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Abstract In this paper an initial-boundary value prob-
lem for a linear equation describing an axially moving
string will be considered for which the bending stiffness
will be neglected. The velocity of the string is assumed
to be time-varying and to be of the same order of magni-
tude as the wave speed. A two time-scales perturbation
method and the Laplace transform method will be used
to construct formal asymptotic approximations of the
solutions. It will be shown that the linear axially mov-
ing string model already has complicated dynamical
behavior and that the truncation method can not be ap-
plied to this problem in order to obtain approximations
which are valid on long time-scales.
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1 Formulation of the problem

In this paper the dynamic behavior of an axially moving
string without bending stiffness will be studied (see
Fig. 1).
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The following linear equation of motion for a mov-
ing string will be considered

c2uxx = utt + 2V uxt + V 2uxx + Vt ux ,

0 < x < l, t > 0, (1)

where, u(x, t): the displacement of the string in verti-
cal direction, V (t): the time-varying string speed, c: the
wave speed, x : the coordinate in horizontal direction, t :
the time, and, l: the distance between the pulleys, and

where c =
√

T0
ρ

, in which T0 andρ are assumed to be the

constant tension and the constant mass density of the
string, respectively. In this paper the case V0 < c is con-
sidered and it is assumed that V (t) = V0 + εα sin(ωt),
where V0, ω and α are some positive constants, and
where ε is a small parameter with 0 < ε � 1. The
term εα sin(ωt) can be seen as a small perturbation
of the main belt speed V0 due to different kinds of
imperfections of the belt system. At the pulleys it is
assumed that there is no displacement of the string in
vertical direction. Equation (1) can also be found in
[1], but now it is assumed that V0 is not necessarily
small compared to the wave speed c. Consequently (1)
becomes:

utt + 2V0uxt + (
V 2

0 − c2)uxx

= ε(−2α sin(ωt)uxt − 2V0α sin(ωt)uxx

− αω cos(ωt)ux ) − ε2(α2 sin2(ωt)uxx ), (2)
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Fig. 1 An axially moving string system.

where the boundary and the initial conditions are given
by

u(0, t ; ε) = u(l, t ; ε) = 0, t � 0,

u(x, 0; ε) = f (x), and ut (x, 0; ε) = r (x),

0 < x < l, (3)

where f (x) and r (x) represent the initial displacement
and the initial velocity of the string, respectively. It
is assumed that the functions f (x) and r (x) are suf-
ficiently smooth such that a two times continuously
differentiable solution for the initial-boundary value
problem (2) and (3) exists. Moreover, it is assumed that
the series representations which are used for the solu-
tion u (and its derivatives), and for the functions f and
r are convergent. In the following section asymptotic
approximations of the solution of the initial-boundary
value problem (2) and (3) will be constructed using a
two time-scales perturbation method. To study nonlin-
ear, transversal vibrations of conveyor belt problems
the solution of related linear problems always play an
important role. In this paper not only approximations
of these linear problems will be constructed, but also
the (non-) applicability of the truncation method will
be discussed. For a recent overview of the literature on
axially moving linear and nonlinear strings the reader
is referred to [2–5].

2 Application of the two time-scales perturbation

method

Approximations of the solution of the initial-boundary
value problem (2) and (3) which are constructed by
means of a straight-forward expansion method become
unbounded on long time-scales due to the occurrence

of so-called secular terms. To avoid these secular terms
two time-scales are introduced: t0 = t and t1 = εt ,
so that u(x, t ; ε) = v(x, t0, t1; ε). The introduction of
these two time-scales defines the following transfor-
mations for the time derivatives:

∂u
∂t

= ∂v

∂t0
+ ε

∂v

∂t1
,

∂2u
∂t2

= ∂2v

∂t2
0

+ 2ε
∂2v

∂t0∂t1
+ ε2 ∂2v

∂t2
1

. (4)

Considering the transformations (4), Equation (2)
becomes:

