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Abstract This paper presents two methods for numer-
ical calculation of nonlinear normal modes (NNMs)
in multi-degree-of-freedom, conservative, nonlinear
structural dynamics models. The approaches used are
briefly described as follows. Method 1: Starting with
small amplitude initial conditions determined by a se-
lected mode of the associated linear system, a small
amount of negative damping is added in order to “arti-
ficially destabilize” the system; numerical integration
of the system equations of motion then produces a sim-
ulated response in which orbits spiral outward essen-
tially in the nonlinear modal manifold of interest, ap-
proximately generating this manifold for moderate to
strong nonlinearity. Method 2: Starting with moderate
to large amplitude initial conditions proportional to a
selected linear mode shape, perform numerical inte-
gration with the coefficient ε of the nonlinearity con-
trived to vary slowly from an initial value of zero; this
simulation methodology gradually transforms the ini-
tially flat eigenspace for ε = 0 into the manifold exist-
ing quasi-statically for instantaneous values of ε. The
two methods are efficient and reasonably accurate and
are intended for use in finding NNMs, as well as inter-
esting behavior associated with them, for moderately
and strongly nonlinear systems with relatively many
degrees of freedom (DOFs).

T. D. Burton (�)
Department of Mechanical Engineering, New Mexico State
University, Las Cruces, NM 88003-8001, USA
e-mail: tdburton@nmsu.edu

Keywords Nonlinear normal modes · Nonlinear
vibrations · Nonlinear structural dynamics · Reduced
order modeling

1 Introduction

This paper is concerned with the calculation of nonlin-
ear normal modes (NNMs) in structural system models
of the form

[M]{ẍ} + [K ]{x} + ε{N (x, ẋ)} = {0} (1)

where {x} is an n-vector of coordinates, [M] and [K]
are symmetric n by n mass and stiffness matrices, and
ε{N (x, ẋ)} is the n-vector of nonlinear internal forces.
The parameter ε is a measure of the importance of
nonlinear effects. The nonlinearity {N (x, ẋ)} may be
a function of both displacements and velocities, but it
is assumed that the nonlinearities provide only stiffen-
ing (or softening) effects and that they do not provide
any damping.

The concept of the NNM was originally presented by
Rosenberg [1], who studied “similar nonlinear normal
modes,” for which the displacement pattern maintains a
self-similar-at-all-times character, as does a linear nor-
mal mode. During the past 15 years or so, there has been
intense interest in NNMs, motivated by the early work
of Vakakis [2, 3], Vakakis and Caughey [4], and Shaw
and Pierre [5, 6]. A nonlinear normal mode has been
defined by Shaw and Pierre [6] as a two-dimensional
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invariant manifold in the 2n-dimensional state space,
such that the eigenspace of the associated linear mode
is tangent to the NNM at the origin of the state space.
Studies of NNM properties and methods for calcula-
tion of the modal manifolds have appeared in many
works, including those by Vakakis and coworkers [7–
12], Shaw and coworkers [13–17], Nayfeh and cowork-
ers [18–25], and others [26–36]. These works may be
roughly divided into several overlapping categories: (1)
studies of basic phenomena associated with NNMs,
including bifurcation, mode localization, and internal
resonance; (2) methodologies for calculating individ-
ual NNMs; (3) applications of NNMs to physically
motivated problems; and (4) obtaining reduced order
models (ROMs) of nonlinear structural systems.

This paper is intended to complement work related
to the following two aspects of NNMs: (1) methods
for calculating individual NNMs and (2) use of, and/or
implications of, NNMs in reduced order modeling of
nonlinear structural dynamics. Regarding NNM calcu-
lation, Shaw and Pierre [6] originally developed meth-
ods for calculation of individual NNMs by projecting
the dynamics onto a two-dimensional space via state
transformations that express (n − 1) of the coordinates
xi and their (n − 1) velocities as functions of a single
“master” coordinate y and master velocity, as follows:

xi = ai y + gi (y, ẏ)

xi = ai ẏ + hi (y, ẏ)
(2)

where the master coordinate y is typically one of the n
coordinates. Shaw and Pierre [6] used truncated Taylor
series (polynomials) to represent the state transforma-
tion (2), wherein the coefficients in the polynomials
in (2) are obtained by solving a set of linear algebraic
equations. Polynomial terms through the cubic or quin-
tic would typically be retained. It is known that conver-
gence of the polynomial series representing the NNMs
is an issue and that the truncated polynomials used to
project the dynamics onto the (y, ẏ) plane may become
inaccurate in the moderate to strongly nonlinear range
of motion. More recently, Pesheck et al. [17] have pre-
sented a Galerkin-based method for the calculation of
the slave/master relations in terms of specified basis
functions that are to be accurate for a specified range
in oscillation amplitude. This Galerkin-based method
considerably extends the range of validity of the NNM
calculation, providing accurate results for moderate to

strongly nonlinear cases. This Galerkin-based method
does involve solution of nonlinear algebraic equations,
and computational intensity appears to be an issue for
problems of moderate to large size. On the strictly nu-
merical side of things, Slater [29] has developed an it-
erative numerical optimization method to find NNMs.
This method appears to be accurate and reasonably
straightforward. Slater has presented detailed examples
for the NNMs in a 2 degree-of-freedom (DOF) system.
It is difficult to infer, however, how computationally
intensive will Slater’s method be for larger systems.

