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Abstract Different from the approaches used in the
earlier papers, in this paper, the Halanay inequality
technique, in combination with the Lyapunov method,
is exploited to establish a delay-independent sufficient
condition for the exponential stability of stochastic
Cohen–Grossberg neural networks with time-varying
delays and reaction–diffusion terms. Moreover, for the
deterministic delayed Cohen–Grossberg neural net-
works, with or without reaction–diffusion terms, suffi-
cient criteria for their global exponential stability are
also obtained. The proposed results improve and extend
those in the earlier literature and are easier to verify. An
example is also given to illustrate the correctness of our
results.
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1 Introduction

The Cohen–Grossberg neural network model, first pro-
posed and studied by Cohen and Grossberg in 1983 [1],
can be described by the following ordinary differential
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equations

dui (t)
dt

= −ai (ui )

[
bi (ui (t))−

n∑
j=1

ai j g j (u j (t)) + Ii

]
,

i = 1, . . . , n, (1)

where n ≥ 2 is the number of neurons in the network,
ui denotes the state variable associated with the i th neu-
ron, ai represents an amplification function, and bi is an
appropriately behaved function. The matrix A = (ai j )
represents the connection strengths between neurons,
and if the output from neuron j excites (respectively,
inhibits) neuron i , then ai j ≥ 0 (respectively, ai j ≤ 0).
The activation function g j shows how neurons respond
to each other.

As we know, the Cohen–Grossberg neural net-
work model includes many models from evolutionary
theory, population biology, and neurobiology. Also,
it includes the well-known Hopfield neural network,
cellular neural network, and bidirectional associative
memory (BAM) neural network as its special cases.
In the past few years, the stability of these neural net-
works has been studied extensively. In Refs. [2, 3],
several stability conditions for BAM neural networks
have been derived. In Refs. [4–6], delayed cellular neu-
ral networks have been extensively studied and a set of
global stability criteria have been proposed.

In Ref. [29], the global asymptotical stability is
investigated for a generalized recurrent neural net-
work with hybrid delays based on LMI approach. In
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Ref. [30], the authors proposed a new Cohen-
Grossberg-type BAM neural networks with delays,
and gave several novel sufficient conditions ensuring
the existence, uniqueness and global exponential sta-
bility of the equilibrium point in the form of M-matrix.

In practice, time delays inevitably exist in a working
network due to the finite speeds of the switching and
transmission of signals in a network and thus should
be taken into account within the model equations of
the network. In Refs. [7–13], various delayed Cohen–
Grossberg neural networks have been studied and sev-
eral sufficient conditions have been obtained to check
the stabilities for the delayed Cohen–Grossberg neural
networks. However, strictly speaking, diffusion effects
cannot be avoided in the neural networks when elec-
trons are moving in asymmetric electromagnetic fields,
so we must consider the space is varying with time. In
Refs. [14, 15], the authors have considered the stabil-
ity of neural networks with diffusion terms, which are
expressed by partial differential equations.

In recent years, the dynamic behavior of stochas-
tic neural networks, especially the stability of stochas-
tic neural networks, has become a hot study topic.
The main reason is that in practice, a real system is
usually affected by external perturbations which, in
many cases, are of great uncertainty and hence may
be treated as random. As pointed out by Haykin [29],
in real nervous systems, synaptic transmission is a
noisy process brought on by random fluctuations from
the release of neurotransmitters and other probabilis-
tic causes. Therefore, it is of significant importance to
consider stochastic effects for the stability of neural net-
works. In Refs. [17, 18], the authors studied the mean
square exponential stability and instability of cellular
neural networks. In Ref. [19], the exponential stability
of linear stochastic delay interval systems was stud-
ied, and some sufficient criteria with respect to matrix
norm were given by Razumikin-type theorem. In Ref.
[20], the almost sure exponential stability for a class of
stochastic cellular neural networks with discrete delays
was discussed. In Ref. [21], a sufficient condition was
established for the stochastic delay perturbed system.
In Ref. [22], the mean square exponential stability for
stochastic delayed Hopfield neural networks with dis-
crete and continuously distributed delay is studied by
means of a variation parameter.