∂2v

∂t2
0

+ 2V0
∂2v

∂t0∂x
+ (

V 2
0 − c2)∂2v

∂x2

= ε

(
−2

∂2v

∂t0∂t1
− 2V0

∂2v

∂t1∂x
− 2α sin(ωt)

∂2v

∂t0∂x

− 2V0α sin(ωt)
∂2v

∂x2
− αω cos(ωt)

∂v

∂x

)
+O(ε2). (5)

Assuming that v(x, t0, t1; ε) = v0(x, t0, t1) +
εv1(x, t0, t1) + · · · , the following problems have to be
solved in order to remove secular terms up to O(ε):

O(1) :
∂2v0

∂t2
0

+ 2V0
∂2v0

∂t0∂x
+ (

V 2
0 − c2)∂2v0

∂x2
= 0,

O(ε) :
∂2v1

∂t2
0

+ 2V0
∂2v1

∂t0∂x
+ (

V 2
0 − c2)∂2v1

∂x2

= − 2
∂2v0

∂t0∂t1
− 2V0

∂2v0

∂t1∂x
− 2α sin(ωt)

∂2v0

∂t0∂x

− 2V0α sin(ωt)
∂2v0

∂x2
− αω cos(ωt)

∂v0

∂x
. (6)
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The solution of the O(1)-problem can be found
by means of the Laplace transform method. For a
more detailed analysis of that problem the read-
ers are referred to [6, 7]. The solution is given
by:

v0(x, t0, t1) =
∞∑

n=1

{
F[1]n(x) (An0(t1) cos(�nt0)

− Bn0(t1) sin(�nt0))

+ F[2]n(x) (An0(t1) sin(�nt0)

+ Bn0(t1) cos(�nt0))
}
, (7)

where

F[1]n(x) = cos

(
πn(V0 + c)x

lc

)
− cos

(
πn(V0 − c)x

lc

)
,

(8)

F[2]n(x) = sin

(
πn(V0 + c)x

lc

)
− sin

(
πn(V0 − c)x

lc

)
,

and where �n = nπ (V 2
0 −c2)
lc with n ∈ Z+ are the natural

frequencies of the conveyor belt system. In Equation (7)
An0(t1) and Bn0(t1) are still arbitrary functions that can
be used in order to avoid secular terms in the solution
of the O(ε)-problem.

By substituting (7) into O(ε)-problem (see (6)) it
follows that:

O(ε) :
∂2v1

∂t2
0

+ 2V0
∂2v1

∂t0∂x
+ (

V 2
0 − c2)∂2v1

∂x2

=
∞∑

n=1

{sin(�nt0)ϕn(x, t1) + cos(�nt0)ϕ̃n(x, t1)}

+
∞∑

n=1

{sin(�nt0) sin(ωt0)ψn(x, t1)

+ sin(�nt0) cos(ωt)ψ̃n(x, t1)

+ cos(�nt0) sin(ωt0)θn(x, t1)

+ cos(�nt0) cos(ωt)θ̃n(x, t1)}, (9)

where

ϕn(x, t1) = 2

(
d An0(t1)

dt1

(
F[1]n(x)�n −V0

d F[2]n(x)

dx

)

+ d Bn0(t1)

dt1

(
F[2]n(x)�n + V0

d F[1]n(x)

dx

))
,

ϕ̃n(x, t1) = 2

(
d An0(t1)

dt1

(
−F[2]n(x)�n− V0

d F[1]n(x)

dx

)

+ d Bn0(t1)

dt1

(
F[1]n(x)�n − V0

d F[2]n(x)

dx

))
,

ψn(x, t1) = 2α

(
An0(t1)

(
d F[1]n(x)

dx
�n

−V0
d2 F[2]n(x)

dx2

)
+ Bn0(t1)

(
d F[2]n(x)

dx
�n

+V0
d2 F[1]n(x)

dx2

))
,

ψ̃n(x, t1) = αω

(
− An0(t1)

d F[2]n(x)

dx

+ Bn0(t1)
d F[1]n(x)

dx

)
,

θn(x, t1) = 2α

(
An0(t1)

