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Abstract A technique for order reduction of dynamic
systems in structural form with static piecewise lin-
ear nonlinearities is presented. By utilizing two meth-
ods which approximate the nonlinear normal mode
(NNM) frequencies and mode shapes, reduced-order
models are constructed which more accurately repre-
sent the dynamics of the full model than do reduced
models obtained via standard linear transformations.
One method builds a reduced-order model which is
dependent on the amplitude (initial conditions) while
the other method results in an amplitude-independent
reduced model. The two techniques are first applied
to reduce two-degree-of-freedom undamped systems
with clearance, deadzone, bang-bang, and saturation
stiffness nonlinearities to single-mode reduced mod-
els which are compared by direct numerical simulation
with the full models. It is then shown via a damped four-
degree-of-freedom system with two deadzone nonlin-
earities that one of the proposed techniques allows for
reduction to multi-mode reduced models and can ac-
commodate multiple nonsmooth static nonlinearities
with several surfaces of discontinuity. The advantages
of the proposed methods include obtaining a reduced-
order model which is signal-independent (doesn’t re-
quire direct integration of the full model), uses a subset
of the original physical coordinates, retains the form
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of the nonsmooth nonlinearities, and closely tracks the
actual NNMs of the full model.
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1 Introduction

Nonsmooth nonlinearities exist in many mechanical
systems either by design or as the result of wear or
failure. In particular, systems with piecewise linear
static nonlinearities include bilinear and trilinear sys-
tems with clearance, deadzone, bang-bang, and satu-
ration nonlinearities. These systems are of great im-
portance in the modeling of such phenomena as joint
dynamics [1], turbines and compressors subjected to
casing rub [2], rotor-bearing systems with deadzone
[3], and transmission gears with backlash [4]. Accurate
reduced-order models of large dimensional nonsmooth
systems are an invaluable aid in the analysis and con-
trol of such systems. Such reduced-order models are
approximations to the actual nonlinear normal modes
(NNMs) of the full model. Important contributions to
the subject of NNMs in nonsmooth systems include
references [5–9]. In [9] the NNM frequencies of a non-
smooth bilinear system with nonvanishing clearance
were approximated using three analytical techniques
which are based on the well-known bilinear frequency
relation. The results were compared with those ob-
tained from numerical simulations of the NNMs.
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The subject of order reduction of nonsmooth sys-
tems has been studied very recently. Rhee and Burton
[10] applied a previously developed linear-based
Guyan-like reduction procedure which preserves the
exact eigenstructure of the linearized model [11, 12]
to the cases of deadzone and bang-bang nonlinearities
in a two-degree-of-freedom vibrating system. The fre-
quencies of the reduced models were compared with
those of the actual NNMs in the full model obtained by
direct numerical simulation. The method has the advan-
tages that the coordinates of the reduced-order model
are a subset of the original physical coordinates (as
is preferred in structural dynamics and finite element
analysis), the form of the nonsmooth nonlinearity is
retained in the reduced model, and the linear transfor-
mation between master and slave coordinates is easy
to apply for large-scale models. However, because the
nonlinearity is not accounted for in the transformation,
the frequency – amplitude dependence obtained from
the reduced models differ significantly from that of the
NNMs of the full model.

A more accurate method pursued in [13] involves
applying a nonsmooth Galerkin-based order reduction
transformation which takes the nonlinearity into ac-
count in order to obtain the invariant manifolds and
their associated dynamics for each mode. This had
been previously accomplished for smooth nonlinear-
ities in [14–16]. This technique extended the earlier re-
sults for nonsmooth systems in [7] to larger amplitudes.
However, the reduced model is obtained in terms of
amplitude-phase coordinates of the modal form instead
of the physical coordinates. In addition, large numbers
of nonlinear algebraic equations must be solved (even
for low-order systems) and the method is not easily
applied to systems with multiple nonsmooth nonlin-
earities or several surfaces of discontinuity.

Here, an alternative technique is proposed for or-
der reduction of structural dynamic systems with static
piecewise linear nonlinearities in which the linear part
of the model dominates in the dynamics. This is done in
an effort to retain the advantages of the linear-based re-
duction method used in [10–12] while improving on the
accuracy of the reduced model. This is accomplished
by approximating the amplitude-dependent NNM fre-
quencies and mode shapes of the full model using linear
approximation methods based on extensions of the bi-
linear frequency relation. It is shown that when only
one master coordinate is retained, the exact frequency
of the reduced order model may be derived analyti-

cally and used to approximate the NNM frequency of
the full model. In this context, the linear-based order
reduction procedure serves as a method for approxi-
mating the true NNM frequencies as in [9]. Improved
reduced-order models are then constructed which are
closer approximations to the NNMs for the full model
than are those obtained via the linear-based transforma-
tion. For this purpose, two approximation techniques,
called the piecewise modal method (PMM) and lo-
cal equivalent linear stiffness method (LELSM) in [9],
are utilized. The technique is first applied to reduce
two-degree-of-freedom undamped systems with clear-
ance, deadzone, bang-bang, and saturation static non-
linearities to single-mode reduced models which are
either amplitude-independent (for PMM) or amplitude-
dependent (for LELSM). A damped four-degree-of-
freedom system with two deadzone nonlinearities and
multiple surfaces of discontinuity is then reduced to a
multi-mode reduced model. In LELSM the amplitude
dependence on the nonlinear coefficients in the reduced
model can be obtained by specifying the total energy
of the undamped system without the need for direct in-
tegration of the full model in advance. It is shown via
direct simulation that the improved reduced models are
much better at tracking the NNMs of the full models
than those obtained via the linear-based transformation.

2 Linear-based order reduction

Consider the system of n second-order differential
equations in structural form

Mẍ + Cẋ + K x + F(x) = G(t) (1)

where the static piecewise linear nonlinearities F(x) are
isolated to the first m coordinates and m equations, i.e.

F(x)= [ f1(x1, . . . xm) . . . fm(x1, . . . xm)0 . . . 0]T (2)

where fi (), i = 1, . . . , m are piecewise linear func-
tions. It is desired to reduce Equation (1) to a set of
m master coordinates x1,. . .,xm , eliminating the s =
n − m slave coordinates xm+1, . . . , xn . For this pur-
pose, the displacement vector x is partitioned into m × 1
and s × 1 master and slave vectors as x = [xT

m xT
s ]T .

The undamped, unforced, linear part of (1) is

Mẍ + K x = 0 (3)
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which has eigenfrequencies ωi and eigenvectors φi .
Typically the modes with the lowest frequencies are
retained in the reduced-order model.