In terms of reduced order modeling of nonlinear
structures, Burton and Rhee [26] have presented a
“linear-based reduction” (LBR) method that utilizes the
linear version of (2), obtained from the associated lin-
ear model eigenproblem, to produce a reduced model
in terms of a subset of the original physical coordinates.
This method is equivalent to a linear modal expansion,
and ROMs obtained via this method exhibit, from a per-
turbation standpoint, the correct leading order behav-
ior due to nonlinear effects. For nonlinear systems, this
LBR is an approximate model reduction method that
is intended to quickly and easily generate significantly
ROMs (m � n) that accurately simulate the responses
of the original n-DOF model (1). The reduction meth-
ods of Boivin et al. [15] and Pesheck et al. [16, 17]
are based on the nonlinear NNM approximations to
(2) and, hence, would normally be expected to provide
better ROMs than the LBR of Burton and Rhee.

For both the aforementioned aspects of NNMs (their
calculation and use in reduced order modeling), it is
important to be able to find independently the exact
modal manifolds as a function of oscillation amplitude
in order to assess the range of validity of the analytically
calculated NNMs or of the NNM-confined responses
simulated by ROMs. For large n systems, a difficulty in
assessing the accuracy of ROMs for motions in given
NNMs is that the exact NNMs are not easy to find if n is
appreciable. Thus, exact solutions may not be available
for benchmarking.

The purpose of this paper is to demonstrate two
numerical procedures for NNM calculation; these
methods are conceptually simple and appear to be suffi-
ciently accurate for benchmarking work. The two meth-
ods presented here are limited to those NNMs that are
identified, at the origin of the state space, with the
eigenspaces of the associated linear system. Thus, for
example, we do not consider NNM bifurcations leading
to NNMs having no counterpart in the associated linear
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system and to higher (than linear) dimensional modal
spaces. In addition, we do not consider unstable NNMs.
The underlying assumption of the methods presented
is that the NNMs to be calculated are center manifolds
of stable, conservative, autonomous systems for which
the associated linear system eigenvalues are imaginary.

2 Method 1 – NNM numerical calculation –

negatively damped motion in the nonlinear modal

manifold

We consider the following version of (1) obtained by
including a linear damping matrix proportional to the
mass matrix, so that the mode shapes of the associated
linear system are unchanged:

[M]{ẍ}+c[M]{ẋ} + [K ]{x} + ε{N (x, ẋ)} = {0} (3)

Numerical simulations to determine the NNMs for the
system (1) are implemented by performing numerical
integration of (3) as follows: select small amplitude ini-
tial conditions using the associated linear mode shape
of the NNM sought (or by using Slater’s method or
one of Shaw and Pierre’s methods). Then assign the
parameter c in (3) a small negative value, resulting in
essentially exponential growth of the oscillations. The
intent is that the growing oscillations spiral outward
essentially in the modal manifold, provided the initial
conditions are sufficiently accurate and that the param-
eter c is sufficiently small. Essentially, the artificially
unstable motion is to produce an orbit that provides a
time-dependent state vector that always lies essentially
in the NNM under study. In this way, one may define
the NNM numerically.

This approach is intended as an “engineering solu-
tion” to the problem of NNM generation. The intent
is to provide efficient yet sufficiently accurate approx-
imations to individual NNMs or to sets of two or more
NNMs. For a given simulation, the development and
accrual of “off manifold” errors in the system state will
arise from several factors: inexact initial conditions, nu-
merical integration error, and the unsteady conditions
induced by the artificial instability. We note that use
of proportional (negative) damping is one of several
possible approaches to produce the “artificial instabil-
ity” employed for approximate NNM generation. For
instance, as pointed out by one of the reviewers, one
could arrange system damping properties so that the

linear mode associated with the NNM of interest is
destabilized, while the remaining linear modes have
no damping or are weakly damped.

Several examples are presented in order to illustrate
use of the method.

Example 1. A contrived 2-DOF system.

As the first example of the “artificial instability”
method, we consider the following contrived 2-DOF
model:

ẍ1 + 2x1 − x2 + εx3
1 = 0 (4)

ẍ2 + 2x2 − x1 + εx3
1 − 6εx1 ẋ2

1 = 0

The associated linear model consists of two unit masses
and three unit linear springs, with the leftmost and right-
most springs grounded. The linear system mode shapes
are [1, 1] and [1, −1], and the associated natural fre-
quencies are 1.0 and 31/2. With x1 selected as the master
DOF, it may be verified that the first NNM is defined
exactly by the coordinate transformation

x2 = x1 + εx3
1 (5)

The ROM for the master coordinate x1, obtained by sub-
stitution of (5) into (4), is then ẍ1 + x1 = 0, and the re-
sulting motion x1(t) is simple harmonic with frequency
of unity, independent of amplitude; the response x2(t)
contains first and third harmonics. This contrived sys-
tem model is presented because the exact NNM so-
lution is known, so that the adequacy of the proposed
“artificially unstable” numerical NNM calculation may
be assessed.