(
− d F[2]n(x)

dx
�n

−V0
d2 F[1]n(x)

dx2

)
+ Bn0(t1)

(
d F[1]n(x)

dx
�n

−V0
d2 F[2]n(x)

dx2

))
,

θ̃n(x, t1) = αω

(
−An0(t1)

d F[1]n(x)

dx

− Bn0(t1)
d F[2]n(x)

dx

)
. (10)

Following the method which has been presented in
[6] for the equations of the type (9), it follows that
actually two cases have to be considered to eliminate
the secular terms in the solution of Equation (9): (i) ω

is not in a neighborhood of any �n (the non-resonant
case), and (ii) ω = �m∗ , where m∗ ∈ Z+ and fixed (the
resonant case).
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2.1 Case (i): ω is not in a neighborhood of any �n ,
the non-resonant case

In this case it is assumed that the frequency of the
velocity-fluctuations of the axially moving string is
not equal to any of its natural frequencies. In this case
only terms in the first sum in the right hand side of (9)
will lead to unbounded behavior in the solution of the
O(ε)-problem. After applying the Laplace transform
method to (9), calculating the poles, and then the
residues, and then after applying the convolution
integral theorem to find the inverse Laplace transform,
one obtains:

v1(x, t0, t1) = 1

2

∞∑
n=1

{
t0 sin(�nt0)( f[1]n(x, t1)

+ f̃[2]n(x, t1))

+ t0 cos(�nt0)(− f[2]n(x, t1)

+ f̃[1]n(x, t1))
}

+ “terms with non-secular behavior”,

(11)

where

f[1]n(x, t1) = wn(t1)F[1]n(x) + pn(t1)F[2]n(x),

f[2]n(x, t1) = wn(t1)F[2]n(x) − pn(t1)F[1]n(x),

f̃[1]n(x, t1) = w̃n(t1)F[1]n(x) + p̃n(t1)F[2]n(x),

f̃[2]n(x, t1) = w̃n(t1)F[2]n(x) − p̃n(t1)F[1]n(x), (12)

and

wn(t1) = 1

2c

∫ l

0

ϕn(x, t1)

πn
(−F[2]n(x)) dx,

pn(t1) = − 1

2c

∫ l

0

ϕn(x, t1)

πn
(−F[1]n(x)) dx,

w̃n(t1) = 1

2c

∫ l

0

ϕ̃n(x, t1)

πn
(−F[2]n(x)) dx,

p̃n(t1) = − 1

2c

∫ l

0

ϕ̃n(x, t1)

πn
(−F[1]n(x)) dx . (13)

In (12) and (13) F[1]n(x) and F[2]n(x) are given
by (9). To get rid of the secular terms in the solution

(11) it is necessary to put ( f[1]n(x, t1) + f̃[2]n(x, t1))
and (− f[2]n(x, t1) + f̃[1]n(x, t1)) equal to zero, or
equivalently:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
− d An0

dt1
cos

(
πnxV0

lc

)
− d Bn0

dt1
sin

(
πnxV0

lc

))
sin

(
πnx

l

)
= 0,

(
d An0

dt1
sin

(
πnxV0

lc

)
−d Bn0

dt1
cos

(
πnxV0

lc

))
sin

(
πnx

l

)
= 0.

(14)

System (14) can be seen as a system for the two
unknowns d An0

dt1
and d Bn0

dt1
. The determinant of this sys-

tem is non-zero for all x ∈ (0, l). So the only solution
is the trivial one that is, d An0

dt1
= 0 and d Bn0

dt1
= 0. It then

follows that An0(t1) and Bn0(t1) are constants. A similar
result has been obtained in [8] for a non-resonant
case.

