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Abstract In this paper, based on switched systems and
recurrent neural networks (RNNs) with time-varying
delay, the model of switched RNNs is formulated.
Global asymptotical stability (GAS) and global robust
stability (GRS) for such switched neural networks are
studied by employing nonlinear measure and linear ma-
trix inequality (LMI) techniques. Some new sufficient
conditions are obtained to ensure GAS or GRS of the
unique equilibrium of the proposed switched system.
Furthermore, the proposed LMI results are computa-
tionally efficient as it can be solved numerically with
standard commercial software. Finally, three examples
are provided to illustrate the usefulness of the results.

Keywords Switched system . Recurrent neural
networks . Time-varying delay . Global asymptotic
stability . Nonlinear measure

1 Introduction

In recent years, there has been increasing interest in the
dynamic analysis of artificial neural networks. Among
the most popular models in the previous literatures
are the Hopfield neural networks (HNNs) proposed by
Hopfield [8]. HNNs have proved to be essential in solv-
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ing some classes of optimization problems and found
fascinating applications in pattern recognition and as-
sociative memories. This model can be described by

dui (t)
dt

= −ci ui (t) +
n∑

j=1

ai j f j (u j (t)) + Ii ,

i = 1, 2, . . . , n,

or equivalently, in the following vector-matrix form:

du(t)
dt

= −Cu(t) + A f (u(t)) + I (1)

where u = [u1, u2, . . . , un]T is the neuron state vec-
tor, C = diag(c1, c2, . . . , cn) is a positive diagonal ma-
trix, A = (ai j )n×n is the connection matrix represent-
ing the weight coefficients of the neurons, f (u(t)) =
[ f1(u1(t)), f2(u2(t)), . . . , fn(un(t))]T is the activation
functions vector and I = [I1, I2, . . . , In]T is the exter-
nal input vector. Also, in the hardware implementation
of a neural network, a time delay usually occurs due
to finite switching speed of the amplifiers and commu-
nication time. In [16], the authors introduced the time
delay τ into (1) and considered the model of neural
system as follows:

du(t)
dt

= −Cu(t) + A f (u(t − τ )) + I. (2)

In [10], the author considered the recurrent neural net-
works (RNNs), which are the hybrid network model
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of HNNs and cellular neural networks (CNNs). The
model investigated in [10] is in the following form:

du(t)
dt

= −Cu(t) + A f (u(t))

+B f (u(t − τ (t))) + I. (3)

The neural network models (1)–(3) have attracted
numerous attention due to their promising application
in the various engineering problems, for example, clas-
sification of patterns, solving optimization problems,
designing associative memory. It has been observed
that such applications greatly rely on the dynamical
analysis of the neural network. Recently, a large num-
ber of results on this issue have been reported, see,
e.g. [1, 3, 7, 13, 25, 28] and the reference therein.
In [29], the authors investigated the global asymptot-
ical stability of generalized recurrent neural networks
with multiple discrete delays and distributed delays;
a new Cohen-Grossberg type BAM neural networks
with time-varying delays was proposed in [30], and
several novel sufficient conditions ensuring the exis-
tence, uniqueness and global exponential stability of
the equilibrium point are derived in the form of M-
matrix. It should be also noted that many previous re-
sults require the activation functions to be monotoni-
cally nondecreasing [1, 3, 7, 13, 25]. However, Morita
pointed out that for network’s associative memory, its
absolute capacity can be remarkably improved by re-
placing the usual sigmoid transfer functions with non-
monotonic transfer functions [17]. What’s more, when
a neural network is applied to optimization problems,
the neural network model should be designed such that
there is only one equilibrium point and it should be
globally stable [22].

