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Abstract The instability of kinematic pairs made with
permanent magnets (passive magnetism) significantly
restricts their technical use. On the other hand, they
show very good tribological properties: null friction
and wear. In previous works, it has been verified that by
using Mathieu Functions any instability of the levitated
member may be removed if one of the two members is
subjected to a parametric excitation. In this paper, the
problem is discussed directly utilizing the nonlinear
equation of motion of the levitated member, and it is
confirmed that it may be stable.
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1 Introduction

The advantages of passive magnetic bearings, i.e. al-
most null friction and wear, are partially nullified be-
cause of their instability [1]; for instance for the lev-
itated ring of the axial bearing in Fig. 1 is unstable
in radial direction. Actually, the unstable radial forces
acting on the ring may be much smaller than the stable
axial forces [2]. Moreover if one of the rings, the lower
[3] or the upper [4], is submitted to an axial excitation,
it would seem that instability may be removed. In
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[3, 4], the parametric equation of Mathieu [5] has been
adopted, and small [3] or very small [4] stability spaces
have been identified.

In order to examine these results thoroughly, in
this work the behavior of the levitated ring is stud-
ied by solving its equations of motion with analytic
and numerical methods, without the aid of the Mathieu
method.

This work refers to the dynamic stability of per-
manent magnets. For stationary stability of permanent
magnets and static stability of diamagnetic or super-
conducting materials see, for example, [6, 7].

2 Magnetic fields and forces

2.1 Magnetic fields

Well-known relations of passive magnetism are

B̄ = μ0(M̄ + H̄ ) (1)

M̄ = M̄r + χ H̄ (2)

∇ · B̄ = 0 (3)

where B is the flux density of the magnetic field which
generates the magnetic force F, M the magnetiza-
tion of the material and Mr the residual magnetiza-
tion, H the intensity of magnetic field, μ0 the vacuum
permeability, μ the permeability of the material with
μr = μ/μ0 its relative permeability, and χ = μr − 1
its susceptibility.
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Fig. 1 Passive magnetic
axial ring bearing

2.2 Magnetic forces

Forces F interacting between permanent magnets may
be suitably computed with the theory of the volume and
surface equivalent currents j, which cross the material
along elementary circuits s. The calculation, starting
from relations such as d F̄ = jds̄ × B̄, have to be made
by numerical methods [6, 8].

2.3 Instability

Equation (3) shows that B is solenoidal, thus the com-
ponents Fx , Fy , Fz of F and their stiffnesses Kx , Ky ,
Kz are ruled by Equation (5) which becomes (6) for the
ring in Fig. 1

∇F = ∂ Fx

∂x
+ ∂ Fy

∂y
+ ∂ Fz

∂z
= Kx + Ky + Kz = 0,(4)

∇F = ∂ Fz

∂z
+ ∂ Fr

∂r
= Kz + 2Kr = 0 (5)

(4) and (5) highlight the instability of F almost along
one direction [9].

2.4 Magnetic materials

Today magnetic bearings are generally made with
Rare-Earths (REs, alloys with Lantanides, especially

Nd) which show to a large degree the properties that
ideal magnets are required to have: homogeneity of
the material with homogeneous M, complete magneto-
crystalline and shape anisotropy and high coercitivity
[10]. RE have so μr ∼= 1, then χ ≈ 0 and M = Mr ;
Br ∼= μ0 Mr , M ∼= j .

Consequently, F may be expressed as a function B
only, where

μ0

4π
j1 j2 ⇒ μ0

4π
Mr1 Mr2 ⇒ 1

4πμ0
Br1 Br2 (6)

Br is given by manufactures.
In this work, dimensionless forces F′ and stiffnesses

K′ (7) between the rings of the axial bearing in Fig. 1
have been calculated.

F ′
z = Fz

Br1 Br2(R(1)
e )2

4πμ0

, F ′
r = Fr

Br1 Br2(R(1)
e )2

4πμ0

;

K ′
z = Kz

Br1 Br2 R(1)
e

4πμ0

, K ′
r = Kr

Br1 Br2 R(1)
e

4πμ0

, (7)

with g′ = g
R(1)

e
, e′ = e

R(1)
e

Figure 2a shows the axial force F ′
z and stiffness |K ′

z|, as
a function of the gap g′ for some values of eccentricity
e′. Figure 2b shows the radial force F′

r and stiffness Kr

as a function of e′, for some values of g′.