2.2 Case (ii): ω = π (V 2
0 −c2)
lc , the first resonant case

In this section it is assumed that ω is equal to the first
natural frequency of the traveling string, that is, ω =
π (V 2

0 −c2)
lc . It this case terms in both sums in the right

hand side of (9) will lead to unbounded behavior in the
solution of the O(ε)-problem. After introducing ω =
π (V 2

0 −c2)
lc into (9), Equation (9) becomes:

O(ε) :
∂2v1

∂t2
0

+ 2V0
∂2v1

∂t0∂x
+ (

V 2
0 − c2)∂2v1

∂x2

=
∞∑

n=1

{
sin(�nt0)ϕn(x, t1) + cos(�nt0)ϕ̃n(x, t1)

}

+ 1

2

∞∑
n=1

{
cos(�n−1t0)(ψn(x, t1) + θ̃n(x, t1))

+ cos(�n+1t0)(−ψn(x, t1) + θ̃n(x, t1))

+ sin(�n−1t0)(ψ̃n(x, t1) − θn(x, t1))

+ sin(�n+1t0)(ψ̃n(x, t1) + θn(x, t1))
}
, (15)
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where the functions ϕn(x, t1), ϕ̃n(x, t1), ψn(x, t1),
ψ̃n(x, t1), θn(x, t1), θ̃n(x, t1) are given by (10). Follow-
ing the same procedure as in the non-resonant case one
finally obtains for v1:

v1(x, t0, t1)

=
{

1

2

(
f[1]1(x, t1) + f̃[2]1(x, t1)

)
+ 1

4

(
f [1]
[2]1(x, t1)

+ f [3]
[1]1(x, t1)

)}
t0 sin(�1t0)

+
{

1

2

(
f̃[1]1(x, t1) − f[2]1(x, t1)

)
+ 1

4

(
f [1]
[1]1(x, t1) − f [3]

[2]1(x, t1)
)}

t0 cos(�1t0)

+
∞∑

n=2

[{
1

2

(
f[1]n(x, t1) + f̃[2]n(x, t1)

)
+ 1

4

(
f [1]
[2]n(x, t1) + f [3]

[1]n(x, t1) + f [2]
[2]n(x, t1)

+ f [4]
[1]n(x, t1)

)}
t0 sin(�nt0)

+
{

1

2

(
f̃[1]n(x, t1) − f[2]n(x, t1)

)
+ 1

4

(
f [1]
[1]n(x, t1) − f [3]

[2]n(x, t1) + f [2]
[1]n(x, t1)

− f [4]
[2]n(x, t1)

)}
t0 cos(�nt0)

]
+“terms with non-secular behavior”, (16)

where the functions f[1]n(x, t1), f[2]n(x, t1), f̃[1]n(x, t1)
and f̃[2]n(x, t1) are given by (12), and the functions
f [k]
[1]n(x, t1) and f [k]

[2]n(x, t1) are given by the following
formulas:

f [k]
[1]n(x, t1) = w[k]

n (t1)F[1]n(x) + p[k]
n (t1)F[2]n(x),

f [k]
[2]n(x, t1) = w[k]

n (t1)F[2]n(x) − p[k]
n (t1)F[1]n(x),

(17)

with the index k = 1, 2, 3, 4, respectively, where
F[1]n(x) and F[2]n(x) are given by (9) and wherew[k]

n (t1),

p[k]
n (t1) are given by:

w[1]
n (t1)

= 1

2c

∫ l

0

ψn+1(x, t1) + θ̃n+1(x, t1)

πn

(−F[2]n(x)
)

dx,

p[1]
n (t1)

= − 1

2c

∫ l

0

ψn+1(x, t1) + θ̃n+1(x, t1)

πn

(−F[1]n(x)
)

dx,

w[2]
n (t1)

= 1

2c

∫ l

0

−ψn−1(x, t1) + θ̃n−1(x, t1)

πn
(−F[2]n(x)) dx,

p[2]
n (t1)

= − 1

2c

∫ l

0

−ψn−1(x, t1) + θ̃n−1(x, t1)

πn

(−F[1]n(x)
)

dx,

w[3]
n (t1)

= 1

2c

∫ l

0

ψ̃n+1(x, t1) − θn+1(x, t1)

πn

( − F[2]n(x)
)

dx,

p[3]
n (t1)

= − 1

2c

∫ l

0

ψ̃n+1(x, t1) − θn+1(x, t1)