As is well known, when designing neural network,
it is central to investigate stability problem of neural
network where various types of stability have captured
the attention of the researchers. However, parametric
uncertainty which often breaks the stability of a neu-
ral network can be commonly encountered due to the
modeling inaccuracies and changes in the environment
of the model. For example, in the practical application
of neural networks, some vital data such as the neu-
ron firing rates and the weight coefficients are usually
acquired and processed by means of the statistical es-
timates. Thus, the robust stability analysis of different
uncertain neural networks has gained much research
attention [4, 14, 24, 27].

On the other hand, with the rapid development of
the hybrid control, hybrid systems have been studied
extensively for their significance both in theory and ap-
plication. As an important class of the hybrid systems,
switched systems, composed of two or more continu-
ous (or discrete) subsystems and controlled by a switch-
ing law, are viewed as nonlinear systems. Recently, the
investigation of switched systems is creating a novel
and promising discipline bridging control engineering,
mathematics and computer science. In general, a con-
tinuous switched system can be characterized by the
following differential equation:

dx(t)
dt

= fσ (x(t)). (4)

Let F = { f p(x), p ∈ P}, the parameter p takes the
value in the index set P , each map f p(x) : Rn → Rn of
F is assumed to be locally Lipschitz and the piecewise
constant function of time σ (·) : [0, +∞) → P is the
switching signal. To switched systems, stability anal-
ysis is an important research field. In [15], Libezon
and Morse summarize three basic problems regarding
stability and design of the switched systems as follows:

(1) find conditions to ensure the GAS of the switched
systems for arbitrary switching sequences;

(2) identify the GAS condition for certain useful classes
of switching sequences;

(3) construct a switching signal that makes the system
globally asymptotically stable.

Until now, a lot of efforts have been made for the sta-
bility analysis and design of the switched systems, and
some results have been reported, see [11, 19, 21, 26]
and the reference therein. In [5, 6, 23], a set of linear
systems are used as individual subsystems of switched
system. In [9], a set of delayed HNNs are introduced
into switched system as its individual subsystems. In
this paper, combined switched system with recurrent
neural networks, the model of switched RNNs is pro-
posed, which is more general than [9]. In addition, to
the best of our knowledge, GAS and GRS of such
switched RNNs are seldom considered. Hence, mo-
tivated by the above discussions, GAS and GRS are
studied for switched RNNs in this paper by resorting
to the Lyapunov stability theorem and nonlinear mea-
sure technique. Some new sufficient conditions given
in the form of LMIs are obtained to ensure the GAS or
GRS of the proposed switched model.
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This paper is organized as follows. In Section 2, the
model description and some preliminaries are intro-
duced. In Section 3, the main results are presented. In
Section 4, illustrative examples are given to show the
effectiveness of the proposed results. Finally, conclud-
ing remarks are made in Section 5.
Notation: Throughout this paper, for real symmet-
ric matrices P and Q, the notation P ≥ Q (respec-
tively, P > Q) means that the matrix P − Q is posi-
tive semidefinite (respectively, positive definite). The
notation ‖u‖ denotes a vector form defined by ‖u‖2 =
(
∑n

i=1 u2
i )1/2 when u is a vector. For matrix X , XT and

X−1 denote its transpose and inverse, respectively. Ma-
trix dimensions, if not explicitly stated, are assumed to
be compatible for algebraic operations.

2 Model description and preliminaries

For convenience, we shift the equilibrium point u∗ =
[u∗

1, u∗
2, . . . , u∗

n]T of system (3) to the origin. The trans-
formation x(t) = u(t) − u∗ makes system (3) into the
following form:

dx(t)
dt

= −Cx(t) + Ag(x(t)) + Bg(x(t − τ (t))) (5)

where x = [x1, x2, . . . , xn]T and g j (x j ) = f j (x j +
u∗

j ) − f j (u∗
j ) with g j (0) = 0, ∀ j = 1, 2, . . . , n.