Springer



Nonlinear Dyn (2007) 50:161–168 163

Fig. 2 Axial force (a1) and
stiffness (a2) versus gap, for
constant values of the
eccentricity. Radial forces
(b1) and stiffness (b2) versus
eccentricity for constant
values of the gap

M has not been calculated, because if the forces of
the levitated ring are stable, the same must be true for
the moments [11], especially for the loaded bearing
shown in Fig. 4b.

In (7), R(1)
e is the highest of the external radii of the

rings of the bearing; Br1 and Br2 are their residual in-
ductions. The results refer to a bearing with R(1)

e =
R(2)

e = Re = 0.03 m, R(1)
i = R(2)

i = Ri = 0.018 m,
h = k = 0.012 m, Br1 = Br2 = Br = 1.1 T, (RE).

3 Dynamic behavior

The canonical equations of motion of the levitated ring
of mass m2 = m in axial and radial direction are

mg̈ + Fz = 0 (8)

më + Fr = 0 (9)
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Fig. 3 Radial forces versus
eccentricity, for some values
of the ratio eccentricity/gap

Figure 2a1 shows that, starting from very small val-
ues of g (g′ > 0, 02, then g = g′ Re = 6 × 10−4 m) Fz

is nearly independent of e, thus it is nearly indepen-
dent of Fr ; Fig. 2a2 shows in addition that Kz is almost
constant. So it is possible to put

Fz = Fz cos �z t, g = g2 cos �z t,

with �z =
√

Kz

m
, g2 = �g

2
(Fig. 4b) (10)

On the other hand, Fig. 2b1 shows that Fr depends
significantly on g, thus it is not independent of Fz .
Moreover, Fig. 2b2 shows that Kr is almost constant.

The behaviors of F ′
z(g′) indicate the axial stability

of the levitated ring; those of F ′
r (e′) indicate its radial

instability; this fact confirms (3).
Note that Fig. 2 shows F ′

z and K ′
z , which change

with g′ while e′ remains constant, and F ′
r and K ′

r ,
which change with e′ while g′ remains constant. But
neither g′ nor e′ remain really constant, in fact F im-
poses a curved trajectory on the levitated ring. There
is a small shift (see below), which may however be
regarded as rectilinear, where e′ and g′ varies propor-
tionally. So, as an example, for e′ = 0.002, 0.005, 0.01,
0.015 it may be that g′ = 0.004, 0.01, 0.02, 0.03, i.e.
e′/g′ = 0.5. In this case F ′

r in Fig. 2b1 assumes the val-
ues 0, 0.034, 0.29, 0.25, 0.22, which are connected by a
dashed line. Fig. 3 shows F ′

r (e′), for some values of ratio
e′/g′.

To the right of the dashed line, F ′
r decreases, a nec-

essary condition for radial stability. The diagrams in
Fig. 3 refer to the initial condition g′ = 0.03, e′ = 0.
e′/g = 1 refers to displacements 0 ≤ e′ ≤ 0.02 and
0.03 ≤ g′ ≤ 0.05, thus �g′ = �e′ = 0.02; e′/g′ < 1
refer to �e′ < �g′.

Figure 4a, shows Fr (e) of a bearing with an equal
ring, with Re = 0.015 m, Ri = 0.0095 m, h = 0.002
m and Br = 1.44 T [12]; the levitated ring bears a load
W = 18 N (m = 1.84 kg), thus gw = 0.003 m. The
diagram refers to starting conditions g = 0.0015 m,
e = 0 and to e/g = e′/g′ = 0.25.

Radial force Fr (e) may be stated in the polynomial
form (11), which is suitable for the treatment outlined
in Section 4.

Fr = Kr e − 1.63 × 108e2 + 2.05 × 1011e3

−0.903 × 1014e4 (11)

with Kr = 4.75 × 104 N m−2; thus (9) becomes

ë + �2
r0e − 1.63 × 108e2

m
+ 2.05 × 1011e3

m

−0.903 × 1014e4

m
= 0 (12)

with �2
r0 = Kr

m = 2.58 × 104 rad−2 s−2

Note that the term Kr e in (11) represents the behav-
ior of Fr for g = 0, Fig. 2b1; the others are corrective
terms due to the fact that g varies simultaneously with
e. Further details will be given in Section 4.