πn

(−F[1]n(x)
)

dx,

w[4]
n (t1)

= 1

2c

∫ l

0

ψ̃n−1(x, t1) + θn−1(x, t1)

πn

(−F[2]n(x)
)

dx,

p[4]
n (t1)

= − 1

2c

∫ l

0

ψ̃n−1(x, t1) + θn−1(x, t1)

πn

(−F[1]n(x)
)

dx,

(18)

where ψn(x, t1), ψ̃n(x, t1), θ̃n(x, t1), θn(x, t1) are given
by (10). It follows from (16) that the solution of the
O(ε)-problem does not contain secular terms if and
only if:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f[1]1(x, t1) + f̃[2]1(x, t1)

+1

2

(
f [1]
[2]1(x, t1) + f [3]

[1]1(x, t1)
) = 0,

f̃[1]1(x, t1) − f[2]1(x, t1)

+1

2

(
f [1]
[1]1(x, t1) − f [3]

[2]1(x, t1)
) = 0,
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and for n � 2:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f[1]n(x, t1) + f̃[2]n(x, t1)+1

2

(
f [1]
[2]n(x, t1) + f [3]

[1]n(x, t1)

+ f [2]
[2]n(x, t1) + f [4]

[1]n(x, t1)
) = 0,

f̃[1]n(x, t1) − f[2]n(x, t1) + 1

2

(
f [1]
[1]n(x, t1) − f [3]

[2]n(x, t1)

+ f [2]
[1]n(x, t1) − f [4]

[2]n(x, t1)
) = 0.

(19)

Defining A00(t1) ≡ 0 and B00(t1) ≡ 0 it follows that
for all n = 1, 2, . . . :

{
F[1]n(x)σ[1]n(t1) + F[2]n(x)σ[2]n(t1) = 0,

F[1]n(x)σ[2]n(t1) − F[2]n(x)σ[1]n(t1) = 0,
(20)

where:

σ[1]n(t1) = wn(t1) − p̃n(t1) + 1

2

(
w[3]

n (t1) − p[1]
n (t1)

+w[4]
n (t1) − p[2]

n (t1)
)
,

σ[2]n(t1) = w̃n(t1) + pn(t1) + 1

2

(
w[1]

n (t1) + p[3]
n (t1)

+w[2]
n (t1) + p[4]

n (t1)
)
. (21)

System (20) can be seen as a system for two un-
known σ[1]n(t1) and σ[2]n(t1). For x ∈ (0, l) the determi-
nant of this system is equal to (F[1]n)2 + (F[2]n)2 �= 0.
From this it follows that σ[1]n(t1) = 0 and σ[2]n(t1) = 0,
or equivalently

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

wn(t1) − p̃n(t1) + 1

2

(
w[3]

n (t1) − p[1]
n (t1) + w[4]

n (t1)

−p[2]
n (t1)

) = 0,

w̃n(t1) + pn(t1) + 1

2

(
w[1]

n (t1) + p[3]
n (t1) + w[2]

n (t1)

+p[4]
n (t1)

) = 0.

(22)

System (22) involves the functions d An0
dt1

, d Bn0
dt1

, An0(t1)

and Bn0(t1). Solving this system for d An0
dt1

, d Bn0
dt1

finally

yields for n = 1, 2, 3, . . . :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d An0

dt1
= α sin

(
πV0

c

)
2l

(n + 1)A(n+1)0

−
(

cos
(

πV0
c

) + 1
)
α

2l
(n + 1)B(n+1)0

− α sin
(

πV0
c

)
2l

(n − 1)A(n−1)0

−
(

cos
(

πV0
c

) + 1
)
α

2l
(n − 1)B(n−1)0,

d Bn0

dt1
=

(
cos

(
πV0

c

) + 1
)
α

2l
(n + 1)A(n+1)0

+ α sin
(

πV0
c

)
2l

(n + 1)B(n+1)0

+
(

cos
(

πV0
c

) + 1
)
α

2l
(n − 1)A(n−1)0

− α sin
(

πV0
c

)
2l

(n − 1)B(n−1) 0.