To construct the linear-based reduced model, let the
n × m transformation matrix be defined as

� =
[

Im

T

]
(4)

in which Im is the m × m identity matrix and the (n − m)
× m matrix T is found by iterating the following equa-
tion [11, 12]

T = −[kss − (mssT + msm)(mmsT + mmm)−1kms]
−1

×[ksm − (mssT + msm)(mmsT + mmm)−1kmm]

(5)

where the mass and stiffness matrices in Equation (3)
are partitioned as

M =
[

mmm mms

msm mss

]
K =

[
kmm kms

ksm kss

]
(6)

Applying the transformation

x = �xm (7)

to Equation (1) and premultiplying by �T yields

M̃ ẍm + C̃ ẋm + K̃ xm + f (xm) = G̃(t) (8)

where

M̃ = �T M� C̃ = �T C� K̃ = �T K�

f (xm) = [ f1(xm) . . . fm(xm)]T G̃(t) = �T G(t)

(9)

It should be noted that Equation (7) implies a relation-
ship

xs = T xm (10)

between the master and slave coordinates and that
the retained coordinates are a subset of the original
physical coordinates. It was shown in [11, 12] that
T preserves the exact eigenstructure of Equation (3).

Equation (7) is thus a Guyan-like order reduction trans-
formation which accounts for the inertia as well as stiff-
ness effects. When the mass terms are set to zero in
Equation (5), the traditional Guyan reduction transfor-
mation T = −k−1

ss ksm is produced [17].
If only one master coordinate is retained (m = 1),

then � = φi (the eigenvector corresponding to he re-
tained mode normalized such that the first element is
one) and Equation (7) becomes

x = φi x1 (11)

If there is no damping or forcing, then the single-mode
reduced model becomes

ẍ1 + ω2
i x1 + βi f (x1) = 0 (12)

where

ωi =
√

φT
i Kφi

φT
i Mφi

βi = 1

φT
i Mφi

(13)

are the ith modal frequency of Equation (3) and the
reduced nonlinear coefficient for the ith mode. It is de-
sirable that the dynamics of the amplitude-independent
reduced model of Equation (12) are close to those of
the ith NNM of the original full model. However, Rhee
and Burton [10] found that the nonlinear frequencies
of Equation (12) for deadzone and bang-bang nonlin-
earities in a two-degree-of-freedom system diverged
from the NNM frequencies of the full model as the fre-
quencies increased. This error for these cases as well
as for bilinear clearance and saturation nonlinearities
is shown later.

3 Approximation of NNM frequencies via

linear-based reduced models

3.1 Bilinear clearance nonlinearity

Here, the linear-based reduced-order model obtained
in the last section is used to obtain an estimate of the
NNM frequencies. If only one master coordinate is re-
tained in the linear-based order reduction of an un-
damped, unforced system with a piecewise linear stiff-
ness, then the periodic motion of Equation (12) has a
closed form expression whose exact frequency can be
easily obtained. As an illustrative example, consider the
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Fig. 1 An n-degree-of-freedom bilinear vibrating system with a clearance nonlinearity

n-degree-of-freedom conservative vibrating system
with a nonvanishing clearance in Fig. 1 with equations
of motion

m1 ẍ1 + k1x1 − k1x2 + f (x1) = 0

m2 ẍ2 + (k1 + k2)x2 − k1x1 + k2x3 = 0

. . .

mn ẍn + (kn−1 + kn)xn − kn−1xn−1 = 0

f (x1) =
{

0; x1 < xc

kc(x1 − xc); x1 > xc
(14)

The asymmetric bilinear stiffness of the first mass
is divided into two distinct linear subregions. Since the
clearance xc is not restricted to be positive, a negative
clearance, or interference, is also allowed. Since the
masses’ positions are measured from equilibrium, pen-
etration into the second subregion is made only when
the energy of the system is sufficient such that the clear-
ance is traversed by the first mass, i.e. x1 > xc. Other-
wise if the energy is insufficient for contact with the
free spring, then the system remains in the first linear
subregion. In the case of interference, the energy must
be sufficient for the first subregion to be obtained (i.e.
x1 < xc); otherwise the system remains continuously
in contact with the free spring.

The scaled variables

κc = kc

k1
ω− =

√
k1

m1
ω+ =

√
k1 + kc

m1

α = ω+
ω−

=
√

1 + κc (15)

are now introduced where ω− and ω+ are the linear
frequencies of vibration of m1 (with m2 held still) in
the first and second linear subregions, respectively. The
total period of the single-degree-of-freedom version of

Equation (14)

mẍ1 + kx1 + f (x1) = 0

f (x1) =
{

0; x1 < xc

kc(x1 − xc); x1 > xc
(16)

can be found by integrating over the closed path � as

T =
∮

�

dt =2
∫ xc

−x0

1

ẋ−
dx− + 2

∫ xc+D+

xc

1

ẋ+
dx+ (17)

in terms of the closed orbits in the phase plane x2
− +

ẋ2
− = x2

0 and α2(x+ − xe)2 + ẋ2
+ = x2

0 − xcxe where
xe = (1 − 1/α2)xc from which the velocities in the
above integrals are determined. The amplitude is x0

and

D+ = x0

α

√
1 − ρ2

(
1 − 1

α2

)
− xc

α2
(18)

is the penetration distance into the second subregion
[9]. The dimensionless clearance parameter ρ = xc/x0

must lie in the interval [−1, 1] if the clearance bound-
ary is crossed. Evaluation of these integrals yields the
oscillation period from which the frequency is found
as


 = 2ω−ω+

[
ω+

(
1 + 2

π
sin−1ρ

)
+ ω−

×
(

1 − 2

π
sin−1

(
ρ

α

√
1 − ρ2(1 − 1

α2 )

))]−1

(19)

Note the amplitude dependence enters Equation (19)
through the parameter ρ. When the clearance vanishes

Springer



Nonlinear Dyn (2007) 49:375–399 379

(ρ = 0) Equation (19) becomes the amplitude-
independent “bilinear frequency relation”


 = 2ω−ω+
ω+ + ω−

(20)

which has appeared in several studies of bilinear sys-
tems with vanishing clearance, e.g. [18]. It should
be noted that for the single-degree-of-freedom re-
duced model in Equation (12) with f(x1) given in
Equation (16), the two linear frequencies are ω− = ωi

and ω+ =
√

ω2
i + βi kc so that α =

√
ω2

i + βi kc/ωi .
Hence, the reduced-order model of Equation (12) pro-
vides an alternative route for estimating the BNM fre-
quencies via Equations (19) or (20). In Fig. 2, the ap-
proximate BNM frequencies in both modes of the two-
degree-of-freedom version of Equation (14) obtained
from the linear-based reduced model as well as the
PMM and LELSM methods (to be discussed) are plot-
ted versus ρ for α2 = 2 along with the exact BNM fre-
quencies found by direct numerical simulation of the

Fig. 2 Frequencies of reduced-order models of the 2-dof sys-
tem with clearance nonlinearity in (a) mode 1 and (b) mode 2
computed via the linear-based reduction (short-dashed), PMM

(solid), LELSM (long-dashed), and numerical simulation of the
full model (dots) as a function of clearance for α2 = 2
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full 2-dof system. It can be seen that for this value of α

there are two separate branches of NNMs for mode 1.