Motivated by the above discussion, the main ob-
jective of this paper is to consider stochastic Cohen–
Grossberg neural networks with time-varying delays

and reaction–diffusion terms. To the best of our knowl-
edge, few authors have considered the stochastic
Cohen–Grossberg neural networks with time-varying
delays and reaction–diffusion terms so far. Different
from the previous approach, by means of Halanay
inequality technique [23], a delay-independent suffi-
cient condition is proposed to ensure the exponential
stability of the equilibrium of the stochastic Cohen–
Grossberg neural networks with time-varying delays
and reaction–diffusion terms. Moreover, sufficient cri-
teria to guarantee the global exponential stability of de-
terministically delayed Cohen–Grossberg neural net-
works with or without reaction–diffusion terms are also
obtained. The results proposed in this paper extend and
improve some previous ones.

2 Model description and preliminaries

In this paper, we consider the stochastic Cohen–
Grossberg neural networks with time-varying delays
and reaction–diffusion terms described by the follow-
ing differential equations

dyi (t, x) =
m∑

k=1

∂

∂xk

(
Dik

∂yi

∂xk

)
dt

−ai (yi (t, x))

[
bi (yi (t, x))

−
n∑

j=1

ci j f j (y j (t, x))

−
n∑

j=1

di j f j (y j (t − τi j (t), x)) + Ji

]
dt

+
n∑

j=1

ρi j (yi (t, x), yi (t−τi j (t), x)) dω j (t),

x ∈ �, (2)

for i = 1, 2, . . . , n and t ≥ 0, where yi (t, x) is the state
of the i th neurons at time t and in space x ; f j (y j (t, x))
denotes the activation function of the j th neurons at
time t and in space x ; Ji denotes the external bias
on the i th neuron; ci j and di j denote the connection
weights; τi j (t) denotes the transmission delay along the
axon of the j th neuron from the i th neuron and satis-
fies 0 ≤ τi j (t) ≤ τ ; Dik = Dik(t, x, y) ≥ 0 denotes the
diffusion operator; � is a bounded compact set with
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smooth boundary ∂� and mes� > 0 in space Rm ; ρ:
Rn × Rn → Rn×n, i.e., ρ = (ρi j )n×n is the diffusion
coefficient matrix; ω(t) = (ω1(t), . . . , ωn(t))T is an n-
dimensional Brownian motion defined on a complete
probability space (�,F, P) with a natural filtration
[24] {Ft }t≥0 (i.e., Ft = σ {ω(s) : 0 ≤ s ≤ t}).

The boundary condition and the initial condition are

⎧⎪⎪⎨⎪⎪⎩
∂yi

∂n
=

(
∂yi

∂x1
,

∂yi

∂x2
, . . . ,

∂yi

∂xm

)
T = 0,

t ≥ t0 ≥ 0, x ∈ ∂�,

yi (t0 + s, x) = ϕi (s, x), −τi j (t0) ≤ s ≤ 0,

(3)

where ϕ(s, x) = {(ϕ1(s, x), . . . , ϕn(s, x))T : −τ ≤ s≤
0} is C([−τ, 0] × Rm ; Rn)-valued function and F0-
measurable Rn-valued random variable.