We considered the switched system composed of the
RNNs in the form of (5):

dx(t)
dt

=
N∑

i=1

ξi (t)
[ − Ci x(t) + Ai g(x(t))

+ Bi g(x(t − τ (t)))
]

(6)

where i is a switching signal which takes its value
in the finite index set P = {1, 2, . . . , N }, ξ (t) =
[ξ1(t), ξ2(t), . . . , ξN (t)]T is the indicator function, that
is ,∀ i ∈ P,

ξi (t)=
{

1, when the substem (Ai , Bi , Ci ) is activated.

0, otherwise.

As in [15] and [11], we assume the activation functions
satisfying
(A1): Each gi is globally Lipschitz continuous with
gi (0) = 0, that is, there exist a set of number li such that

|gi (x1) − gi (x2)| ≤ li |x1 − x2|, gi (0) = 0,

i = 1, 2, . . . , n

hold, for simplication, we denote L = diag(l1, l2,

. . . , ln). In addition, the following assumption is
further made:
(A2): The time-varying delay τ (t) is bounded and dif-
ferential, that is, there exist τ̂ > 0 and η > 0 such that
0 < τ (t) < τ̂ and τ̇ (t) ≤ η < 1 hold respectively. Ob-
viously, this assumption is certainly satisfied if the
transmission delay τ (t) is constant.

Remark 1. Some similar models of other switched neu-
ral networks with time-varying delay can be obtained
in a similar way, such as switched HNNs, switched
CNNs and switched BAM, that is, the individual sys-
tems are HNN, CNN and BAM model respectively.
When Ai = 0, the switched RNNs degenerate into the
switched HNNs model considered in [9]. Therefore,
our proposed model is more general.

Next, we present some definitions and lemmas,
which are needed in the next section.

Definition 1. A vector x∗ ∈ Rn is said to be the equi-
librium point of system (6) if it satisfies

N∑
i=1

ξi (t)[−Ci x∗ + Ai g(x∗) + Bi g(x∗)] = 0,

∀ t > t0 − τ̂ .

(7)

Definition 2. [12] Suppose that � is an open set of Rn ,
and G : � → Rn is an operator. The constant

m�(G) � sup
x �=y

x,y∈�

〈G (x) − G (y) , x − y〉
‖x − y‖2

2

= sup
x �=y

x,y∈�

(x − y)T(G(x) − G(y))

‖x − y‖2
2

(8)

is called the nonlinear measure of G on � with the
norm ‖ · ‖2.

Lemma 1. [12] If m�(G) < 0, then G is an injective
mapping on �. In addition, if � = Rn, then G is a
homeomorphism of Rn.

Remark 2. Lemma 1 particularly shows that G(x) = 0
will have only one solution whenever � = Rn and
m�(G) < 0. By utilizing some matrix techniques, the
nonlinear measure defined in the norm of ‖ · ‖2 is
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convenient to use in real applications which will be
shown later.

Lemma 2. [2] The following LMI[
E(x) H (x)

H T(x) F(x)

]
> 0

where E(x) = ET(x), F(x) = FT(x) and H (x) depend
affinely on x, is equivalent to each of the following
conditions:
(1) E(x) > 0, F(x) − H T(x)E−1(x)H (x) > 0;
(2) F(x) > 0, E(x) − H (x)F−1(x)H T(x) > 0.

Lemma 3. [20] Given any real matrices X, Y and
Q > 0 with appropriate dimensions. Then the follow-
ing matrix inequality holds:

XTY + Y T X ≤ XT Q X + Y T Q−1Y.

3 Stability analysis of switched RNN

This section discusses the GAS and GRS of the pro-
posed model (6). Several new criteria are obtained in
the form of LMIs. Firstly, GAS criteria are given in
Section 3.1, then, based on the results in this section, a
sufficient condition is given in Section 3.2.