3.2 Symmetric deadzone and saturation nonlinearities

Next, consider the n-degree-of-freedom vibrating sys-
tem in Fig. 1 where the clearance is replaced with an
odd symmetric deadzone or saturation nonlinearity of
the form

f (x1) =

⎧⎪⎨⎪⎩
0; |x1| < xc

kc(x1 − xc); x1 > xc

kc(x1 + xc); x1 < −xc

or

f (x1) =

⎧⎪⎨⎪⎩
kcx1; |x1| < xc

kcxc; x1 > xc

−kcxc; x1 < −xc

(21)

respectively. The stiffness of the first mass is divided
into three distinct linear subregions. Since the masses’
positions are measured from equilibrium, penetration
of the first mass into the first and third subregion is made
only when the energy of the system is sufficient such
that the clearance is traversed by the first mass, i.e. x1 >

xc or x1 < −xc. Otherwise if the energy is insufficient
for m1 to reach xc or −xc, then the system remains in
the second linear subregion. The scaled variables in
Equation (15) are now introduced where ω− (or ω+)
is the linear frequency of m1 (with m2 held still) in the
second subregion and ω+ (or ω−) is the frequency in the
first and third subregions for deadzone (or saturation,
respectively).

The total period of the single-degree-of-freedom
system in Equation (16) with f(x1) as in Equation (21)
can be found by integrating over the closed path � as

T =
∮

�

dt = 4
∫ xc

0

1

ẋ−
dx− + 4

∫ x0

xc

1

ẋ+
dx+ (22)

where the velocities are found from the phase plane
x2

− + ẋ2
− = α2(x0 − xe)2 and α2(x+ − xe)2 + ẋ2

+ =
α2(x0 − xe)2 where xe = (1 − 1/α2)xc for deadzone.
This yields the exact amplitude-dependent frequency as


 = ω−ω+

[
2ω+
π

sin−1

(
ρ√

(ρ − 1)2α2 + ρ(2 − ρ)

)

+ω−

(
1 − 2

π
sin−1

(
ρ

α2 − ρ(α2 − 1)

))]−1

(23)

where ρ = xc/x0 lies in the interval [0,1]. For satu-
ration, the substitutions ω+ ↔ ω− and α → 1/α are
made in Equation (23) to obtain


 = ω−ω+

[
2ω−
π

sin−1

(
ρ√

ρ(2 − ρ) + (ρ−1)2

α2

)

+ω+

(
1 − 2

π
sin−1

(
ρ

1
α2 − ρ( 1

α2 − 1)

))]−1

(24)

Like Equation (19), Equations (23) and (24) are exact
for the single-degree-of-freedom case and can be
used in conjunction with the reduced-order model of

Equation (12) where ω− = ωi and ω+ =
√

ω2
i + βi kc

to estimate the NNM frequencies. In Figs. 3 and 4,
the approximate NNM frequencies in both modes of
the two-degree-of-freedom systems obtained from
the linear-based reduced models as well as the PMM
and LELSM methods are plotted versus ρ for α2 = 2
along with the exact NNM frequencies found by direct
numerical simulation.

Alternatively, harmonic balance may be used to ob-
tain the frequency–amplitude dependence [19]. To the
first approximation this results in


=ω−

√
α2− 2

π
(α2 − 1)(sin−1ρ+ρ

√
1 − ρ2) (25)

for deadzone and


=ω−

√
1 + 2

π
(α2 − 1)(sin−1ρ+ρ

√
1 − ρ2) (26)

for saturation. Although these approximations are more
concise and may be sufficiently accurate, it must be
remembered that Equations (23)–(24) are exact for the
single-degree-of-freedom system.

3.3 Bang-bang nonlinearity

Finally, consider the system in Fig. 1 where a bang-
bang nonlinearity defined by

f (x1) =
{

−δ; x1 < 0

δ; x1 > 0
(27)

replaces the clearance. It should be noted that cross-
ing of the discontinuity will occur regardless of the

Springer



Nonlinear Dyn (2007) 49:375–399 381

Fig. 3 Frequencies of reduced-order models of the 2-dof sys-
tem with deadzone nonlinearity in (a) mode 1 and (b) mode 2
computed via the linear-based reduction (short-dashed), PMM

(solid), LELSM (long-dashed), and numerical simulation of the
full model (dots) for α2 = 2

amplitude of oscillation. By integrating over the closed
path as

T =
∮

�

dt = 4
∫ x0

0

1

ẋ
dx (28)

in terms of the closed orbits (x − xe)2 + ẋ2 = (x0 +
δ/ω2)2 where xe = −δ/ω2, the exact frequency for the
single-degree-of-freedom system in Equations (16) and

(27) is found as


 = ω

1 − 2
π

sin−1(ρ/(ρ + ω2))
(29)

where ω is the frequency in both discontinuous linear
subregions and ρ = δ/x0. In particular, for the single-
degree-of-freedom reduced model in Equation (12)
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Fig. 4 Frequencies of reduced-order models of the 2-dof sys-
tem with saturation nonlinearity in (a) mode 1 and (b) mode 2
computed via the linear-based reduction (short-dashed), PMM

(solid), LELSM (long-dashed), and numerical simulation of the
full model (dots) for α2 = 2

with f(x1) given in Equation (27), it is


i = ωi

1 − 2
π

sin−1
(

βi ρ

βi ρ+ω2
i

) (30)

Equation (30) can be used to estimate the NNM fre-
quencies. In Fig. 5, the approximate NNM frequencies
in both modes of the two-degree-of-freedom system
obtained from the linear-based reduced models as well
as the PMM and LELSM methods are plotted versus ρ

along with the exact NNM frequencies found by direct
numerical simulation.

As with deadzone and saturation, the approximate
relations


 = ω

√
1 + 4ρ

πω2

i = ωi

√
1 + 4βiρ

πω2
i

(31)

obtained via harmonic balance may be used instead of
Equations (29) and (30).
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Fig. 5 Frequencies of reduced-order models of the 2-dof sys-
tem with bang-bang nonlinearity in (a) mode 1 and (b) mode 2
computed via the linear-based reduction (short-dashed), PMM

(solid), LELSM (long-dashed), and numerical simulation of the
full model (dots)

4 Improved reduced-order model via PMM

Figures 2–5 show that, for significant ranges of the
parameter ρ in one or both modes, the PMM or
LELSM methods more accurately approximate the true
NNM frequency than does the exact frequency of the
single-degree-of-freedom linear-based reduced model.