Let ρi j = 0, i, j = 1, 2, . . . , n, then system (2) be-
comes the following deterministic Cohen–Grossberg
neural networks with time-varying delays and
reaction–diffusion terms

∂yi (t, x)

∂t
=

m∑
k=1

∂

∂xk

(
Dik

∂yi

∂xk

)
− ai (yi (t, x))

×
[

bi (yi (t, x)) −
n∑

j=1

ci j f j (y j (t, x))

−
n∑

j=1

di j f j (y j (t − τi j (t), x)) + Ji

]
,

x ∈ �, (4)

Furthermore, let Dik = 0 (i = 1, . . . , n, k = 1,

. . . , m), then system (4) is reduced to the following
Cohen–Grossberg neural networks with time-varying
delays

dyi (t)
dt

= −ai (yi (t))
[

bi (yi (t)) −
n∑

j=1

ci j f j (y j (t))

−
n∑

j=1

di j f j (y j (t − τi j (t))) + Ji

]
. (5)

In this paper, we make the following assumptions:

(H1) For each i ∈ {1, 2, . . . , n}, ai (yi ) is bounded,
positive, and locally Lipschitz continuous. Fur-
thermore, 0 < αi ≤ ai (yi ) ≤ ᾱi .

(H2) For each i ∈ {1, 2, . . . , n}, bi (yi ) is locally Lip-
schiz continuous and there exists γi > 0 such that
yi bi (yi (t)) ≥ γi y2

i (t).
(H3) The activation function f j is bounded and there

exist constants L j > 0, such that

| f j (u1) − f j (u2)| ≤ L j |u1 − u2|,
j = 1, 2, . . . , n,

for any u1, u2 ∈ R.

(H4) There are nonnegative constants vi , μi such that

trace[ρT(x, y)ρ(x, y)] ≤
n∑

i=1

(
vi x2

i + μi y2
i

)
.

It should be noted that assumption (H3) guarantees
the existence of an equilibrium point for system (4) by
the well-known Brouwer fixed-point theorem. For the
detailed proof of the existence of the equilibrium, refer
to Proposition 3.1 in Ref. [8]. Let y∗ = (y∗

1 , . . . , y∗
n )T

be an equilibrium point of system (4). For the stability
of equilibrium of system (2), we furthermore assume
that

(H5) ρi j (y∗
i , y∗

i ) = 0, i, j = 1, 2, . . . , n.

Then, system (2) has an equilibrium point y∗ =
(y∗

1 , . . . , y∗
n )T. By means of a coordinate translation

zi = yi − y∗
i , system (2) is equivalent to

dzi (t) =
m∑

k=1

∂

∂xk

(
Dik

∂zi (t)
∂xk

)
dt

− αi (zi (t, x))

[
βi (zi (t, x))

−
n∑

j=1

ci j g j (z j (t, x))

−
n∑

j=1

di j g j (z j (t − τi j (t), x))

]
dt

+
n∑

j=1

ρi j (yi (t, x), yi (t − τi j (t), x)) dω j (t),

x ∈ �, (6)

where αi (zi (t)) = ai (zi (t) + y∗
i ), βi (zi (t)) = bi (zi (t)

+y∗
i ) − bi (y∗

i ), g j (z j (t)) = f j (z j (t) + y∗
j ) − f j (y∗

j ).
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It follows from Ref. [24] that under the assumptions
(H1)–(H4), Equation (2) has a global solution for t ≥ 0,

which is denoted as y(t, ϕ).

Notation. In this paper, E stands for the math-
ematical expectation operator with respect to the
given probability measure P . For any u(t, x) =
(u1(t, x), u2(t, x), . . . , un(t, x))T ∈ Rn , define

‖ui (t, x)‖2 =
[∫

�

|ui (t, x)|2dx
] 1

2

,

‖u(t, x)‖ =
[

n∑
i=1

‖ui (t, x)‖2
2

] 1
2

.

To prove our main theorem, we need the following
preliminaries.

Definition 1. Let r : R → R be a continuous function,
D+r , the upper right Dini derivative of r (t) is defined as

D+r (t) = lim sup
�t→0+

r (t+ � t) − r (t)
� t

.