(23)

This system is an infinite dimensional system of or-
dinary differential equations. It can clearly be seen that
for ω = �1 all vibration modes are interacting, and it
will be difficult to solve the system analytically. It can
also be seen that in the limit case V0 = 0 system (23)
coincides with the system as studied in [1]. System (23)
can be rewritten in the following way:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d An0

dt̄1
= γ (n + 1)A(n+1)0 − σ (n + 1)B(n+1)0

− γ (n − 1)A(n−1)0 − σ (n − 1)B(n−1)0,

d Bn0

dt̄1
= σ (n + 1)A(n+1)0 + γ (n + 1)B(n+1)0

+ σ (n − 1)A(n−1)0 − γ (n − 1)B(n−1)0,

(24)

where t̄1 = α

2l
t1, γ = sin(πV0

c ) and σ = 1 + cos(πV0
c ).

If the truncation method is applied to system (24), so
only some first modes are taken into account and higher
order modes are being neglected, the following system
has to be solved:

Ẋ = AX, (25)

where vector Ẋ represents the derivatives of An and
Bn with respect to t̄1 and the demension of the square
matrix A is two times the number of modes which
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are considered. Table 1 represents the eigenvalues of
the truncated system (24) up to 10 modes, which have
been calculated by using the computer software pack-
age Maple. From this table it can be seen that the eigen-
values of the truncated system are always purely imag-
inary or zero. It is well known in mathematics that in
this case no conclusions can be drawn for the infinite
dimensional system.

2.2.1 Analysis of the infinite dimensional system (24)

By introducing Xn0(t̄1) = n An0(t̄1) and Yn0(t̄1) =
nBn0(t̄1) system (24) becomes:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d Xn0

dt̄1
= n

(
γ X (n+1)0 − σY(n+1) 0

− γ X (n−1)0 − σY(n−1)0
)
,

dYn0

dt̄1
= n

(
σ X (n+1) 0 + γ Y(n+1)0

+σ X (n−1)0 − γ Y(n−1)0
)
,

(26)

for n = 1, 2, . . . , and X00 = Y00 = 0. Then it can be
deduced that:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Xn0 Ẋn0 = n

(
γ X (n+1)0 Xn0 − σY(n+1)0 Xn0

−γ X (n−1)0 Xn0 − σY(n−1)0 Xn0
)
,

Yn0Ẏn0 = n
(
σ X (n+1)0Yn0 + γ Y(n+1)0Yn0

+σ X (n−1)0Yn0 − γ Y(n−1)0Yn0
)
.

(27)

By adding both equations in (27) and by taking the
sum from n = 1 to ∞ it follows that:

1

2

∞∑
n=1

d
dt̄1

(
X2

n0 + Y 2
n0

)
= σ

∞∑
n=1

{
Y(n+1)0 Xn0 − X (n+1)0Yn0

}
−γ

∞∑
n=1

{
X (n+1)0 Xn0 + Y(n+1)0Yn0

}
. (28)

By differentiating (28) with respect to t̄1 one gets:

1

2

∞∑
n=1

d2

dt̄2
1

(
X2

n0 + Y 2
n0

) = 2(σ 2 + γ 2)
∞∑

n=1

(
X2

n0 + Y 2
n0

)
,

(29)

and then by putting
∑∞

n=1(X2
n0 + Y 2

n0) = W (t̄1) it fol-
lows that:

d2W (t̄1)

dt̄2
1

− 4(σ 2 + γ 2)W (t̄1) = 0. (30)

The solution of (30) is W (t̄1) = K1e2
√

(σ 2+γ 2)t̄1 +
K2e−2

√
(σ 2+γ 2)t̄1 , or equivalently:

W (t1)