Therefore, it is possible that an alternate value of
β i in Equation (12) can be derived from the PMM
or LELSM methods which could result in an im-
proved reduced model. First, reconsider the multiple
degree-of-freedom system in Fig. 1 with the bilin-
ear clearance nonlinearity. The PMM method approx-
imates the BNM frequencies in the ith mode from two
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separate sets of eigenfrequencies by direct analogy to
Equations (19) or (20) as [9]


i = 2ω−iω+i

[
ω+i

(
1 + 2

π
sin−1 ρ

)

+ ω−i

(
1 − 2

π
sin−1

(
ρ

γi

√
1 − ρ2(1 − 1

γ 2
i

)

))]−1

= 2ω−i

[
1 + 2

π
sin−1 ρ + 1

γi

(
1 − 2

π

× sin−1

(
ρ

γi

√
1 − ρ2(1 − 1

γ 2
i

)

))]−1

(32)

(for a nonvanishing clearance) and


i = 2ω−iω+i

ω+i + ω−i
= 2ω−i

1 + 1/γi
(33)

(for a vanishing clearance), respectively, where γi =
ω+i/ω−i is the ratio of frequencies in the ith mode in
the two linear subregions. Equation (33) was used by
Chati et al. [8] for a multi-degree-of-freedom bilinear
system with vanishing clearance. In this special case,
the bilinear frequencies are independent of the ampli-
tude. PMM approximates the BNM manifold as the
piecewise union of the separate eigenvectors in the two
linear subregions joined at the boundary. (However, for
a nonvanishing clearance the eigenvectors do not match
continuously at the boundary.) Equation (32) was used
to estimate the NNM frequencies in Fig. 2 via PMM.
For deadzone, this relation is found by direct analogy
to Equation (23) as


i = ω−i

[
2

π
sin−1

(
ρ√

ρ(2 − ρ) + (ρ − 1)2γ 2
i

)

+ 1

γi

(
1− 2

π
sin−1

(
ρ

γ 2
i −ρ(γ 2

i −1)

))]−1

(34)

while for saturation it is found by analogy to
Equation (24) as


i = ω−i

[
2

γiπ
sin−1

(
ρ√

ρ(2 − ρ) + (ρ−1)2

γ 2
i

)

+1 − 2

π
sin−1

(
ρ

1
γ 2

i
− ρ

(
1
γ 2

i
− 1

))]−1

(35)

Equations (34) and (35) were used to estimate the NNM
frequencies in Figs. 3 and 4 via PMM. Alternatively,
the harmonic balance relations in Equations (25) and
(26) may be used in PMM instead.

Let us try to find an improved value of β i in the
reduced model of Equation (12) via PMM for each of
these nonlinearities. For clearance, deadzone, and satu-
ration, the ith linear frequency in the second subregion

is ω+i =
√

ω2
−i + βi kc. Since both sets of linear fre-

quencies can be easily determined, an improved value
of β i which is independent of the amplitude can be
found easily as

βi = 1

kc

(
ω2

+i − ω2
−i

)
(36)

for these nonlinearities. It is seen in Fig. 2 that the
PMM-based reduced model for clearance is a substan-
tial improvement over the linear-based one for a wide
range of ρ in the first mode (especially for the lower
branch) only. In Fig. 3, it is seen that PMM offers im-
provement for deadzone for small ρ values only, while
from Fig. 4 it is seen that this is true for saturation for
high values of ρ.

For bang-bang, the PMM relation for the ith NNM
frequency is found by analogy with Equation (29)
as


i = ωi

1 − 2
π

sin−1
(

ρ

ρ+ω2
i

) (37)

or, alternatively, with Equation (31). Equation (37)
was used to estimate the NNM frequencies in Fig. 5
via PMM. To use PMM in the reduced model of
Equation (12), therefore, it is seen that βi = 1 in
Equation (30) or (31). It is seen in Fig. 5 that the
corresponding reduced models will be improved over
the linear-based reduced models only in the first
mode.

5 Improved reduced-order models via LELSM

Another route for estimating the NNM frequencies
is to construct an equivalent linear vibrating system
whose eigenfrequencies approximate the NNM fre-
quencies of the full model. For this purpose, it was
recognized in [9] that, for a single nonsmooth nonlin-
earity, one element in the linear stiffness matrix can be
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altered according to the effect of the nonlinearity on
the frequency of the single-degree-of-freedom system
with the corresponding mass while holding the others
at equilibrium. Therefore, the local equivalent linear
stiffness method (LELSM) is based on constructing
an equivalent linear stiffness matrix Keq in which the
elements of K that change with linear subregions are
replaced by a constant keq = 
2. Here, 
 is the ex-
act frequency of the single-degree-of-freedom system
given by Equations (19), (23), (24) and (29) while keq

is the equivalent linear stiffness which causes that sys-
tem to vibrate with the same frequency. The solution
of the eigenvalue problem |K eq − 
2

i I| = 0 then yields
the approximate NNM frequencies 
i in each mode.
Note that, as in PMM, the 
i are amplitude-dependent
through the variable ρ in keq and the results for the lim-
iting linear cases (ρ = ±1 for clearance; ρ = 0, 1 for
deadzone and saturation; ρ = 0 for bang-bang) are ex-
act. The LELSM frequency estimates in Figs. 2–5 were
produced in this way. As can be seen in these figures,
this method can be used to obtain improved reduced-
order models whose frequencies are more accurate than
those obtained from the linear-based reduced models
for clearance (mode 2 only) and deadzone, saturation,
and bang-bang (both modes).

In order to find the value of β i using the LELSM
estimate of the NNM frequency 
i for clearance,
deadzone, and saturation, we substitute the relation

γi =
√

ω2
−i + βi kc/ω−i in Equations (32)–(35) and nu-

merically solve the transcendental equation for βi once

i is estimated via LELSM. (Note that in the case
of vanishing clearance, Equation (33) can be solved
analytically for βi .) For a bang-bang nonlinearity,
Equation (30) can be solved analytically for β i . An
alternative for the odd symmetric nonlinearities is to
use the harmonic balance relations in Equations (25)

and (26) with α = γi =
√

ω2
−i + βi kc/ω−i or Equa-

tion (31) to obtain the improved nonlinearity param-
eter β i analytically. The reduced models obtained in
this paper (which are dependent on the amplitudes)
utilized the exact relations in Equations (34), (35) and
(37).