3.1 GAS of the switched RNN

Theorem 1. Under the assumptions (A1) and (A2), the
origin of the switched RNN (6) is the unique equilib-
rium point and is globally asymptotically stable if there
exist matrices P = PT > 0, Q = QT > 0 and a diag-
onal matrix K = diag(k1, k2, . . . , kn) such that the fol-
lowing LMIs hold for i = 1, 2, . . . , N:

�i =

⎡⎢⎢⎣
−PCi − Ci P + L K L P Ai P Bi

AT
i P −K + Q 0

BT
i P 0 −(1 − η)Q

⎤⎥⎥⎦
< 0. (9)

Proof: We shall prove this theorem in two steps.
Firstly, we prove that the origin is the unique equi-

librium by means of nonlinear measure. Secondly, we
show the origin of (6) is globally asymptotically stable.
Step 1: Define an operator G : Rn → Rn by

G(x) =
N∑

i=1

ξi (t) [−Ci x + Ai g(x) + Bi g(x)] (10)

where x = [x1, x2, . . . , xn]T ∈ Rn.

Considering the following system

dy(t)
dt

= PG(y(t)). (11)

With the invertibility of the matrix P , we can conclude
that the system (6) and the system (11) have the same
equilibrium set. Next, we will show that mRn (PG) < 0.
Using Lemma 1, we obtain

(x − y)T P(G(x) − G(y))

= (x − y)T P
{ N∑

i=1

ξi (t)[−Ci (x − y)

+ (Ai + Bi )(g(x) − g(y))]

}

≤
N∑

i=1

ξi (t)(x − y)T P[−Ci (x − y)

+ (Ai + Bi )(g(x) − g(y))]

=
N∑

i=1

ξi (t)
2

[−(x − y)T(PCi + Ci P)(x − y)

+ 2(x − y)T P(Ai + Bi )(g(x) − g(y))]

≤
N∑

i=1

ξi (t)
2

[(x − y)T(−PCi − Ci P)(x − y)

+ (g(x) − g(y))T K (g(x) − g(y))]

+
N∑

i=1

ξi (t)
2

(x − y)T P(Ai + Bi )K −1(Ai + Bi )
T

× P(x − y) =
N∑

i=1

ξi (t)
2

(x − y)T(−PCi − Ci P

+ P(Ai + Bi )K −1(Ai + Bi )
T P)(x − y)

+
N∑

i=1

ξi (t)
2

(g(x) − g(y))T K (g(x) − g(y)),

(12)
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According to the assumption (A1), we have

(g(x) − g(y))T K (g(x) − g(y))

≤ (x − y)TL K L(x − y), (13)

which and (12) yield that

(x − y)T P(G(x) − G(y))

≤
N∑

i=1

ξi (t)
2

(x − y)T(−PCi − Ci P

+ L K L + P(Ai + Bi )K −1

× (Ai + Bi )
T P)(x − y). (14)

On the other hand, let

� �
[

I 0 0

0 I I

]
,

multiplying (9) by � and �T on its left and right side,
respectively, we obtain[

PCi + Ci P − L K L −P(Ai + Bi )

−(Ai + Bi )T P K − ηQ

]
> 0, (15)

which implies that[
PCi + Ci P − L K L −P(Ai + Bi )

−(Ai + Bi )T P K

]
> 0. (16)

Based on Lemma 2, we can easily obtain

PCi + Ci P − L K L

− P(Ai + Bi )K −1(Ai + Bi )
T P > 0. (17)

From (14) and (17), we get

(x − y)T P(G(x) − G(y)) < 0. (18)

According to Definition (2), we obtain mRn (PG) < 0.
Then by Lemma 1, we conclude that the origin is
the unique equilibrium of system (11), which implies
that the origin is the unique equilibrium of system
(6).