Definition 2 ([30]). System (2) is said to be exponen-
tially stable in the mean square if there exists a pair of
positive constants λ and K such that

E‖y(t, t0, ϕ)−y∗‖2 ≤ K E‖ϕ − y∗‖2e−λ(t−t0),

t ≥ t0 (7)

for any ϕ. In this case

lim sup
t→∞

1

t
ln(E‖y(t, t0, ϕ) − y∗‖2) ≤ −λ. (8)

The left-hand side of Equation (8) is called the mean
square Lyapunov exponent of the solution.

In the following, we introduce the Halanay inequal-
ity for a stochastic system which plays an important role
in the proof of the main theorem. The detailed proof of
the Halanay inequality can be found in Ref. [23].

Consider an n-dimensional stochastic functional dif-
ferential equation

dx(t) = f (t, xt ) dt + g(t, xt ) dω(t), t ≥ t0,

xt0 = ξ.
(9)

Here ξ ∈ L2
F0

([t0 − τ, t0], Rn) and xt = {x(t + θ ):
−τ ≤ θ ≤ 0}which is regarded as a Rn-valued stochas-
tic process. Both f and g are functions from R+ ×
C([−τ, 0]; Rn) to Rn , satisfying the local Lipschitz
condition and linear growth condition, which guaran-
tee a unique global solution of Equation (9) denoted by
x(t, ξ ).

Lemma 1 ([23]). Let constants α > β ≥ 0. Assume
that there exists a positive, continuous function V (t, x)
satisfying the following inequality

D+E(V (t, x(t))) ≤ −αE(V (t, x(t)))

+ β sup
s∈[t−τ,t]

E(V (s, x(s))), t ≥ t0,

then

E(V (t, x(t)))

≤ sup
s∈[t0−τ,t0]

E(V (s, x(s))) exp(−λ(t − t0)),

in which λ ∈ (0, α − β] is the unique positive solution
of the following equation:

λ = α − βeλτ . (10)

3 Main results

In this section, we will employ the Halanay inequality
technique to present a sufficient criterion for the expo-
nential stability of stochastic Cohen–Grossberg neu-
ral networks with time-varying delays and reaction–
diffusion terms defined by Equation (2).

Theorem 1. Under assumptions (H1)–(H5), system
(2) is exponentially stable in the mean square if the
following condition holds

min
1≤i≤n

(
2αiγi −

n∑
j=1

|ci j |ᾱi L j −
n∑

j=1

|c ji |ᾱ j Li

−
n∑

j=1

|di j |ᾱi L j − vi

)

> max
1≤i≤n

( n∑
j=1

|d ji |ᾱ j Li + μi

)
. (11)
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Proof: Consider the following Lyapunov function

V (t, z(t)) =
∫

�

n∑
i=1

z2
i (t) dx = ‖z(t)‖2. (12)

Applying Ito’s formula [26] to V (t, z(t)), we obtain

V (t + δ, z(t + δ)) − V (t, z(t)) =
∫ t+δ

t
dV (s, z(s))

=
∫ t+δ

t
Vt (s, z(s)) ds

+
∫ t+δ

t
Vz(s, z(s))

{ m∑
k=1

∂

∂xk

(
Dik

∂zi (s)

∂xk

)

− αi (zi (s, x))

[
βi (zi (s, x)) −

n∑
j=1

ci j g j (z j (s, x))

−
n∑

j=1

di j g j (z j (s − τi j (s), x))

]}
ds

+
∫ t+δ

t
Vz(s, z(s))ρi j (yi (s, x),

yi (s − τi j (s), x)) dω j (s)

+ 1

2

∫ t+δ

t
trace[ρT Vzz(s, z(s)))ρ] ds

=
∫ t+δ

t

∫
�

2
n∑

i=1

zi (s)

{ m∑
k=1

∂

∂xk

(
Dik

∂zi (s)

∂xk

)

− αi (zi (s, x))

[
βi (zi (s, x)) −

n∑
j=1

ci j g j (z j (s, x))

−
n∑

j=1

di j g j (z j (s − τi j (s), x))