It is seen in Figs. 3–5 that LELSM is extremely ac-
curate in predicting the NNM frequencies for odd sym-
metric nonsmooth nonlinearities (deadzone, saturation,
and bang-bang) in particular.

Additionally, the eigenvectors of Keq are good ap-
proximations for the NNM invariant manifolds in

the least-squares sense similar to principal orthogonal
modes (POMs). This approximation is more successful
for the odd symmetric nonlinearities whose invariant
manifolds pass through the origin than for the bilinear
clearance. In Figs. 6–8, the slopes of the LELSM eigen-
vectors for the systems with odd symmetric nonlinear-
ities are shown in both modes versus the parameter ρ

along with the slopes of the best-fit lines determined by
least-squares regression of the numerically integrated
NNM manifolds. Although it was shown in [20, 21]
that POMs are the optimal least-squares linear approx-
imations to NNM invariant manifolds for systems with
smooth nonlinearities, it must be noted that, because
Keq is amplitude-dependent, it corresponds to a particu-
lar mode. For a given total energy, each mode in general
has a separate Keq matrix from which the correspond-
ing eigenvector is the best linear approximation for
that mode, and these eigenvectors are not orthogonal.
(Some higher modes which do not penetrate a boundary
of stiffness discontinuity remain linear.) Hence, these
eigenvectors accurately capture an important trait of
NNMs of nonsmooth systems: in general, they are not
orthogonal at their intersection [6]. Hence, although
the LELSM eigenvectors are not strictly the POMs of
the system, they are even more accurate in approximat-
ing the individual NNM manifolds with a linear mode
shape. This in turn enables improved master – slave re-
lationships to be obtained which are more accurate than
the linear-based ones used in Section 2. Unlike PMM,
LELSM can accommodate multiple nonsmooth nonlin-
earities with several surfaces of discontinuity, similarly
to the use of describing functions where individual non-
linearities in the system are translated into equivalent
linear gains.

6 Examples

6.1 Bilinear clearance nonlinearity

The system in Equation (14) with n = 2 is again consid-
ered where m1 = m2 = k1 = k2 = 1. To find the exact
frequencies by numerical integration, the BNMs can be
located by simulating the motion for variety of initial
conditions along the equipotential boundary

E =
{(

x2
2 + (x1 − x2)2

)
/2; x1 < xc(

x2
2 + (x1 − x2)2 + κc(x1 − xc)2

)
/2; x1 > xc

(38)
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Fig. 6 Slopes of the LELSM eigenvectors (long-dashed) of the
2-dof system with deadzone nonlinearity in (a) mode 1 and (b)
mode 2 for α2 = 2. For comparison, the slopes of the best-fit

lines determined via least-squares regression of the numerically
simulated NNM manifolds are also shown (dots)

corresponding to some chosen energy level. Through
trial and error, the correct initial conditions which yield
periodic motion can be located by examining the mo-
tion in the configuration space. This is shown in Fig. 9
where the free spring has the same stiffness as the cou-
pling springs (kc = 1 or α2 = 2) and the total energy
is E = 1 for several different values for the clearance
xc. The first (a) and last (i) plots correspond to the two
linear subregions ρ = 1 and −1, respectively, while the
BNM frequencies in (e) (where ρ = 0) are independent

of the amplitude. As was also shown in Fig. 3, it s seen
here that the nonlinearity is strong enough such that
three period 1 BNMs are present for some clearance
values (e,f,g). These characteristics were first reported
for this system in [9].

The linear mode shapes in the first subregion
are φ1 = (1.0 0.618)T and φ2 = (1.0 −1.618)T and
the modal frequencies are ω1 = 0.618 and ω2 =
1.618. The linear-based order reduction transforma-
tion of Equation (11) results in the reduced model
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Fig. 7 Slopes of the LELSM eigenvectors (long-dashed) of the
2-dof system with saturation nonlinearity in (a) mode 1 and (b)
mode 2 for α2 = 2. For comparison, the slopes of the best-fit

lines determined via least-squares regression of the numerically
simulated NNM manifolds are also shown (dots)

of Equation (12) where β1 = 0.724 in the first mode
and β2 = 0.276 in the second. We compare the vari-
ous reduced models with the exact BNM frequencies
as a function of the dimensionless parameter ρ. For
the case of xc = 0.5 (Fig. 9d) the exact first modal
frequency is found by numerical simulation to be
0.717 rad/s.

Using Equation (19), the approximate nonlinear fre-
quency obtained from the linear-based reduced model
is 0.730 rad/s. Hence, time series plots of both coor-
dinates for the full and reduced-order models become
180◦ out of phase in 242 s as is shown explicitly in
Fig. 10. However, PMM can be used to obtain the im-
proved reduced model
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Fig. 8 Slopes of the LELSM eigenvectors (long-dashed) of the
2-dof system with bang-bang nonlinearity in (a) mode 1 and (b)
mode 2 for α2 = 2. For comparison, the slopes of the best-fit

lines determined via least-squares regression of the numerically
simulated NNM manifolds are also shown (dots)

ẍ1 + 0.6182x1 + 0.618 f (x1) = 0 (39)

(where β1 = 0.618 was found via Equation (36) and is
independent of the amplitude) which has a frequency
of 0.720 rad/s. Figure 10 shows that the corresponding
motion remains closer in phase with that of the full
model since it now takes 1047 s to become 180◦ out of
phase. Thus, this amplitude-independent reduced-order
model, which is easily obtained without the simulation

of the full model, represents a significant improvement
over the linear-based version.

Figure 2 shows that LELSM is much better at ap-
proximating the BNM frequencies in the second mode
than PMM. The equivalent linear stiffness matrix in
this method is given by

Keq =
[

keq −1
−1 2

]
(40)

Springer



Nonlinear Dyn (2007) 49:375–399 389

Fig. 9 Numerical
simulations in configuration
space of BNMs for the
two-degree-of-freedom
system with clearance
nonlinearity with α2 = 2
and xc = (a) 2.0 (linear) (b)
1.5 (c) 1.0 (d) 0.5 (e) 0.0 (f)
−0.5 (g) −1.0 (h) −1.5 (i)
−2.0 (linear). The solid
closed curves are the
equipotential boundaries
with and without the
nonlinear spring

where keq is found from

keq = 
2 = 4ω2
−

[
1 + 2

π
sin−1 ρ + 1

α

(
1 − 2

π
×

sin−1

(
ρ

α

√
1 − ρ2

(
1 − 1

α2

)))]−2

(41)

with α2 = 2 and ω− = 1. Unlike Equation (39) a
LELSM-based reduced model is amplitude-dependent
as is shown in the next section. Hence, in general, if
it is desired that the reduced model should portray
the dynamics of higher modes in a system with a bi-
linear clearance nonlinearity, LELSM can yield im-
proved reduced-order models. It should be noted that
the LELSM-based results in Fig. 2 are more accurate
than those in [9].