= K1 exp

⎛⎝α

l

√(
cos

(
πV0

c

)
+1

)2

+ sin2

(
πV0

c

)
t1

⎞⎠
+ K2 exp

⎛⎝−α

l

√(
cos

(
πV0

c

)
+1

)2

+ sin2

(
πV0

c

)
t1

⎞⎠ ,

(31)

where K1 and K2 are both constants of integration. Now
it should be observed that for K1 �= 0 W (t1) increases
if t1 increases. As it has been shown before (Section
2.2) the application of the truncation method to system
(24) (that is, by considering only a finite number of
vibration modes) that only purely imaginary eigenval-
ues or zero eigenvalues will be found. This implies that
only oscillatory behavior will be found by applying the
truncation method, whereas (31) clearly indicates that
also exponential behavior should be included. Because
of that the approximations obtained by the truncation
method are not accurate on time-scales of order ε−1.
For example, the approximation of the solution that
was obtained in [8] is not valid on long time-scales of
order ε−1.

2.3 Case (ii): ω = πm∗(V 2
0 − c2)

lc
, a general resonant

case

By considering the cases (i) and (ii), and by taking
into account the results that have been obtained in [6]
it follows, that if an external frequency is equal to a
natural frequency of the moving string or equal to the
sum or difference of those natural frequencies it will
cause resonance in the conveyor belt system. Now it

will be assumed that ω = �m∗ , that is, ω = πm∗(V 2
0 −c2)

lc ,
where m∗ ∈ Z+ and fixed. In this section the system of
ordinary differential equations will be derived, which
describes the interactions between the different oscil-
lation modes.
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Table 1 Approximations of the eigenvalues of the truncated system (24)

No. of modes Eigenvalues of matrix A (all multiplicity 2) Dimensi on
eigen-space of A

1 0 2

2 ±
√

2(γ 2 + σ 2)i 4

3 0, ±2
√

2(γ 2 + σ 2)i 6

4 ±1.13
√

(γ 2 + σ 2)i , ±4.33
√

(γ 2 + σ 2)i 8

5 0,±2.30
√

(γ 2 + σ 2)i , ±5.89
√

(γ 2 + σ 2)i 10

6 ±7.50
√

(γ 2 + σ 2)i , ±1.00
√

(γ 2 + σ 2)i , ±3.56
√

(γ 2 + σ 2)i 12

7 0, ±9.15
√

(γ 2 + σ 2)i ,±2.05
√

(γ 2 + σ 2)i ,±4.90
√

(γ 2 + σ 2)i 14

8 ±10.83
√

(γ 2 + σ 2)i , ±0.93
√

(γ 2 + σ 2)i , ±3.18
√

(γ 2 + σ 2)i , ±6.30
√

(γ 2 + σ 2)i 16

9 0, ±12.54
√

(γ 2 + σ 2)i , ±1.89
√

(γ 2 + σ 2)i , ±4.38
√

(γ 2 + σ 2)i , ±7.74
√

(γ 2 + σ 2)i 18

10 ±14.26
√

(γ 2 + σ 2)i , ±0.87
√

(γ 2 + σ 2)i , ±5.65
√

(γ 2 + σ 2)i , ±9.23
√

(γ 2 + σ 2)i 20

±2.93
√

(γ 2 + σ 2)i

Substituting ω = πm∗(V 2
0 −c2)

lc into (9) yields:

O(ε) :
∂2v1

∂t2
0

+ 2V0
∂2v1

∂t0∂x
+ (

V 2
0 − c2)∂2v1

∂x2

=
∞∑

n=1

{sin(�nt0)ϕn(x, t1) + cos(�nt0)ϕ̃n(x, t1)}

+ 1

2

∞∑
n=1

{
cos(�n−m∗ t0)(ψn(x, t1) + θ̃n(x, t1))

+ cos(�n+m∗ t0)(−ψn(x, t1) + θ̃n(x, t1))

+ sin(�n−m∗ t0)(ψ̃n(x, t1) − θn(x, t1))

+ sin(�n+m∗ t0)(ψ̃n(x, t1) + θn(x, t1))
}
, (32)

where the functions ϕn(x, t1), ϕ̃n(x, t1), ψn(x, t1),
ψ̃n(x, t1), θn(x, t1), θ̃n(x, t1) are given again by (10).
In (32) it should be observed that �−n = −�n and
�0 = 0.