Figure 1 shows the results of numerical integration
of the following variation of the system model (4):

ẍ1 + cẋ1 + 2x1 − x2 + εx3
1 = 0

ẍ2 + cẋ2 + 2x2 − x1 + εx3
1 − 6εx1 ẋ2

1 = 0
(6)

Initial conditions were taken as x1(0) = 0.1, x2(0) =
0.101, with initial velocities zero. Parameter values
were ε = 1.0, c = −0.001, and fixed integration time
step h = 0.05 s. The fourth-order Runge–Kutta numer-
ical integration was used to calculate the responses.
The integration was performed from t = 0 to 6000 s,
yielding what we refer to as the “baseline” simula-
tion. Figure 1 shows the responses x1(t) and x2(t)
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Fig. 1 Numerical integration results for the contrived system with undamping, defined by Equation (5): c = −0.001; ε = 1.0; integration
time step = 0.05 s; x1(t) in blue; x2(t) in green

for several 100 s time intervals, and one observes
the growth of x2 relative to x1, according to (5), as
the oscillation amplitude increases due to the artifi-
cial negative damping. By the end of the simulation
(t = 6000 s) the ratio of coordinate amplitudes has
changed significantly from the linear value of unity,
indicating that the motion is in the strongly nonlinear
regime.

Figure 2a shows a plot of the slave coordinate x2

versus the master x1 for the baseline simulation time
interval t = 4000–6000 s, corresponding to more than
300 cycles of growing oscillation. The responses fol-
low Equation (5) closely, indicating that the oscillation
growth occurs essentially in the modal manifold. For
the same time interval (t = 4000–6000 s), Fig. 2b and
c show the projections of the first NNM onto three-
dimensional spaces: Fig. 2b shows the slave displace-
ment x2 versus x1 and ẋ1. Figure 2c shows the slave
velocity ẋ2 versus x1 and ẋ1. Figure 2d shows the phase
portraits for x1 and for x2, generated by a 100 s sim-
ulation with c = 0, initiated with the baseline state

existing at t = 6000 s. The results shown in Figs. 1
and 2 for this contrived system show that the technique
of artificial negative damping provides a simple, accu-
rate way to calculate the first NNM for this particular
system.

Figure 3 shows similar results for the second NNM
of the system (4). For this second NNM, the mas-
ter/slave coordinate transformation does not have the
simple cubic form (5) applicable to the first NNM.
Rather, the usual infinite series of polynomial terms
would be required to define the modal manifold.
Through the cubic terms, one obtains the following for
the second NNM:

x2 = −x1 − ε

[
17

13
x3

1 + 9

13
x1 ẋ2

1

]
+ higher degree terms (7)

Figures 3a–d show baseline simulation results initiated
with initial conditions given by x1(0) = 0.1, x2(0) =
−0.10131, and with zero initial velocities. Artificially
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Fig. 2 (a–c) t = 4000–6000 s; (d) 100-s run with c = 0 using ICs at t = 6000

destabilizing damping values of c = −0.002 (t <

2000 s) and c = −0.0005 (t > 2000 s) were used. The
results of Fig. 3a–d show the oscillation growth as the
orbit spirals outward (essentially) in the second modal
manifold.

Figures 3e and f show the responses with c = 0.0
for initial conditions at the end (t = 2900 s) of the arti-
ficially unstable baseline run. The resulting response is
essentially periodic and indicates that the accumulated
numerical errors placing the system state off-manifold
are small. For the range of amplitudes exhibited in Fig.
3, the cubic approximation (7) provides an accurate
representation of the second NNM.

2.1 Comment on theoretical effect of artificial
damping on the NNM

For the contrived 2-DOF system of Example 1, it is
straightforward to calculate the cubic approximations
to the unstable manifolds that define the NNMs of the
artificially destabilized system (6). Thus, if instead of

(5) one assumes for the master/slave transformation the
cubic relation

x2 = x1 + αx3
1 + βx1 ẋ2

1 + δx2
1 ẋ1 + ηẋ3

1 (8)

one may verify that, for the first NNM of the contrived
model (6), α = ε and β = δ = η = 0, so that the nega-
tive damping c has no effect on the first modal manifold,
and (5) still applies, even if c is non-zero. Thus, for the
first NNM of the contrived system (4), the addition of
the artificial negative damping in (6) will not cause the
system state to move “off-manifold” (although numer-
ical integration errors will remain). On the other hand,
for the second NNM of the systems (4) and (6), the
addition of the negative damping c will alter the modal
manifold (of (6)) relative to that of the actual system
(4) of interest. The calculation of the coefficients α,
β, δ, and η in (8) for the second NNM of the contrived
system (6) shows that all four coefficients in (8) will
contain terms involving the negative damping param-
eter c, with the following result, expanded in powers
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Fig. 3 Second NNM of (4). For 0 < t < 2000 s, c = −0.002 (a) and (b); for 2000 < t < 2900 s, c = −0.0005 (c) and (d); 300 s
simulation with c = 0 with initial conditions from baseline simulation at t = 2900 s (e) and (f)

of c:

x2 = −x1 + ε

[(
−17

13
+ 4.1435c2

)
x3

1

+
(

− 9

13
+ 2.660c2

)
x1 ẋ2

1

− 54

403
cx2

1 ẋ1 + 126

403
cẋ3

1 + O(c3)

]
(9)

The nonlinear terms appearing in (7) for the con-
servative model (4) are observed in (9) to change
slightly by terms of O(c2) for the system (6). The
coefficients of the nonlinear terms not appearing in
(7) are O(c) in (9). Thus, the unstable manifold being
generated by the artificially destabilized model (6)
will be slightly different than the actual NNM for the
conservative system (4). Provided that c is sufficiently

small, however, the error introduced may be kept
small enough that the approximation obtained using
the artificial destabilization is reasonably accurate.