6.2 Deadzone nonlinearity

As an example of a system with deadzone nonlin-
earity, the equations of motion for the two-degree-of-
freedom version of Equations (14) and (21) are con-
sidered where m1 = m2 = k1 = k2 = 1. The configu-

ration space plots obtained by numerical simulation for
α2 = 2 are shown in Fig. 11 for four values of xc along
with the equipotential boundary

E =

⎧⎪⎨⎪⎩
(
x2

2 + (x1 − x2)2
)
/2; |x1| < xc(

x2
2 + (x1 − x2)2 + κc(x1 − xc)2

)
/2; x1 > xc(

x2
2 + (x1 − x2)2 + κc(x1 + xc)2

)
/2; x1 < −xc

(42)

for E = 1. The first (a) and last (d) plots correspond
to the two linear subregions ρ = 0 and 1, respectively.
Unlike the clearance case, the number of NNMs is equal
to the number of degrees of freedom for all values of
ρ.

The linear-based order reduction transformation
in Equation (11) results in the reduced model of
Equation (12) with the same values for β1 and β2 as
in the clearance example. For the case of xc = 0.5
(Fig. 11b), the exact first modal frequency found from
numerical simulation is 0.862 rad/s. Using Equation
(23), the frequency obtained from the linear-based
reduced model is 0.880 rad/s. An improved reduced
model, however, can be obtained via LELSM. The
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Fig. 10 Time series of reduced-order models of the 2-dof system with clearance nonlinearity in the first mode computed via the
linear-based reduction (dotted), PMM (dashed), and numerical simulation of the full model (solid) for α2 = 2 and xc = 0.5

equivalent linear stiffness matrix in this method is given
by Equation (40) where keq is found from

keq = ω2
−

[
2

π
sin−1 ρ√

(ρ − 1)2α2 + ρ(2 − ρ)

+ 1

α

(
1 − 2

π
sin−1

(
ρ

α2 − ρ(α2 − 1)

))]−2

= 1.545 (43)

with α2 = 2, ω− = 1, and ρ = 0.363 (using the ampli-
tude of 1.377 for mass 1 found from simulation of the
first NNM). The relation |K eq − 
2

i I| = 0 then results
in a frequency of 
1 = 0.864 which is much closer to
the exact one. As described in Section 5, we may obtain
β1 = 0.671 for the corresponding improved reduced-

order model given by

ẍ1 + 0.6182x1 + 0.671 f (x1) = 0 (44)

In addition, we may obtain the improved master–slave
relation x2 = 0.798x1 from the eigenvector (1.0, 0.798)
of Keq. Thus, the solution for x2 is obtained from that of
x1 in the reduced model. Comparisons of exact, linear-
based, and improved results are in the time series plots
in Fig. 12. As seen here, the improved reduced model
obtained via LELSM results in a significant improve-
ment in the NNM frequency and amplitude for x2 over
the linear-based reduced model.

Although the amplitude-dependent reduced model
in Equation (44) was obtained using the amplitude
found by simulation of the full model (for the given
total energy) in advance, this amplitude may be
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Fig. 11 Numerical simulations in configuration space of NNMs
for the two-degree-of-freedom system with deadzone nonlinear-
ity with α2 = 2 and xc = (a) 0.0 (linear) (b) 0.5 (c) 1.25 (d) 2.0

(linear). The solid closed curves are the equipotential boundaries
with and without the nonlinear spring

approximated by the following method so that the simu-
lation is not required. By solving for the intersections of
the eigenvectors of the Keq matrix with the equipotential
boundaries corresponding to a given energy level, the
approximate amplitude of x1 in mode 1 is obtained. We
can start by assuming the NNM occurs along the first
eigenvector of the system in the first linear subregion,
i.e. x̂ = (1.0, 0.618). This intersects the equipotential
boundary E = 1

2 x̂ T K x̂ + 1
2 (x̂1 − xc)2 = 1 in the sec-

ond linear subregion at x1 = 1.446 from which ρ =
0.346. This can in turn be used in Equations (43) and

(40) to obtain a Keq whose first eigenvector intersects
the equipotential boundary at x1 = 1.357 from which
ρ = 0.368. One more iteration converges at x1 = 1.362
and ρ = 0.367, which are close approximations to the
exact values of x1 = 1.377 and ρ = 0.363 used above.

6.3 Saturation nonlinearity

For the two-degree-of-freedom system with saturation
nonlinearity, the configuration space plots found by
numerical simulation are shown in Fig. 13 where the
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Fig. 12 Time series of reduced-order models of the 2-dof system with deadzone nonlinearity in the first mode computed via the
linear-based reduction (dotted), LELSM (dashed), and numerical simulation of the full model (solid) for α2 = 2 and xc = 0.5

equipotential boundary is given by

E =
{(

x2
2 + (x1 − x2)2 + κcx2

1

)
/2; |x1| < xc(

x2
2 + (x1 − x2)2 + κcx2

c

)
/2 |x1| > xc

(45)

for E = 1. The first (a) and last (d) plots correspond to
the two linear subregions ρ = 0 and 1, respectively.

For the case of xc = 0.75 (Fig. 13c), the exact
first modal frequency is found to be 0.950 rad/s. from
numerical simulation. The frequency obtained from
the linear-based reduced model is 0.986 rad/s. An
amplitude-dependent improved reduced model

ẍ1 + 0.6182x1 + 0.640 f (x1) = 0 (46)

obtained via LELSM results in a frequency of 
1 =
0.951. The improved master–slave relation is x2 =
0.913x1. Comparisons of exact, linear-based, and
improved results are in the time series plots in
Fig. 14.