Step 2: We choose the following Lyapunov functional

V (t, xt ) = x(t)T Px(t)

+
∫ t

t−τ (t)
gT(x(s))Qg(x(s)) ds. (19)

Calculating the time derivative of V along the trajectory
of (6), we obtain

dV (t, xt )

dt
= 2xT(t)Pẋ(t) + gT(x(t))Qg(x(t))

− (1 − τ̇ (t))gT(x(t − τ (t)))

× Qg(x(t − τ (t)))

= 2xT(t)P
[ N∑

i=1

ξi (t)(−Ci x + Ai g(x)

+ Bi g(x(t − τ (t))))
]

+ gT(x(t))

× Qg(x(t)) − (1 − τ̇ (t))gT(x(t − τ (t)))

× Qg(x(t − τ (t))) ≤
N∑

i=1

ξi (t)

× [−2xT PCi x + 2xT P Ai g(x)

+ 2xT P Bi g(x(t − τ (t)))]

+
N∑

i=1

ξi (t)[gT(x(t))Qg(x(t))

− (1 − η)gT(x(t − τ (t)))

× Qg(x(t − τ (t)))]. (20)

Noticing the fact that

xTL K Lx − gT(x)K g(x) ≥ 0, (21)

we obtain

dV (t, xt )

dt
≤

N∑
i=1

ξi (t)[xT(−PCi − Ci P + L K L)x

+ 2xT P Ai g(x) + 2xT P Bi g(x(t − τ (t)))]

+
N∑

i=1

ξi (t)[gT(x(t))(−K + Q)g(x(t))

− (1 − η)gT(x(t − τ (t)))Qg(x(t − τ (t)))]
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=
N∑

i=1

ξi (t)(xT(t), gT(x(t)), gT(x(t − τ (t))))

× �i

⎛⎜⎝ x(t)

g(x(t))

g(x(t − τ (t)))

⎞⎟⎠ . (22)

Clearly, from (9), this implies dV (t,xt )
dt < 0 for all x(t) �=

0, and dV (t,xt )
dt = 0 if and only if x(t) = g(x(t)) =

g(x(t − τ (t))) = 0. Hence, we can conclude that the
origin of (6) is globally asymptotically stable. This
completes the proof. �

Corollary 1. Under the assumption (A1), the origin
of the switched RNN with the constant transmission
delay in (6) is the unique equilibrium point and is
globally asymptotically stable if there exist matrices
P = PT > 0, Q = QT > 0 and a diagonal matrix
K = diag(k1, k2, . . . , kn) such that the following LMIs
hold for i = 1, 2, . . . , N:⎡⎢⎣−PCi − Ci P + L K L P Ai P Bi

AT
i P −K + Q 0

BT
i P 0 −Q

⎤⎥⎦ < 0.

(23)

When fi in (3) is globally Lipschitz continuous with
Lipschitz constant li for all i = 1, 2, . . . , n, we obtain
the following corollary:

Corollary 2. Under the assumption (A2), the RNN in
(3) has and only has a unique equilibrium point which
is globally asymptotically stable if there exist matri-
ces P = PT > 0, Q = QT > 0 and a diagonal matrix
K = diag(k1, k2, . . . , kn) such that the following LMI
holds:⎡⎣−PC − C P + L K L P A P B

AT P −K + Q 0
BT P 0 −(1 − η)Q

⎤⎦<0.

(24)

Proof: Here, N = 1. For system (3), defining the
operator F from Rn to Rn as F(x) = −Cx +
A f (x) + B f (x) + I where x = [x1, x2, . . . , xn]T ∈

Rn, then similar to the proof of step 1 in Theorem 1,
we can conclude that the RNN in (3) has and only has
a unique equilibrium. Then we shift this equilibrium to
the origin, and the GAS of the origin is directly obtained
from the proof of step 2 in Theorem 1. This completes
the proof. �

Remark 3. When N = 1, from Corollary 2, we ob-
tain a sufficient condition to ensure the GAS of RNN
(3). Compared with the previous literature, the activa-
tion functions here are only assumed to be Lipschitz
continuous, not necessarily bounded, monotonic or
differential. It is easy to verify the activation func-
tions used in [1, 3, 7, 13, 25] are special cases of
ours.