Example 2. A 7-DOF chain of oscillators – 1st
NNM. Illustration of the method and some interesting
behavior.

Here we present simulation results for a 7-DOF
system consisting of seven unit masses and eight unit
linear springs, with a single, cubic nonlinear element
connecting mass seven to the right-hand ground (so that
a nonlinear term εx3

7 appears on the left-hand side of the
equation of motion of mass 7). The calculations were
made using an initial displacement vector equal to 0.02
times the normalized (to unit length) first linear mode
shape. The fixed integration time step was h = 0.05 s,
and the negative damping constant was c = −0.0005.
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The simulation was run for t = 0 to 30,000 s. The
seven natural frequencies for this system are (in Hz)
0.0621, 0.1218, 0.1768, 0.2251, 0.2647, 0.2941, and
0.3122. The first mode shape, normalized to unity, is
φT

1 = [0.1913, 0.3536, 0.4619, 0.5, 0.4619, 0.3536,

0.1913]. There are near 5:1 and 2:1 internal resonance
conditions between linear modes 1 and 7 and 1 and 2,
respectively.

The simulated responses for the first NNM are
shown in Figs. 4 and 5. The baseline simulation is
represented in Fig. 4a–c, which show the single coor-
dinate history x7(t) for t = 0–30,000 s for three time
intervals of duration 10,000 s each. Figure 4d–h show
the response details for all seven coordinates for five
intervals of 100 s duration 0–100, 15,000–15,100, and
20,000–20,100, 23,900–24,000, and 29,900–30,000 s.
Figure 4a and b show that x7(t) exhibits smooth
exponential growth until approximately t = 16,000 s,
after which an amplitude modulation of varying
frequency (small compared to the lowest system
natural frequency) exists. Then, near t = 25,000 s,
the “regularity” of the response disappears. Thus,
it appears that for times less than approximately

15,000 s, the artificially induced oscillation growth is
occurring essentially in the modal manifold of the first
NNM. From a comparison of Fig. 4d and e, it is noted
that the larger amplitude motion (Fig. 4e) is essentially
harmonic, exhibits essentially the linear amplitude
ratios among the coordinates, and exhibits a frequency
very close to the linear value ω1 = 0.0621 Hz. These
three features indicate that the amplitudes have not
increased to levels at which the quantitative effects of
the nonlinearity are pronounced. Thus, the appearance
of the amplitude modulation, first noticeable at ap-
proximately t = 16,000–17,000 s, appears to occur in
the weakly nonlinear regime (as opposed to the mod-
erately or strongly nonlinear regime). At t = 20,000 s
(Fig. 4f), there is noticeable harmonic distortion and al-
teration from linear of the coordinate amplitude ratios.
Figure 4g (t ∼ 24,000 s) shows the coordinate x7(t)
to exhibit a large fifth harmonic, while the other six
coordinates are dominated by fundamental harmonics.
By t = 30,000 s (Fig. 4h), the coordinate x7 has
essentially decoupled from the other six coordinates.

Using the baseline simulation results shown in
Fig. 4a–c, the system states at t = 15,000, 16,000,
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Fig. 4 Numerical integration results for the first NNM of the 7-DOF system of Example 2: ε = 0.5, c = −0.0005, h = 0.05 s, initial
displacements = 0.02 times first linear mode shape. See text for discussion. Same legend applies for (d) through (h)
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21,000, 24,000, and 30,000 s were used to initiate
“restart” simulations for the case of zero negative
damping (c = 0). If the growing oscillations depicted
in Fig. 4a–c are occurring in the first NNM, then
restarts with c = 0 should exhibit periodic behavior.
The simulation restarted at t = 15,000 s (Fig. 5a and
b) shows closed orbits in the phase plane, implying
periodic behavior; thus, one concludes that the state
from which the simulation was initiated is essentially
in the first modal manifold. By 16,000 s, however (Fig.
5c and d), the “ribbony” nature of the phase portrait
demonstrates that the motion is no longer periodic, in-
dicating that the system state, while near the NNM
in a metric sense, nonetheless has a significant alter-
ation in its dynamics due to the small, off-manifold
component of the state. By 21,000 s, the small num-
ber of cycles shown in Fig. 5e are not dissimilar in
nature to the smaller amplitude behavior in the first
NNM. The Fourier transform magnitude of the re-