6.4 Bang-bang nonlinearity

For the two-degree-of-freedom system with bang-bang
nonlinearity, the configuration space plots found by
numerical simulation are shown in Fig. 15 where the
equipotential boundary is

E =
{(

x2
2 + (x1 − x2)2

)
/2 − δx1; x1 < 0(

x2
2 + (x1 − x2)2

)
/2 + δx1; x1 > 0

(47)
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Fig. 13 Numerical simulations in configuration space of NNMs
for the two-degree-of-freedom system with saturation nonlinear-
ity with α2 = 2 and xc = (a) 0.0 (linear) (b) 0.25 (c) 0.75 (d) 1.25

(linear). The solid closed curves are the equipotential boundaries
with and without the nonlinear spring

for E = 1. The first (a) plot corresponds to the linear
subregion ρ = 0. For the case of δ = 0.5 (Fig. 15c),
the exact first modal frequency found from numerical
simulation is 0.868 rad/s. Using Equation (28), the fre-
quency obtained from the linear-based reduced model
is 0.889 rad/s. An amplitude-dependent improved re-
duced model

ẍ1 + 0.6182x1 + 0.670 f (x1) = 0 (48)

obtained via LELSM results in a frequency of

1 = 0.872. The improved master-slave relation is
x2 = 0.806x1. Comparisons of exact, linear-based, and
improved results are in the time series plots in Fig. 16.
As with the deadzone and saturation nonlinearities
the improved reduced model obtained via LELSM for
bang-bang is extremely accurate. For all values of ρ

in both modes for these odd-symmetric nonlinearities,
LELSM gives much better approximations than the
linear-based model.
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Fig. 14 Time series of reduced-order models of the 2-dof system with saturation nonlinearity in the first mode computed via the
linear-based reduction (dotted), LELSM (dashed), and numerical simulation of the full model (solid) for α2 = 2 and xc = 0.75

7 Reduction to multi-mode reduced models with

multiple nonsmooth nonlinearities

While the examples discussed thus far involve obtain-
ing a single-degree-of-freedom reduced model corre-
sponding to a single NNM, it is also possible to reduce
a higher-order system down to two or more degrees of
freedom with dynamics approximating that of multiple
NNMs. For this purpose, the LELSM method is used to
obtain an equivalent linear stiffness matrix which ap-
proximates the NNM frequencies and invariant mani-
folds of the full model. This characteristic allows us to
obtain a multi-mode reduced model which accurately
approximates the true NNM manifolds projected onto
the space of retained coordinates. In addition, it is also
possible to accommodate multiple nonsmooth nonlin-
earities with several surfaces of discontinuity, as the
following example shows.

Consider the four-degree-of-freedom damped sys-
tem with two deadzone nonlinearities⎡⎢⎢⎢⎣

ẍ1

ẍ2

ẍ3

ẍ4

⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
0.1 −0.1 0 0

−0.1 0.2 −0.1 0

0 −0.1 0.2 −0.1

0 0 −0.1 0.2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤⎥⎥⎥⎦

+

⎡⎢⎢⎢⎣
1 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
f1(x1)

f2(x2)

0

0

⎤⎥⎥⎥⎦ = 0

(49)

where f1(x1) is given by Equation (21) with kc = 1 and
xc1 = 1.25 and f2(x2) is similar but with xc2 = 1.0. It
is desired to reduce Equation (49) to two degrees-of-
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Fig. 15 Numerical simulations in configuration space of NNMs
for the two-degree-of-freedom system with bang-bang nonlin-
earity with δ = (a) 0.0 (linear) (b) 0.25 (c) 0.5 (d) 0.875. The

solid closed curves are the equipotential boundaries with and
without the nonlinear spring

freedom in x1 and x2. First, the linear-based order re-
duction in Equations (4)–(7) is implemented by trans-
forming Equation (49) via⎡⎢⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 0

0 1

−1 1.8794

−1 1.5321

⎤⎥⎥⎥⎦
[

x1

x2

]
(50)

Comparing with Equations (4) and (7), the matrix T
(computed via Equation (5)) which defines the master–

slave relation is seen in the lower half of the transfor-
mation matrix. This results in the reduced-order model[

3.0 −3.412

−3.412 6.879

] [
ẍ1

ẍ2

]

+
[

0.3 −0.3412

−0.3412 0.4241

] [
ẋ1

ẋ2

]
(51)

+
[

3.0 −3.412

−3.412 4.241

] [
x1

x2

]
+

[
β1 f1(x1)

β2 f2(x2)

]
= 0
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Fig. 16 Time series of reduced-order models of the 2-dof system with bang-bang nonlinearity in the first mode computed via the
linear-based reduction (dotted), LELSM (dashed), and numerical simulation of the full model (solid) for δ = 0.5

in which β1 = β2 = 1. As explained previously, the
transformation of Equation (50) preserves the exact
eigenstructure of the linear part of Equation (49). The
linear-based reduced model can be improved upon by
finding alternate values for β1 and β2 as shown below.

Depending on the values of xc1, xc2, and the initial
total energy E , it is possible to have 1, 3, 5, 7 or 9 sepa-
rate linear subregions. For the values of xc1 = 1.25,
xc2 = 1.0 and initial energy E = 1

2 x̂ T K x̂ + 1
2 (x̂1 −

xc1)2 + 1
2 (x̂2 − xc2)2 = 1, there are initially 7 separate

subregions with four distinct equipotential boundaries
as shown in Fig. 17, which represents a projection of
the potential hypersurface onto the x1 − x2 plane, al-
though this will change as energy is dissipated from the
system. Since the amplitudes of coordinates x1 and x2

depend on the mode for a given energy level, a separate
ρk,i must be computed for the ith mode for k = 1, 2.
By first ignoring the damping and assuming the NNM

manifold occurs on the first eigenvector of the stiff-
ness matrix in Equation (49), the same procedure de-
scribed in Section 6.2 for estimating the amplitudes can
be applied and iterated to find that x1 and x2 intersect
the equipotential E = 1 in region 4 at approximately
1.838 and 1.671, respectively, yielding ρ1,1 = 0.680
and ρ2,1 = 0.598 for the two deadzone nonlinearities
in mode 1. Since only the first mode penetrates a bound-
ary, the ρk,i values for the other modes are unity.

The separate effects of the two deadzones on the low-
est frequency are now found using LELSM by comput-
ing the lowest eigenfrequencies of the two undamped
systems

ẍ +

⎡⎢⎢⎢⎣
keq1 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 2

⎤⎥⎥⎥⎦ x = 0 (52)
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Fig. 17 Projection of the configuration space for the 4 degree-
of-freedom system of Equation (49) with two deadzone nonlin-
earities onto the x1 − x2 plane. There are seven separate linear
subregions with four distinct equipotential boundaries. (Not to
scale.)

where keq1 = 1.202 is obtained using ρ1,1 and

ẍ +

⎡⎢⎢⎢⎣
1 −1 0 0

−1 keq2 −1 0

0 −1 2 −1

0 0 −1 2

⎤⎥⎥⎥⎦ x = 0 (53)

where keq2 = 2.284 is obtained using ρ2,1. This yields

1,1 = 0.4466 and 
2,1 = 0.4570 from Equations (52)
and (53), respectively. Next, two single-degree-of-
freedom reduced models of the undamped version of
Equation (49)