4 Solutions

4.1 Analytical solution

4.1.1 Radial motion

As Equation (12) is highly nonlinear, the Ritz-Galerkin
method [13] may be used, which does not require small
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Fig. 4 (a) Radial force versus eccentricity for a selected value of the ratio eccentricity/gap. (b) Loaded bearing

nonlinear terms, but imposes a priori an approximate
time solution. Once (12) has been rewritten in general-
ized coordinates

q̈ + ω2
nq − q2 + q3 − q4 = 0 (13)

the method allows us to state that in the absence of
even terms, (13) has the harmonic solution

g(t) = a1,3 cos
(
�2

r t + �1,3
) ≡ a1,3 cos θ,

with �2
r = �2

r0 + 3

4
a2

1,3 (14)

The effect of the even terms may be evaluated by the
principle of “harmonic balance” [14] which, along with
the hypothesis that the solution of (13) may be almost
periodic, poses (14) in the form

q(t) = (a2 + a1,3 cos �r t + a4),

with �r = �r0 + ω̄(a2, a1,3, a4) (15)

where the values of a2, a4 and ω̄ are obtained by the
system

�2
r0a2 + p2(a2, a1,3) = 0

�2
r0a4 + p4(a4, a1,3) = 0(

�2
r0 − �2

r

)
a1,3 + p1,3(a2, a1,3, a4) = 0

(16)

with

p2(a2,4, a1,3) = 1

2π

∫ 2π

0
f (a2 + a1,3 cos θ ) cos θ dθ

p2,4(a2,4, a1,3) = 1

2π

∫ 2π

0
f (a4 + a1,3 cos θ ) cos θ dθ

p1,3(a2,4, a1,3) = 1

2π

∫ 2π

0
f (a2 + a4 + a1,3 cos θ )

× cos θ dθ (17)

The first two of (17) show that a2 = a4 = a2,4, thus
(16) are reduced to

�2
r0a2,4 + p2,4(a2,4, a1,3) = 0(

�2
r0 − �2

r

)
a1,3 + p1,3(a2,4, a1,3) = 0

(18)

with

p2,4(a2,4, a1,3) = 1

2π

∫ 2π

0
f (a2,4 + a1,3 cos θ ) cos θ dθ

p1,3(a2,4, a1,3) = 1

π

∫ 2π

0
f (a2,4 + a1,3 cos θ ) cos θ dθ

(19)

where [14],

f (a2,4, a1,3 cos θ ) = (a2,4 + a1,3 cos θ )3

= 3

4
a3

1,3 cos θ + 3

2
a2,4a2

1,3 (20)
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Fig. 5 Axial and radial vibrations of the levitated ring of a magnetic axial ring bearing

The third member of (20) is obtained from the second
by neglecting terms with cos nθ for n > 1, [15]. Thus
p2,4 and p1,3 are reduced to

p2,4 = 3

8
a3

1,3, p1,3 = 3

4
a3

1,3 (21)

and (19) become

�2
r0a2,4 + 3

8
a3

1,3 = 0

(22)(
�2

r0 − �2
r

)
a1,3 + 3

4
a3

1,3 = 0

from which

a2,4 = −3

8

a3
1,3

�2
r0

, �2
r = �2

r0 + 3

4
a2

1,3 (23)

In the end the even terms of (13) modify the ampli-
tude of the vibration, and the cubic term modifies the
frequency.

If the foregoing process is applied to the bearing un-
der examination, we obtain �e/2 = 3.75 × 10−4 m,
thus (3/4)a2

1,3 = 1.05 × 10−7 s−2. Moreover �2
r0 =

2.58 × 104 rad2 s−2, then �r0 = 160 rad s−1. So, if
e1,2 = a1,3 and e2,4 = a2,4, we obtain

e = e2,4 + e1,3 cos �r t = −1.01 × 10−4 + 3.75

× 10−4 cos[(2.58 × 104+1.05 × 10−7)0.5]t

∼= −1.01 × 10−4 + 3.75 × 10−4 cos 160t m

�r = (
�2

r0 + 3/4a2
1,3

)0.5 = (2.58 × 104 + 1.05

× 10−7)0.5 ∼= 160 rad s−1

Consequently, the even terms of (13) significantly mod-
ify the amplitude of the vibration, while the cubic term
leaves the frequency almost unchanged, as predicted in
[14].