Following the same procedure as in the previous
cases to avoid secular terms in the solution of the O(ε)-
problem, one obtains after some lengthy, but elemen-
tary calculations the following system for An0(t1) and
Bn0(t1):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

d An0

dt1
= αμm∗

m∗l
(n + m∗)A(n+m∗)0

+ αηm∗

m∗l
(n + m∗)B(n+m∗)0,

d Bn0

dt1
= −αηm∗

m∗l
(n + m∗)A(n+m∗)0

+ αμm∗

m∗l
(n + m∗)B(n+m∗)0,

(33)

for n = 1, 2, . . . , m∗ − 1, and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d An0

dt1
= αμm∗

2m∗l
(n + m∗)A(n+m∗)0

+αηm∗

2m∗l
(n + m∗)B(n+m∗)0

−αμm∗

2m∗l
(n − m∗)A(n−m∗)0

+αηm∗

2m∗l
(n − m∗)B(n−m∗)0,

d Bn0

dt1
= −αηm∗

2m∗l
(n + m∗)A(n+m∗)0

+αμm∗

2m∗l
(n + m∗)B(n+m∗)0

−αηm∗

2m∗l
(n − m∗)A(n−m∗)0

−αμm∗

2m∗l
(n − m∗)B(n−m∗)0,

(34)

for n = m∗, m∗ + 1, . . . , where

μm∗ = (−1)1+m∗
sin

(
πm∗V0

c

)
,

ηm∗ = (−1)m∗
(

cos

(
πm∗V0

c

)
− 1

)
. (35)

In system (33) and (34) A00 and B00 are defined to
be identically equal to zero. The system (33) and (34)
is an infinite dimensional system of coupled, ordinary
differential equations. From the structure of the equa-
tions it can easily be seen that there are infinitely many
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interactions between the vibration modes. So, to apply
the truncation method to system (33) and (34) (to find
approximations of the solution which are valid on long
time-scales of order ε−1) can be a wrong procedure
as has been shown for the case m∗ = 1. How to ob-
tain more information out of system (33) and (34) for
arbitrary m∗ is still an open subject for future research.

3 Conclusions and remarks

In this paper an initial-boundary value problem for a
linear equation, describing an axially moving string has
been studied. This equation can be used as a model for
the lower frequency, transversal vibrations of a con-
veyor belt system. The axially moving string is as-
sumed to move in one direction with a non-constant
speed V (t), that is, V (t) = V0 + εα sin(ωt), where
0 < ε � 1 and where V0, α and ω are positive con-
stants. For V0 it is assumed that V0 < c, where c is
the wave speed. Formal asymptotic approximations of
the solution of the initial-boundary value problem have
been constructed by using a combination of a two time-
scales perturbation method and a Laplace transform
method (see also [6] and [7]). It turns out that there are
infinitely many values of ω that give rise to internal res-
onances in the axially moving string system. In fact, that
happens when ω is equal to any natural frequency of

the moving string, that is, ω = �n = πn(V 2
0 −c2)
lc , where

n = 1, 2, . . . . It turned out for ω = �1 that only a one-
mode approximation, as for instance has been used in
[8] is not accurate on time-scales of order ε−1, as the so-
lution of the boundary-value problem (2) and (3) con-
sists of infinitely many, interacting vibration modes.
Moreover in [8] due to the application of the truncation

method, the odd numbered resonance frequencies �n

were not found.
Three cases have been studied in this paper: ω is not

in a neighborhood of any �n , ω = �1 and ω = �m∗ ,
where m∗ ∈ Z+ and fixed. For the second case (that is
when ω is equal to the lowest natural frequency of the
moving string) a first integral has been found and it has
been shown that the truncation method does not give
accurate results on long time-scales. All approxima-
tions which are obtained by the method as introduced
in this paper are valid on long time-scales, that is, on
time-scales of order ε−1. Moreover, the results as ob-
tained in [1] are a special case of the results as obtained
in this paper.
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