sponse shown in Fig. 5e is shown in Fig. 5f and reveals
that the observed slow amplitude modulation is associ-
ated with an interesting aspect of the spectral content:
the main peak at ω = 0.0645 is the frequency of the
first NNM, shifted above the linear value ω1 = 0.0621
by the hardening nonlinearity. The harmonics of or-
der 3, 5, and 7, at frequencies of 0.1936, 0.32275, and
0.45175, respectively, are observed in the spectrum in
Fig. 5f. Interestingly, each overtone is accompanied by
a “side component” that is approximately 0.0049 Hz
lower than the overtone frequency (see the peaks noted
at ω = 0.1885, 0.31785, and 0.4470). The amplitude
modulation occurs at this frequency of 0.0049 Hz.
Thus, the amplitude modulation is associated with a
sort of “overtone splitting” phenomenon. Furthermore,
the amplitude modulation frequency (0.0049 Hz for
restart at t = 21,000 s) is more than ten times lower
than the lowest system natural frequency and appears
unrelated to combinations of sum and difference that
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Fig. 5 First NNM of the 7-DOF system of Example 2. Simula-
tions with c = 0, restarted from the baseline state (Fig. 4) at the
time indicated. a, c, e, g, i x-axis is time in seconds from restart. f,

h, j Fourier transform of x7 magnitude versus frequency in Hertz.
l FT magnitude of x5. b and d ẋ7 vs. x7 (blue); ẋ4 vs. x4 (green),
ẋ1 vs. x1 (red). Peaks identified in spectra are in Hertz
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might be postulated to occur in a nonlinear interaction.
The simulation restarted at t = 24,000 s (Fig. 5g and
h) corresponds to a noticeable “wedge” in the base-
line response (see Fig. 4c at t ∼ 24, 000 s). Figure 5g
and h show the existence of a large fifth harmonic,
with evidence of spectral broadening, for this restart
simulation.

Another interesting feature is exhibited by the restart
at t = 30,000 s (Fig. 5i–l). The seven coordinate re-
sponses in Fig. 5i show that the oscillation ampli-
tudes have increased significantly and that the coor-
dinate x7(t) oscillates generally at frequencies much
higher than those of the other six coordinates. In fact,
the six coordinates x1(t) − x6(t) have become essen-
tially decoupled from x7(t) (a coordinate, rather than
a modal, decoupling). The Fourier transform mag-
nitudes of x6(t), Fig. 5k, and of x5(t), Fig. 5l, ex-
hibit discrete peaks at six frequencies (0.0695, 0.13575,
0.19575, 0.24625, 0.2855, and 0.30975 Hz) that are
very close to the six natural frequencies found for the
6-DOF system obtained by constraining x7 to be zero
(these 6-DOF system frequencies are 0.706, 0.1381,
0.1985, 0.2489, 0.2868, and 0.3103 Hz). On the other
hand, the coordinate x7(t), Fig. 5j, exhibits fairly broad-
band content between 0.4 and 0.5 Hz, as well as exhibit-
ing the aforementioned six peaks. This behavior may
be explained as follows. As the amplitudes grow due
to the artificial instability, at some point, the amplitude
of x7(t) will be sufficiently large so that the effect of
the nonlinear stiffness on the oscillation frequency will
become important. When this occurs (approximately
when the nonlinear factor (3/4)εa2

7 becomes appre-
ciable compared to unity, where a7 is an amplitude
measure for x7), the coordinate x7(t) starts to behave
as a single DOF Duffing oscillator with frequency ap-
proximately given by ω7 = (1 + (3/4)εa2

7)1/2. The re-
maining six coordinates, having no nonlinearity in their
subsystem, start to behave essentially as a linear 6-
DOF system excited by an essentially high frequency
base motion. In turn, the coordinate x7(t) behaves as a
Duffing oscillator excited by six subresonant sinusoids,
which have little effect on the response of x7(t) as the
amplitude of x7(t) becomes large. In essence, there exist
two weakly coupled subsystems: a single DOF Duff-
ing oscillator and a linear system having 6 DOFs. This
behavior appears to be a result of the isolated nature of
the particular nonlinearity considered here and would
not be expected for systems having distributed nonlin-
ear elements. This example illustrates that interesting

“near-NNM” dynamics may be found using the pro-
posed method.

Example 3. Seventh NNM of the 7-DOF system of Ex-
ample 2. Illustration of the method and some interesting
behavior.

Here, the seventh NNM of the 7-DOF system of
Example 2 is simulated. Figure 6 shows results
for which a negative damping value c = −0.005
was used to produce amplitude growth for the case
ε = 0.5, with an initial displacement vector equal
to 0.04φT

7 , where φT
7 = [−0.1913, 0.3536, −0.4619,

0.5, −0.4619, 0.3536, −0.1913]. Initial velocities
were zero, and the integration time step was 0.01 s.
Figure 6a–c show the baseline history of the coordi-
nate x7(t) for three time intervals comprising a total
simulation time of 2000 s. Smooth exponential growth
is observed until the amplitude a7 of x7(t) attains a value
near unity (around t = 1800 s). A sharp divergence
occurs near t = 1850 s, followed by amplitude mod-
ulation of x7(t). Figure 6d–f show the responses x7(t)
(blue), x4(t) (green), and x1(t) (red) during shorter time
intervals of the 2000 s baseline simulation. In Fig. 6f,
one observes that during the period of amplitude mod-
ulation (t > 1850 s), the coordinate x7(t) has signifi-
cantly larger amplitude than do the other coordinates.
This is in contrast to the pre-modulation behavior, dur-
ing which the coordinate amplitude ratios remain rea-
sonably close to their linear values.