Remark 4. Clearly, a necessary condition for GAS un-
der arbitrary switching rule is that all of the subsystems
are globally asymptotically stable, but it is not suffi-
cient. By employing nonlinear measure and Lyapunov
approach, Theorem 1 provides a GAS criterion of the
switched system (6). The results are given in the form
of LMIs, which can be checked easily by the interior-
point algorithm. This makes the design and application
of the switched neural networks promising and
practical.

3.2 GRS of the switched RNN

When the parameters uncertainties appear in the system
(6), it becomes of the following model:

dx(t)
dt

=
N∑

i=1

ξi (t)[−(Ci + �Ci (t))x(t)

+ (Ai + �Ai (t))g(x(t))

+ (Bi + �Bi (t))g(x(t − τ (t)))] (25)

where �Ci (t), �Ai (t) and �Bi (t) represent the pa-
rameter uncertainties in the matrix Ci , Ai and Bi , re-
spectively. In addition, we assume that the parameter
uncertainties are unknown and time-varying, but norm-
bounded, that is

(A3) : [�Ci (t), �Ai (t), �Bi (t)]

= Di F(t)
[
EC

i , E A
i , E B

i

]
(26)
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where Di , EC
i , E A

i and E B
i are known real constant

matrices with appropriate dimensions, the uncertain
matrix F(t) satisfies

F(t)FT(t) ≤ I, for all t ∈ R. (27)

Now, we present the GAS condition of the switched
RNN in (25).

Theorem 2. Under the assumptions (A1), (A2) and
(A3), then the origin of the switched RNN in (25) is
the unique equilibrium point and is globally asymptot-
ically stable if there exist matrices P = PT > 0, Q =
QT > 0, a diagonal matrix K = diag(k1, k2, . . . , kn)
and three positive scalars ε1 > 0, ε2 > 0 and ε3 > 0
such that


i =

⎡⎢⎢⎢⎢⎢⎣
−PCi − Ci P + L K L + ε1(EC

i )T EC
i P Ai P Bi P Di

AT
i P �i2 0 0

BT
i P 0 �i3 0

DT
i P 0 0 −(

ε1
−1 + ε2

−1 + ε3
−1

)−1 I

⎤⎥⎥⎥⎥⎥⎦ < 0, (28)

or equivalently,


̃i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−PCi − Ci P + L K L + ε1
(
EC

i

)T EC
i P Ai P Bi P Di P Di P Di

AT
i P �i2 0 0 0 0

BT
i P 0 �i3 0 0 0

DT
i P 0 0 −ε1 I 0 0

DT
i P 0 0 0 −ε2 I 0

DT
i P 0 0 0 0 −ε3 I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (29)

hold for i = 1, 2, . . . , N, where

�i2 = −K + Q + ε2
(
E A

i

)T E A
i ,

�i3 = −(1 − η)Q + ε3
(
E B

i

)T E B
i .

Proof: Using Lemma 2, we can easily check that the
condition (28) is equivalent to the condition (29). Ac-
cording to the assumption (A3), using Lemma 3, we
have⎡⎢⎣−P�Ci − �Ci P 0 0

0 0 0

0 0 0

⎤⎥⎦ < ε1
−1�i0�

T
i0

+ ε1�i1�
T
i1, (30)

⎡⎢⎢⎣
0 P�Ai 0

�AT
i P 0 0

0 0 0

⎤⎥⎥⎦
< ε2

−1�i0�
T
i0 + ε2�i2�

T
i2 (31)

and⎡⎢⎢⎣
0 0 P�Bi

0 0 0

�BT
i P 0 0

⎤⎥⎥⎦
< ε3

−1�i0�
T
i0 + ε3�i3�

T
i3 (32)

where

�i0 = [
DT

i P, 0, 0
]T

, �i1 = [
EC

i , 0, 0
]T

,

�i2 = [
0, E A

i , 0
]
, �i3 = [

0, 0, E B
i

]T
.