]
dx

}
ds

+
∫ t+δ

t

∫
�

2
n∑

i=1

zi (s)ρi j (yi (s, x),

yi (s − τi j (s), x)) dx dω j (s)

+
∫ t+δ

t

∫
�

trace(ρT ρ) dx ds. (13)

From the boundary condition, we get

m∑
k=1

∫
�

zi
∂

∂xk

(
Dik

∂zi

∂xk

)
dx

=
∫

�

zi∇ ·
(

Dik
∂zi

∂xk

)m

k=1

dx

=
∫

�

∇ ·
(

zi Dik
∂zi

∂xk

)m

k=1

dx

−
∫

�

(
Dik

∂zi

∂xk

)m

k=1

· ∇zi dx

=
∫

∂�

(
zi Dik

∂zi

∂xk

)m

k=1

· ds

−
m∑

k=1

∫
�

Dik

(
∂zi

∂xk

)2

dx

= −
m∑

k=1

∫
�

Dik

(
∂zi

∂xk

)2

dx, (14)

in which ∇ = ( ∂
∂x1

, . . . , ∂
∂xm

)T is the gradient operator,
and (

Dik
∂zi

∂xk

)m

k=1

=
(

Di1
∂zi

∂x1
, . . . , Dim

∂zi

∂xm

)T

.

According to the assumptions (H2), (H3), and (H4), we
have

|g j (z j (t))| ≤ L j |z j (t)|,
zi (t)|βi (zi (t))| ≥ γi |zi (t)|2,

trace(ρT ρ) ≤
n∑

i=1

(vi |zi (t)|2 + μi |zi (t − τi j (t))|2).

(15)

Substituting Equations (14) and (15) into
Equation (13), we have

V (t + δ, z(t + δ)) − V (t, z(t))

≤ −2
∫ t+δ

t

∫
�

n∑
i=1

αiγi z2
i (s, x) dx ds

+ 2
∫ t+δ

t

∫
�

n∑
i=1

n∑
j=1

|ci j |ᾱi L j |zi (s)||z j (s)| dx ds

+ 2
∫ t+δ

t

∫
�

n∑
i=1

n∑
j=1

|di j |ᾱi L j |zi (s)||

× z j (s − τi j (s))| dx ds+
∫ t+δ

t

∫
�

( n∑
i=1

vi |zi (s)|2

+
n∑

i=1

μi |zi (s − τi j (s))|2
)

dx ds
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+ 2
∫ t+δ

t

∫
�

n∑
i=1

zi (s)ρi j (yi (s, x),

× yi (s − τi j (s), x)) dx dω j (s)

≤
∫ t+δ

t

∫
�

n∑
i=1

(
− 2αiγi +

n∑
j=1

|ci j |ᾱi L j

+
n∑

j=1

|c ji |ᾱ j Li +
n∑

j=1

|di j |ᾱi L j + vi

)
× |zi (s)|2dx ds

+ t
∫ t+δ

t

∫
�

n∑
i=1

( n∑
j=1

|d ji |ᾱ j Li + μi

)
× |z j (s − τi j (s))|2dx ds

+ 2
∫ t+δ

t

∫
�

n∑
i=1

zi (s)ρi j (yi (s, x),

yi (s − τi j (s), x)) dx dω j (s)

≤ −
∫ t+δ

t
min

1≤i≤n

(
2αiγi −

n∑
j=1

|ci j |ᾱi L j

−
n∑

j=1

|c ji |ᾱ j Li −
n∑

j=1

|di j |ᾱi L j − vi

)
× V (s, z(s)) ds

+
∫ t+δ

t
max
1≤i≤n

( n∑
j=1

|d ji |ᾱ j Li + μi

)
× V (s − τi j (s), z(s − τi j (s))) ds

+2
∫ t+δ

t

∫
�

n∑
i=1

zi (s)ρi j (yi (s, x),

yi (s − τi j (s), x)) dx dω j (s). (16)