Figure 6g and h show results of a simulation with c =
0 initiated using as initial conditions the baseline state
at t = 1700 s. The response is essentially harmonic at
a frequency of 0.3125 Hz, which is very close to the
linear seventh mode natural frequency of 0.3122 Hz.
The coordinate amplitude ratios are also essentially the
same as in the linear case. Thus, for these conditions at
t = 1700 s of the baseline simulation, the response is
in the linear to weakly nonlinear range. Once nonlinear
effects become noticeable (e.g., by t = 1800 s, Fig. 6e,
the amplitude of x7 has become noticeably larger than
that of x1), the response quickly changes and bears little
resemblance to the original seventh mode of oscillation.

Figure 7 shows a sequence of six “restart” simula-
tions, each with c = 0, initiated using as initial con-
ditions the baseline states at t = 1800, 1825, 1850,
1875, 1900, and 2000 s, respectively. For a restart at
t = 1800 s, Fig. 7a and b, there is a barely noticeable
amplitude modulation of x7(t), and the amplitude ratio

Springer



434 Nonlinear Dyn (2007) 49:425–441

0 100 200 300 400 500 600 700 800
-0.1

-0.05

0

0.05

0.1
7 DOF, 7th NNM, e = 0.5, c = -0.005, IC = 0.04(mode shape 1), h = 0.01 sec

Time in seconds

x
7

(t
)

800 900 1000 1100 1200 1300 1400 1500 1600
-0.5

-0.25

0

0.25

0.5

Time in seconds

x
7

(t
)

1600 1650 1700 1750 1800 1850 1900 1950 2000
-4

-2

0

2

4

Time in seconds

x7
(t

)

0 20 40 60 80 100
-0.04

-0.02

0

0.02

0.04

Time in seconds

x
7

 (
b

lu
e)

, 
x
4 

(g
re

e
n

),
 x

1

1700 1720 1740 1760 1780 1800
-2

-1

0

1

2

Time in seconds

x7
 (

b
lu

e
),

 x
4
 (

g
re

e
n

),
 x

1

1800 1850 1900 1950 2000
-4

-2

0

2

4

Time in seconds

x7
 (

b
lu

e
),

 x
4
 (

g
re

e
n

),
 x

1

0 20 40 60 80 100
-2

-1

0

1

2

Time in seconds

x
7

 (
b

lu
e)

, 
x
4 

(g
re

e
n

),
 x

1

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

20

40

60

Frequency in hz

F
T(

x
7

) 
m

a
g

n
it
u

d
e 0.3125 hz Restart with c = 0 with IC from t = 1700 sec from c = -0.005 run FT(x7) magnitude for     

restart at t = 1700 sec. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) 
(h) 

Fig. 6 Numerical integration results for seventh NNM of the
7-DOF system of Example 3. (a), (b), and (c) Define the baseline
simulation from 0 to 2000 s. (d), (e), and (f) Show x7, x4, and x1

for three 100-s intervals of the baseline simulation. (g) and (h)
For a restart at t = 1700 s of the baseline run with c = 0

a7/a1 is noticeably different from unity. The oscillation
frequency of 0.3125 Hz, however, is essentially the
same as the linear value of 0.3122 Hz. For the restart at
t = 1825 s, Fig. 7c and d, the response is similar, with
more noticeable amplitude modulation. The restart at
t = 1850, Fig. 7e and f, shows a sort of “bursting” phe-
nomenon; during the bursts, x7(t) is noticeably larger
than the other coordinates. The motion appears essen-
tially periodic with a long period of approximately
2π/
ω, where 
ω = 0.0124 Hz, the spacing between
peaks in Fig. 7f. The restarts at t = 1875, 1900, and
2000 s, Fig. 7g through l, show a transition into a fi-
nal motion (Fig. 7k and l) in which the coordinate
x7(t) oscillates essentially independently (frequency
of 0.419 Hz) of the other six coordinates, which re-
spond essentially at the sixth linear natural frequency
(0.3105 Hz) of the 6-DOF system obtained by con-
straining x7(t) to be zero. This essential decoupling
of x7 from the other six coordinates also occurred

for the first NNM, Example 2. Here, however, the
x1 − x6 subsystem response is in the subsystem sixth
mode only, rather than exhibiting all six modes, as in
Example 2.

In order to check the effect of the negative damping
constant c on the results, the baseline simulation with
c = −0.005 (Fig. 6a–c) was restarted with a ten-fold
reduction in c (c = −0.0005) using baseline simula-
tion initial conditions at t = 1500 s. The results, not
shown here, exhibited the same behavior as the baseline
simulation. A smooth growth in amplitudes occurred
until the amplitude of x7(t) attained a value of approxi-
mately unity, after which time there occurred the same
sequence of events as exhibited in Figs. 6 and 7 for the
baseline simulation: there was amplitude modulation
with relatively large x7(t), followed by the essential de-
coupling of x7(t) from the other six coordinates, which
then oscillated essentially in the sixth linear mode of
the 6-DOF system obtained by constraining x7 to be
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Fig. 7 Seventh NNM of 7-DOF system of Example 3. Restart simulations with c = 0 near and following loss of periodicity

zero. Thus, the behavior exhibited in Figs. 4–7 appears
to be real, quasi-static, near-manifold response, rather
than spurious behavior produced by the unsteady effect
of the artificially induced oscillation growth.