From (28), Using Lemma 1 again, we obtain

ϒi
�=

⎡⎢⎣ �i1 P Ai P Bi

AT
i P �i2 0

BT
i P 0 �i3

⎤⎥⎦ < 0 (33)

where �i1 = −PCi − Ci P + L K L + ε1(EC
i )T EC

i +
(ε1

−1 + ε2
−1 + ε3

−1)P Di DT
i P.
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Based on (30)–(33), we have the following equalities
for i = 1, 2, . . . , N ,⎡⎢⎣−P(Ci + �Ci ) − (Ci + �Ci )T P + L K L P(Ai + �Ai ) P(Bi + �Bi )

(Ai + �Ai )T P −K + Q 0

(Bi + �Bi )T P 0 −(1 − η)Q

⎤⎥⎦ < 0. (34)

Hence, by (34) and Theorem 1, the desired result fol-
lows directly. �

Remark 5. In fact, Assumption (A3) can be gen-
eralized to the following: �Ci (t), �Ai (t), �Bi (t)
to satisfy �Ci (t) = DC

i F(t)EC
i , �Ai (t) = D A

i F(t)
E A

i , �Bi (t) = DC
i F(t)E B

i with F(t)FT(t) ≤ I . From
the proof of Theorem 2, we can conclude this does
not increase the difficulty in the robust analysis of the
switched RNN model (25). Therefore, the assumption
(A3) is reasonable.

4 Illustrative examples

In this section, we will give three examples to show the
effectiveness of the above-obtained results.

Example 1. Consider the following recurrent neural
networks with constant delay

dx(t)
dt

= −Cx(t) + A f (x(t))

+ B f (x(t − τ )) + I (35)

where the activation functions fi (x) = 2
3 sin x + 1

3 x
(i = 1, 2), and the parameters

A =
[

0.35 −0.2

−0.15 0.4

]
, B =

[
0.4 0.2

0.1 0.2

]
,

C =
[

0.9 0

0 0.8

]
.

Obviously, fi (x) is Lipschitz continuous with Lips-
chitz constant li = 1 (i = 1, 2), that is L = diag(1, 1).
On the other hand, we can check it easily that
fi (x) is nonmonotone, so the conditions given in
[1, 3, 7, 13, 25] are not satisfied. In addition,

the matrix α in Theorem 3.1 of [28] is obtained
as

α = −[−C L−1 + |A| + |B|] =
[

0.15 −0.4

−0.25 0.2

]
,

which is not a M-matrix. This implies that criteria in
[1, 3, 7, 13, 25, 28] all failed to conclude whether
this system is globally asymptotically stable or not.
However, by resorting to the Matlab LMI Control
Toolbox to solve the (24) in Corollary 2, we can see
that it is feasible and the solutions are obtained as
follows:

P =
[

1.5316 0.0231

0.0231 1.8130

]
,

Q =
[

0.8042 0.1939

0.1939 0.7627

]
,

K =
[

1.5050 0

0 1.7072

]
.

According to Corollary 2, we have that the system (35)
has and only has a unique equilibrium point which is
globally asymptotically stable.

For numerical simulation, let I = [0.9, 1.2]T and
the delay τ = 1. Based on fourth-order Runge-Kutta
method, Fig. 1 depicts the time responses of state vari-
ables x1(t) and x2(t) from the 30 random constant initial
states in the set [−2,4]×[−2,4] with step h = 0.01, it
can be seen from Fig. 1 that the trajectory of the system
(35) asymptotically converges to a unique equilibrium
x∗ = (2.0626, 2.3614)T.