ẍi + 0.3472xi + β̃iβi fi (xi ) = 0 (54)

i = 1, 2 are temporarily utilized (again considering
the effects of the two deadzones separately) where
0.347 is the lowest frequency of the linear part of
Equation (49) and β̃iβi is the nonlinearity coefficient.
Then, using 
1,1, ρ1,1, and α = √

2, Equation (34)
can be solved numerically for β̃1β1 = 0.401, while us-
ing 
2,1 and ρ2,1 yields β̃2β2 = 0.318. Since the ob-
ject is to find βi , β̃i must first be determined. Now let
Equation (54) represent the single-degree-of-freedom
reduced models of the undamped version of the two-
degree-of-freedom reduced model in Equation (51)
(again considering the effects of the two deadzones

separately). From this perspective, β̃i is the coefficient
for the nonlinearity βi fi (xi ). Since this nonlinearity is
not completely known, however, PMM and LELSM
cannot be used to find β̃i . Instead, linear-based or-
der reduction from Equation (51) to Equation (54) is
now used to obtain β̃i = 0.431 (using φ1 = (1, 0.879))
and β̃2 = 0.333 (using φ1 = (1.137, 1)) from Equation
(13). Now β1 is calculated as 0.401/0.431 = 0.931
and β2 as 0.318/0.333 = 0.954. The corresponding re-
duced model is then given by Equation (51) with these
values of β1,2.

In Fig. 18, the linear-based and improved reduced
models in mode 1 (Equation (51)) are compared with
simulation of Equation (49). Due to the damping, the
amount of time that the system is in regions 2–4 of
Fig. 17 decreases until the motion becomes purely lin-
ear (after about 95 s). It is seen that the time series of
the improved reduced model obtained using LELSM
is exactly in phase with that of the full model after the
transition to linear vibration while that of the linear-
based version has a constant lag in phase after this
point. The difference in accuracy can also be observed
in the undamped versions of Equations (49) and (51),
for which the frequencies of the improved and linear-
based reduced models are 0.5236 and 0.5285, respec-
tively, while that of the full model is 0.5235. The initial
displacement for the NNM was selected at the inter-
section of the first eigenvector of

Keq =

⎡⎢⎢⎢⎣
keq1 −1 0 0

−1 keq2 −1 0

0 −1 2 −1

0 0 −1 2

⎤⎥⎥⎥⎦ (55)

(which approximates the dynamics only in the first
mode) and the equipotential boundary for E = 1. It
should be noted that, although this mode shape (1.0,
0.909, 0.811, 0.475) is an accurate linear approxima-
tion to the first NNM, it is not orthogonal to modes 2–4
which are extracted from the linear part of Equation
(49) (because they do not penetrate a boundary). As was
previously stated, this accurately reflects the fact that
NNMs of nonsmooth systems are in general not orthog-
onal. An improved master–slave relation is found from
this eigenvector as x3 = 0.811x1 and x4 = 0.475x1.
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Fig. 18 Time series of reduced-order models of the damped four-
degree-of-freedom system of Equation (49) with two deadzone
nonlinearities in the first mode computed via the linear-based

reduction (dotted), LELSM (dashed), and numerical simulation
of the full model (solid) for α2 = 2, xc1 = 1.25, and xc2 = 1.0

8 Conclusions

A technique for order reduction of structural systems
with piecewise linear static nonlinearities via NNM ap-
proximations has been presented. By employing PMM
and LELSM, improved reduced-order models whose
amplitude-dependent frequencies and mode shapes are
better approximations to the exact NNM frequencies
and mode shapes were obtained for bilinear clear-
ance, deadzone, saturation, and bang-bang nonlineari-
ties. Extension of the technique to multi-mode reduced-
order models and multiple nonsmooth nonlinearities
was also demonstrated with a four-degree-of-freedom
example. In this case, the amplitudes of the masses were
computed separately in each mode from a given total
energy; consequently, it was seen that the piecewise
nonlinearity is present in some modes while it does not
influence others. The results obtained were compared
with the exact NNM frequencies and the optimal lin-
ear mode shapes for the NNM manifolds obtained via

least-squares regression from the direct numerical in-
tegration of the full models. It was seen that for bilinear
clearance nonlinearity in the first mode PMM (which
gives an amplitude-independent reduced model) was
more accurate, while for the second mode and for all of
the odd symmetric nonlinearities LELSM (which gives
an amplitude-dependent reduced model) was more ac-
curate. This can in part be explained by the different
ways in which the methods approximate the NNM man-
ifolds. Since PMM assumes that the dynamics occur on
the piecewise union of the eigenvectors in the separate
subregions joined at the boundary, there is discontinu-
ity in this dynamic behavior whenever a boundary is not
at the origin. In contrast, LELSM always approximates
the dynamics on linear vectors which, like POMs,
are accurate linear representations of the NNM man-
ifold, although the complete set are not orthogonal in
general.

We should point out that the success of these
techniques depends on their ability to approximate a
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nonlinear system with a linear one. Thus, the tech-
nique is designed for systems in which the linear part
of the model dominates in the dynamics, with the same
number of NNMs as degrees of freedom and the in-
variant manifold “straight enough” to be approximated
by vectors. Hence, the best parameter choices to ensure
convergence are those that result in weak nonlinearities
(i.e. kc small). However, the range of possible clearance
(xc) values is not limited by these methods. Although
the techniques generally result in improved reduced
models which are more accurate than the linear-based
versions, possible sources are error include significant
deviations of the NNM manifolds from the LELSM
eigenvectors and the use of linear (albeit improved)
master–slave coordinate relations. The inclusion of lin-
ear damping or forcing is done simply by ignoring their
effects when calculating the improved nonlinearity co-
efficients. The advantages of the present technique in-
clude a reduced model which uses a subset of the origi-
nal physical coordinates, contains the form of the non-
smooth nonlinearity of the full model, and can accom-
modate multiple nonsmooth nonlinearities with several
surfaces of discontinuity through the use of an equiva-
lent linear stiffness matrix. In this respect it is similar to
the use of describing functions where individual nonlin-
earities are translated into equivalent linear gains. Since
the method applies directly to structural vibrating sys-
tems in second order form, the need to use state-space
coordinates is completely avoided, as is the process of
calculating the exact NNM manifolds and correspond-
ing dynamics. While the dependence of the LELSM-
based reduced model on initial conditions (through the
parameter ρ) may be an undesirable feature in some ap-
plications, the PMM-based reduced models avoid this
since the improved nonlinear coefficient is computed
from the two sets of linear eigenfrequencies in the two
subregions. Finally, it was shown that numerical sim-
ulation of the full model is not required even for the
amplitude-dependent LELSM-based method, since the
intersection of the NNM manifold with the equipoten-
tial boundary for a given initial energy can be easily
estimated.
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