4.1.2 Axial motion

With reference to the axial vibration, as the axial stiff-
ness around g0 is Kz ≈ −1.9 × 105 N m−1, then the
axial frequency is �Z = 321 rad s−1, almost twice the
radial frequency, as already seen in [4]. Moreover, the
amplitude of the vibration is g2 = �g/2. For the axial
vibration, we thus have g2 = 15 × 10−4 m, �Z = 321
rad s−1.

Then, with reference to Fig. 4b, if at t = 0 it is, for
example g = g0 = 15 × 10−4 m, ġ = 0 and e = e0 =
2 × 10−4 m, ė = 0 (point A in Fig. 4a) the levitated ring
begins to vibrate in an axial direction with amplitude
g2 = 15 × 10−4 m and frequency �Z = 321 rad s−1,
and in a radial direction with e = 2.74 × 10−4 m and
�r = 160 rad s−1.

Figure 5 shows the axial g and radial e vibrations of
the ring.

Note that as the ring is stable for g = g0 and e =
e0 (coordinate of point A, where Fr has a maximum,
Fig. 4a), it is certainly stable for points (g, e) to the right
of A.

4.2 Numerical solution

To evaluate more precisely the behaviors of e,
Equation (12) was solved numerically using the dy-
namic section of the software application Simulink
(MATLAB library). This software allows systems to
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Fig. 6 (a) Block diagram of the dynamic model of the bearing. (b) Radial vibrations of the levitated ring

be modeled, simulated and analysed with changing
exit. The blocks of the software (each standing for a
dynamic elementary system) were linked to represent
the dynamic of the bearing. Figure 6a shows the block
diagram. Figure 6b1 shows the radial motion of the
levitated ring for e0 = 2 × 10−4 m and ė = 0. The be-
havior of e is periodic and almost harmonic, with total
amplitude e = 1.65 × 10−4 m, smaller than its analytic
value 2.74 × 10−4 m and with frequency �r = 149 rad
s−1, which is quite near to its analytical value 160 rad
s−1.

Figure 6b2 refers to e0 = 0 and ė = 2.4 × 10−2 m
and it is e = 1.55 × 10−4 and �r = 147 rad s−1, These
values almost the same as the former ones.

The behavior of g is shown again in Fig. 5a.
Apart from the difference with the analytical one,

the numerical solution confirms that the radial motion
of the levitated ring may be a periodic, stable vibration,
under the action of a suitable axial motion.

Finally, note that the levitated ring is almost motion-
less as its axial vibration is small and its radial one is
even smaller.

5 Experiments

The stability of the studied bearing was obtained for
“ideal” permanent magnets. To verify theoretical re-
sults, experiments on permanent magnet rings were
made [16]. Some difficulties have been met concerning

the non homogeneous magnetisation M, which com-
mercial permanent magnets, including RE still have
today.

For example, some measured values of the flux
density Ø. of a ring in Nd2Fe14B, with Re = 0.04
m, Ri = 0.015 m, h = 0.01 m and Br = 1.37 T high-
lighted a radial and circumferential non uniformity
of φ. thus of M, with changes greater than 20%
as well. We are now researching into ring magnets
that have a better uniformity, though of smaller di-
mensions, and also into ring systems of elementary
magnets.

6 Conclusions

Previous works have used Mathieu equations to un-
derstand how to minimize the radial instability of the
levitated member of permanent magnet pairs, and small
spaces, where it may be stable under suitable conditions
of excitations.

This work has shown that stability may exist un-
der more extensive conditions, and that the spaces
of stability may be more extensive than the Math-
ieu ones. A nonlinear equation of motion of the lev-
itated ring has been determined, and solutions have
been obtained both by analytical and numerical meth-
ods. The ring, once excited axially, vibrates both axi-
ally and radially in a stable mode, with small vibration
amplitudes.
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