Example 2. Consider the following switched RNNs:

dx(t)
dt

=
2∑

i=1

ξi (t)[−Ci x(t) + Ai g(x(t))

+ Bi g(x(t − τ (t)))] (36)
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Fig. 1 Time responses of state variables x1(t) and x2(t) in
Example 1

where gi (x) = −|x | (i = 1, 2), τ (t) = 0.2 sin t + 0.8
and the parameters are given as

C1 =
[

0.900 0

0 0.900

]
, A1 =

[
0.350 −0.120

−0.010 0.240

]
,

B1 =
[

0.400 0.200

0.100 0.400

]
, C2 =

[
1.100 0

0 1.300

]
,

A2 =
[
−0.430 0.211

−0.122 0.651

]
,

B2 =
[

0.552 −0.268

−0.211 0.254

]
.

Obviously, Assumptions (A1) and (A2) are satisfied
with L = diag(1, 1) and η = 0.2, τ̂ = 1. By resorting
to the Matlab LMI Control Toolbox to solve the (9) in
Theorem 1, we obtain

P =
[

23.8286 2.5860

2.5860 60.9644

]
,

Q =
[

15.4975 0.1145

0.1145 42.8986

]
,

K =
[

24.7755 0

0 68.3417

]
.

From Theorem 1, it follows that the switched RNN
(36) is globally asymptotically stable under arbitrary
switching law.
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Fig. 2 Time responses of state variables x1(t) and x2(t) in
Example 2

For numerical simulation. We assume that the two
subsystems are switched every four seconds. Figure 2
depicts the time responses of state variables x1(t) and
x2(t) from the 30 random constant initial states in the
set [−1, 1]×[−1, 1] with step h = 0.01, which shows
the switched system (36) asymptotically converges to
the unique equilibrium x∗ = (0, 0)T.

Example 3. Consider the following switched RNN
with constant delay:

dx(t)
dt

=
2∑

i=1

ξi (t)[−(Ci + �Ci (t))x(t)

+ (Ai + �Ai (t))g(x(t))

+ (Bi + �Bi (t))g(x(t − τ ))] (37)

where gi (x) = 2
3 sin x + 1

3 x (i = 1, 2) and the system
parameters are given as

C1 =
[

2.41 0

0 2.41

]
, A1 =

[
0.95 −0.24

−0.31 1.02

]
,

B1 =
[

0.81 0.20

0.100 0.64

]
, C2 =

[
2.26 0

0 2.26

]
,

A2 =
[

0.87 0.21

0.32 0.75

]
, B2 =

[
0.67 −0.28

−0.31 1.02

]
,

EC
1 =

[
−0.5 0

0 0.4

]
, E A

1 =
[

0.3 −0.2

0.3 0.4

]
,
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E B
1 =

[
0.3 0.1

0.1 −0.4

]
, EC

2 =
[
−0.4 0

0 0.5

]
,

E A
2 =

[
0.5 −0.1

0.2 0.5

]
, E B

2 =
[

0.4 0.2

−0.2 0.4

]

and D1 = D2 = 0.4I , F(t) is any matrix satisfying
(27). By resorting to the Matlab LMI Control Toolbox
to solve the (29) in Theorem 2, we obtain

P =
[

1.2082 −0.0274

−0.0274 1.1735

]
,

Q =
[

1.1413 −0.0800

−0.0800 1.1101

]
,

K =
[

2.7052 0

0 2.5994

]

and ε1 = 1.1849, ε2 = 1.2203, ε3 = 1.2882. From
Theorem 2, it follows that the switched RNN (37) is
globally asymptotically stable for all admissible un-
certainties under the arbitrary switching law.

5 Conclusion

In this paper, a new switched RNN model has been
presented by combining the theory of switched sys-
tems with recurrent neural networks. Moreover, sev-
eral new sufficient conditions to ensure GAS and GRS
of the switched RNNs have been derived by employ-
ing nonlinear measure and Lyapunov method. The re-
sults are given in the form of LMIs, which can be per-
formed efficiently via numerical algorithms such as
interior-point algorithms for solving LMIs. The new
results obtained in this paper generalize and improve
the earlier works, and the new conditions are easy to
check and apply in practice. Three examples are also
provided to show the effectiveness of the proposed
results.
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