We have found behavior similar to that of this exam-
ple to occur for simulations initiated with equal contri-
butions of linear modes 1 and 7, intended to calculate
the four dimensional manifold associated with the com-
bined first and seventh NNMs. The results, not shown
here, are difficult to evaluate as the amplitudes grow,
because the response is aperiodic even in the linear
regime. Nonetheless, we observed what appeared to
be smooth, in-manifold growth of the oscillations, fol-
lowed by weak modulation as off-manifold state com-
ponents developed, followed by essential decoupling of
x7 from the other six coordinates. Thus, the proposed
technique also shows promise for the calculation of
combined NNMs.

3 Method 2 – NNM numerical calculation – slowly

varying nonlinear parameter εε

The second numerical method for NNM calculation
utilizes a slow variation in the parameter ε appearing
in Equation (1). Thus, ε is considered to be a slowly
varying state, such that the following first order differ-
ential equation is appended to Equation (1) to form a
new system model:

ε̇ = b� sin(�t), (10)

with initial condition ε(0) = 0, with constants b and
� specified. The exact solution for ε(t) is ε(t) = b(1 −
cos(�t)); the parameter � is typically chosen so that,
for a given simulation, less than a half cycle of oscil-
lation in the parameter ε occurs over the course of the
simulation. The stated model and initial condition are
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chosen in order that both ε(0) and ε̇(0) vanish, ensuring
a smooth introduction of the nonlinearity into the sys-
tem dynamics. Other slowly varying models for ε(t),
are of course, possible.

In this construction, the system at t = 0 is linear,
and the nonlinearity is slowly introduced. An advan-
tage of this method, compared to method 1, is that
the simulation may be initiated for large amplitude ini-
tial conditions, defined by a given mode shape, so that
the initial state lies exactly on the desired (flat, linear)
modal manifold that applies when ε = 0. As ε increases
slowly, the flat eigenspace is essentially warped into the
curved NNM that is to represent the actual NNM, quasi-
statically, for instantaneous values of the parameter ε.

Example 4. A 3-DOF system (first NNM).

An example of the “slowly varying ε” calculation
method is illustrated in Figs. 8 and 9for the first NNM
of a 3-DOF system with a single cubic nonlinearity

(three unit masses, four linear springs, and a cubically
nonlinear spring attached from mass 3 to the right-hand
ground). The three linear natural frequencies of this
system are 0.7654, 1.414, and 1.8478 Hz, respectively
(no linear internal resonance conditions). This simula-
tion was made for large initial values defined by the
first linear mode shape: x1(0) = 10, x2(0) = 14.14 . . .,
x3(0) = 10, with all initial velocities zero. Figure 8a–h
show the “baseline” time history in segments of 50 s du-
ration between t = 0 and 3000 s. The associated history
ε(t) is shown in Fig. 8i. As ε increases, the coordinates
x1 and x2 retain their essentially harmonic character,
there are noticeable changes in the coordinate ampli-
tude ratios, and there is a noticeable decrease in the
oscillation period. Interestingly, the coordinate x3(t)
exhibits the development of a significant harmonic of
order 3 as ε increases; in addition, by t = 3000 s, the
coordinate x3 amplitude has become small compared
to the amplitudes of x1 and x2. In fact, x1 and x2 are
nearly equal, so that, in effect, the coordinates x1 and x2
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Fig. 8 First NNM of 3-DOF system of Example 4 with nonlinearity parameter epsilon increasing slowly from zero. Parameters: b = 1.0,
� = 0.000314159
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Fig. 9 Constant ε (0.8244) simulation restarted from end of baseline simulation at t = 3000 s. The response is (essentially) periodic

mimic the response that would occur in the first linear
mode of the 2-DOF system obtained by constraining
x3 to be zero; the frequency of oscillation of x1 and
x2 also approaches the value ω1 = 1.0 Hz that applies
for this “separated” 2-DOF system. The growth of the
higher harmonic in x3 and the “separation” of the co-
ordinates x1 and x2 from x3 are easily uncovered using
this simulation method.

Shown in Fig. 9 is a constant ε simulation, initi-
ated using the system state and the value ε = 0.8244 at
t = 3000 s from the “slowly varying ε” baseline simu-
lation of Fig. 8. The periodicity of the motion is con-
firmed, indicating that the technique has produced, for
this example, a motion in the modal manifold for the
value of ε considered.

Example 5. The 7-DOF system of Example 2 (first
NNM).

The first NNM of the 7-DOF system of Example 2
was also simulated using the slowly varying ε method.
A large amplitude initial displacement vector 20φ1,
with zero initial velocities, was assumed, with other
simulation parameters b = 0.5, � = π/104, and fixed
h = 0.025 s. The “baseline” simulation (10,000 s to-
tal, consisting of two 5000-s simulations pieced to-
gether) appears in Fig. 10, with x7(t) in Fig. 10a, x4(t) in
Fig. 10b, and ε(t) in Fig. 10c. Figure 10d–h show 100-s
histories of x1, x4, and x7 for the baseline simulation.