By Theorem 4.2.8 [27], we obtain E
∫ t+δ

t

∫
�∑n

i=1 zi (s)ρi j (yi (s, x), yi (s − τi j (s), x)) dx dω j (s) =
0. Therefore, taking expectation on both sides of Equa-
tion (16), we get

EV (t + δ, z(t + δ)) − EV (t, z(t))

≤ −
∫ t+δ

t
min

1≤i≤n

(
2αiγi −

n∑
j=1

|ci j |ᾱi L j

−
n∑

j=1

|c ji |ᾱ j Li −
n∑

j=1

|di j |ᾱi L j − vi

)

× EV (s, z(s)) ds

+
∫ t+δ

t
max
1≤i≤n

( n∑
j=1

|d ji |ᾱ j Li + μi

)
× EV (s − τi j (s), z(s − τi j (s))) ds.

From the definition of the Dini derivative

D+EV (t, z(t))

= lim sup
δ→0+

EV (t + δ, z(t + δ)) − EV (t, z(t))
δ

,

and also by the mean value theorem for integrals, we
have

D+EV (t, z(t))

≤− min
1≤i≤n

(
2αiγi −

n∑
j=1

|ci j |ᾱi L j −
n∑

j=1

|c ji |ᾱ j Li

−
n∑

j=1

|di j |ᾱi L j − vi

)
EV (t, z(t))

+ max
1≤i≤n

( n∑
j=1

|d ji |ᾱ j Li + μi

)
× EV (t − τi j (t), z(t − τi j (t)))

≤ − min
1≤i≤n

(
2αiγi −

n∑
j=1

|ci j |ᾱi L j −
n∑

j=1

|c ji |ᾱ j Li

−
n∑

j=1

|di j |ᾱi L j − vi

)
EV (t, z(t))

+ max
1≤i≤n

( n∑
j=1

|d ji |ᾱ j Li+μi

)
sup

s∈[t−τ,t]
EV (s, x(s)).

By Lemma 1, we get

EV (t, z(t)) ≤ sup
s∈[t0−τ,t0]

EV (s) exp(−λ(t − t0)),

t ≥ t0,

i.e.,

E‖y(t) − y∗‖2

≤ sup
s∈[−τ,0]

E‖ϕ(s) − y∗‖2 exp(−λ(t − t0)), t ≥ t0.

Springer



Nonlinear Dyn (2007) 50:363–371 369

This shows that system (2) is globally exponentially
stable in mean square. �

Remark 1. When Dik = 0, (i = 1, . . . , n, k = i, . . . ,
m), system (2) is reduced to the following stochastic
Cohen–Grossberg neural networks:

dyi (t, x) = − ai (yi (t, x))

[
bi (yi (t, x))

−
n∑

j=1

ci j f j (y j (t, x))

−
n∑

j=1

di j f j (y j (t − τi j (t), x)) + Ji

]
dt

+
n∑

j=1

ρi j (yi (t, x),

yi (t − τi j (t), x)) dω j (t),

x ∈ �, i = 1, . . . , n. (17)

This model has been studied in Ref. [28] and it is seen
that Corollary 1 in Ref. [28] is a direct result of Theorem
1, which shows that the reaction–diffusion term has no
influence on the stability for system (2).

In the following, we give two corollaries for the de-
terministic Cohen–Grossberg neural network with and
without the reaction–diffusion term, respectively.

