 (43)

respectively, where Q = P−1, g1 = y1 P , and g2 =
y2 P . This equivalence can be shown using similar rea-

soning as that used in the proof of Proposition 4.

The restriction g1i = g2i , i = 2, 3, . . . , n, can be

written as

g2 = g1 − α(e1)T (44)

where α ∈ R. Therefore,

y1 − y2 = g1 Q − g2 Q

= (g1 − g2)Q

= α(e1)T Q. (45)

Substituting y2 = y1 − α(e1)T Q in Equation (43)

yields Equation (38). This completes the proof. �

Note that if α = 0 in Equation (38), then the

switching feedback control (34) becomes simultaneous

control.

Remark 2. The switching control design shown ear-

lier (with no restriction on feedback gains) was used

in ref. [23] for stabilization of the origin of discrete-

time switching systems; bifurcation control was not an

objective in that work.

4.3 Numerical examples

We now present numerical examples that demonstrate

the proposed feedback control methods.

Example 2. (Fixed point attractor bifurcating to in-
stantaneous chaos)

Consider the three-dimensional PWS map

x(k + 1) =
{

Ax(k) + bμ, x1(k) ≤ 0

Bx(k) + bμ, x1(k) > 0
(46)

where

A =

⎛⎜⎝0.0334 1.7874 −0.1705

−0.4588 −0.4430 −0.8282

0.0474 −0.0416 0.8000

⎞⎟⎠ ,

B =

⎛⎜⎝0.8384 1.7874 −0.1705

−0.8180 −0.4430 −0.8282

0.6602 −0.0416 0.8000

⎞⎟⎠ and b =

⎛⎜⎝1

0

0

⎞⎟⎠ .

The eigenvalues of A and B are {0.766, −0.1878 ±
j 0.8389} and {−0.1157, 0.6555 ± j 1.0987}, respec-

tively. Note that A is Schur stable, but B is unstable.

Simulation results show that Equation (46) undergoes a

border collision bifurcation from a fixed point attractor

to instantaneous chaos at μ = 0 (see Fig. 3).
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Fig. 3 Bifurcation diagram for Example 2. The solid line rep-
resents a path of stable fixed points and the shaded region repre-
sents a one-piece chaotic attractor growing out of the fixed point
at μ = 0

Feedback control design: Using the results of

Proposition 4, a symmetric and positive definite ma-

trix Q and a feedback control gain vector g that

satisfy the LMIs (28)–(29) are sought. A solution to

Equations (28)–(29) is obtained using the MATLAB

LMI toolbox. To wit:

Q =

⎛⎜⎝ 0.4753 −0.0428 −0.1694

−0.0428 0.8821 −0.1647

−0.1694 −0.1647 0.5041

⎞⎟⎠ ,

y = (−0.1601 −1.4937 0.3356),

g = yQ−1

= (−0.5193 −1.7324 −0.0747).

The closed-loop matrices are given by

Ac = A + bg

=

⎛⎜⎝−0.4859 0.0550 −0.2452

−0.4588 −0.4430 −0.8282

0.0474 −0.0416 0.8000

⎞⎟⎠ ,

Bc = B + bg

=

⎛⎜⎝ 0.3191 0.0550 −0.2452

−0.8180 −0.4430 −0.8282

0.6602 −0.0416 0.8000

⎞⎟⎠ .

The eigenvalues of Ac and Bc are {0.8141, −0.4715 ±
j 0.1409} and {−0.4507, 0.5634 ± j 0.3498}, respec-

tively. The bifurcation diagram of the closed-loop sys-

tem is depicted in Fig. 4.

Example 3. (Saddle-node border collision bifurcation)
Consider the three-dimensional PWS map

x(k + 1) =
{

Ax(k) + bμ, x1(k) ≤ 0

Bx(k) + bμ, x1(k) > 0
(47)

where

A =

⎛⎜⎝ 0.0350 −0.2280 −0.9385

−0.3123 −0.0029 0.9191

−0.3825 −0.5107 0.5553

⎞⎟⎠ ,

B =

⎛⎜⎝ 3.3000 −0.2280 −0.9385

−0.6299 −0.0029 0.9191

0.3705 −0.5107 0.5553

⎞⎟⎠ and b=

⎛⎜⎝1

0

0

⎞⎟⎠.

The eigenvalues of A and B are {−0.2921, 0.4397 ±
j 0.3470} and {3.1739, 0.3392 ± j 0.4756}, respec-

tively. Note that A is Schur stable, but B is unstable.

Simulation results show that Equation (47) undergoes a

saddle-node border collision bifurcation where a stable

and an unstable fixed point collide and disappear as μ

is increased through zero (see Fig. 5).

Feedback control design: A simultaneous stabiliz-

ing feedback control based on Proposition 4 does not

exist for this example. Therefore, a stabilizing switched

feedback control using Proposition 6 is sought. Using

the LMI toolbox in MATLAB, a symmetric and positive

definite matrix Q, and feedback control gain vectors g1

and g2 that satisfy the LMIs (37)–(38) are obtained:

α = 3.0972

Q =

⎛⎜⎝25.3606 4.5507 7.9810

4.5507 43.0961 9.8713

7.9810 9.8713 30.8840

⎞⎟⎠ ,

y1 = (5.7709 14.8260 34.4887),

g1 = y1 Q−1

= (−0.1436 0.1024 1.1211),

g2 = g1 − α(e1)T

= (−3.2408 0.1024 1.1211).
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Fig. 4 Bifurcation diagram
for Example 2 with
simultaneous feedback
control u(k) = gx(k). The
solid lines represent a path
of stable fixed points
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Fig. 5 Bifurcation diagram
for Example 3 without
control. The solid line
represents a path of stable
fixed points whereas the
dashed line represents a
path of unstable fixed points

The closed-loop matrices are given by

Ac = A + bg1

=

⎛⎜⎝−0.1086 −0.1256 0.1826

−0.3123 −0.0029 0.9191

−0.3825 −0.5107 0.5553

⎞⎟⎠ ,

Bc = B + bg2

=

⎛⎜⎝ 0.0592 −0.1256 0.1826

−0.6299 −0.0029 0.9191

0.3705 −0.5107 0.5553

⎞⎟⎠ .

The eigenvalues of Ac and Bc are {0.0011, 0.2213 ±
j 0.6236} and {−0.0002, 0.3059 ± j 0.5102}, respec-

tively. The bifurcation diagram of the closed-loop sys-

tem is similar to Fig. 4.
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5 Concluding remarks

Lyapunov and LMI analysis of piecewise smooth

discrete-time systems that undergo border collision

bifurcations have been considered. One of the main

contributions of this paper is the derivation of a suffi-

cient condition for nonbifurcation with persistent sta-

bility in PWS maps of dimension n that depend on a

parameter. This condition was used in the design of

stabilizing feedback control laws to eliminate border

collision bifurcations in PWS maps and produce desir-

able locally stable behavior as the border is crossed.

Numerical examples were given to demonstrate the ef-

ficacy of the proposed control techniques.
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