Initially (t < 600 s or so), the oscillation amplitudes
decay smoothly as ε grows from zero; the decay is due
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Fig. 10 Baseline simulation for Example 5: First NNM of 7-DOF system of Example 2 with slowly varying epsilon

to the “effective damping” provided by the slowly in-
creasing oscillation frequency occurring as the nonlin-
earity comes into play (see [37] for a discussion of this
phenomenon). For times near 1000–2500 s, amplitude
modulation is observed similar to that exhibited in Fig.
4b and c. We interpret this weak modulation to signify
that the system state is near, but not on, the modal man-
ifold. There is a “wedge” in x7(t) around t = 3700 s,
similar to that in Fig. 4c at 24,000 s. Amplitude modu-
lation is again observed in Fig. 10a from approximately
t = 4000–7000 s, followed by “breakup” to a more ir-
regular response. These features also exist in Fig. 4c.
Overall, if one uses the parameter εa2

7 as an indicator
(where a7 is an amplitude measure of x7(t)), similar
behaviors are observed in Figs. 4 and 10 for similar
levels of εa2

7 .
Figure 11 shows several constant ε simulations

restarted from the baseline state at the indicated times.
For a restart at t = 350 s (ε = 0.00302), the closed or-
bits in Fig. 11b indicate on-manifold behavior. The
restart at 600 s (ε = 0.008855), Fig. 11c and d, exhibits

the “ribbony” behavior similar to that of Fig. 5d. The
restart at 1200 s (ε = 0.03511), with Fourier transform
magnitudes shown in Fig. 11f, shows “overtone split-
ting” similar to that in Fig. 5f. The restarts at t = 3700
(ε = 0.30142) and 5000 s (ε = 0.5) exhibit large har-
monics of order five, with broadening of the spectral
peaks for the restart at t = 5000 s. Finally, the restart
at t = 10,000 s (ε = 1.0) exhibits the essential “sep-
aration” of the coordinate x7 from the other six co-
ordinates. Overall, the large amplitude, near-manifold
responses exhibited for this slowly varying ε example
are qualitatively the same as those found in Example 2
using the artificial instability method.

4 On accuracy and effective use of the proposed

methods

In the application of the proposed methods, it is nec-
essary to determine, as the importance of the nonlin-
ear effect slowly increases, the range of validity of the
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Fig. 11 Constant epsilon restarts from the baseline simulation for the first NNM of the 7-DOF system of Example 5. The values of
epsilon are noted in the figures in the left-hand column

numerical calculation. While errors accompanying nu-
merical integration can be controlled, there are two
other issues that will affect the validity of the calcu-
lation: (1) error due to the unsteady contribution of the
artificial instability (Method 1) or the slowly varying
parameter ε (Method 2) and (2) qualitative response
changes that would occur even if the error due to un-
steady effects were negligible (for example, the appar-
ent “coordinate decoupling of x7(t) from x1(t) through
x6(t) in the 7-DOF examples presented earlier; or bifur-
cations of the NNMs, not specifically considered here).

The following steps are recommended in order to
check the validity of the NNM calculation:

1. For Method 1 conduct several simulations using a
range of values of the destabilizing parameter c in
order to determine an approximate upper bound |c0|,
such that the numerical integration results for |c| ≤
|c0| are essentially independent of c, signifying

acceptably small error due to unsteady effects. Ap-
ply a similar procedure for Method 2 using a range
of values of the parameter b in Equation (10).

2. Select a number of times at which to test periodicity
of the response: using the state at a selected time, set
c or ε̇ to zero and simulate a reasonably large number
of cycles in order to confirm, via phase portraits
and frequency spectra, that the motion is essentially
periodic.

It appears to us that Method 2, utilizing the slowly
varying parameter ε, is the better of the two meth-
ods proposed because the starting conditions are ex-
act (large amplitude linear mode shape, ε = 0) and no
knowledge beyond the linear solution is needed to ini-
tiate the simulation. For Method 1, on the other hand,
there will always be some error in the initial state. This
error can be made negligible only if some knowledge
of the near equilibrium NNM behavior is available. In
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addition, starting the simulation very near equilibrium,
desirable to minimize error in the initial state, may ne-
cessitate a very long time for the small initial state to
be amplified by the artificial destabilization.

5 Concluding remarks

Two numerical integration methods have been pre-
sented for the calculation of NNMs of nonlinear, con-
servative structural systems. The methods are simple
to implement and appear to be efficient and reasonably
accurate, although “off-manifold” errors do accrue due
to numerical integration error and due to the approxi-
mation of steady phenomena by unsteady models. The
calculation of moderately to strongly nonlinear effects
on the individual NNMs is intended to be of use in
calculation of the NNMs and in providing benchmark
solutions against which analytical or other numerical
methods may be compared and against which ROM
results may be compared.

A second potential use of the proposed methods is
the determination, for larger amplitudes, of the aperi-
odic responses arising due to the slightly off-manifold
system state that appears to occur due to the combined
numerical integration error, and the error due to un-
steady models being used to approximate the steady
NNM phenomena of interest. These types of aperiodic
responses may be of interest.
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