Corollary 1. Under assumptions (H1)–(H3), system
(4) is globally exponentially stable if the following con-
dition holds:

min
1≤i≤n

(
2αiγi −

n∑
j=1

|ci j |ᾱi L j −
n∑

j=1

|c ji |ᾱ j Li

−
n∑

j=1

|di j |ᾱi L j

)
> max

1≤i≤n

( n∑
j=1

|d ji |ᾱ j Li

)
. (18)

Corollary 2. Under assumptions (H1)–(H3), system
(5) is globally exponentially stable if the following con-
dition holds:

min
1≤i≤n

(
2αiγi −

n∑
j=1

|ci j |ᾱi L j −
n∑

j=1

|c ji |ᾱ j Li

−
n∑

j=1

|di j |ᾱi L j

)
> max

1≤i≤n

( n∑
j=1

|d ji |ᾱ j Li

)
. (19)

Remark 2. In Ref. [13], if we let r = 2, then Corollary
4 is the same result as Corollary 2 in our paper.

Remark 3. It is noted that in Ref. [22], the stochastic
perturbation term is independent of time delays. How-
ever, in practice, the stochastic perturbation is unavoid-
ably influenced by time delays. Therefore, our results
are more general.

4 An example

An example is presented here in order to illustrate the
correctness of our main result.

Consider the following stochastic Cohen–Grossberg
neural networks with time-varying delays and
reaction–diffusion terms

dy1(t, x) =
2∑

k=1

∂

∂xk

(
D1k

∂y1

∂xk

)
dt

−a1(y1(t, x))

[
b1(y1(t, x))

−
2∑

j=1

c1 j f j (y j (t, x))

−
2∑

j=1

d1 j f j (y j (t − τ1 j (t), x)) + J1

]
dt

+
2∑

j=1

ρ1 j (y1(t, x),

y1(t − τ1 j (t), x)) dω j (t),

dy2(t, x) =
2∑

k=1

∂

∂xk

(
D2k

∂y2

∂xk

)
dt

−a2(y2(t, x))

[
b2(y2(t, x))

−
2∑

j=1

c2 j f j (y j (t, x))

−
2∑

j=1

d2 j f j (y j (t − τ2 j (t), x)) + J2

]
dt

+
2∑

j=1

ρ2 j (y2(t, x),

y2(t−τ2 j (t), x)) dω j (t),
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where ai (yi (t)) = 2 + sin(yi (t)), f j (y j ) = 0.5(|y j + 1
| − |y j − 1|), τi j (t) = | cos t |, i, j = 1, 2.b1(y1(t)) =
5y1(t), b2(y2(t)) = 6y2(t), c11 = 0.2, c12 = c21 = 0.5,

c22 = −0.6, d11 = −0.02, d12 = −0.05, d21 = 0.06,

d22 = 0.8.

Obviously, we have αi = 1, ᾱi = 3, L j = 1, γ1 =
5, γ2 = 6, i, j = 1, 2.

Moreover, σ : R2 × R2 → R2×2 satisfies

trace[ρT(x, y)ρ(x, y)] ≤ x2
1+0.1x2

2 + 0.5y2
1+0.15y2

2 .

Therefore, we obtain

min
1≤i≤2

(
2αiγi −

n∑
j=1

|ci j |ᾱi L j −
n∑

j=1

|c ji |ᾱ j Li

−
n∑

j=1

|di j |ᾱi L j − vi

)
= 2.72,

max
1≤i≤2

( n∑
j=1

|d ji |ᾱ j Li + μi

)
= 2.7.

From Theorem 1, we know the neural networks are
exponentially stable in mean square.

5 Conclusions

This paper is concerned with the exponential stability
of stochastic Cohen–Grossberg neural networks with
time-varying delays and reaction–diffusion terms. Dif-
ferent from the approaches employed in the previous
literatures, the Halanay inequality technique in combi-
nation with Lyapunov method is exploited to establish a
sufficient condition for the exponential stability of these
networks. The results obtained in this paper are delay-
independent, which implies that strong self-regulation
is dominant in the networks. In addition, the methods
used in this paper are also applicable to other neural
networks, such as stochastic Hopfield neural networks
with time-varying delays and reaction–diffusion terms,
stochastic bidirectional associative memory (BAM)
neural networks with or without time-varying delays
and reaction–diffusion terms, etc.
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