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Abstract In this article, the stability of a milling pro-
cess is studied by using a semi-discretization method.
The model of the workpiece–tool system includes
loss-of-contact effects between the workpiece and the
tool and time-delay effects associated with the chip-
thickness variation. In addition, feed-rate effects are
also considered. The governing system of equations is a
non-autonomous, delay-differential system with time-
periodic coefficients. Stability of periodic orbits of this
system is studied to predict the onset of chatter and
numerical evidence is provided for period-doubling bi-
furcations and secondary Hopf bifurcations. Stability
charts generated using the semi-discretization method
are found to compare well with the corresponding re-
sults obtained through time-domain simulations.

Keywords Stability . Milling process . Time delay .

Chatter

1 Introduction

During a milling process, chatter is an undesired rela-
tive vibration between the workpiece and the tool that
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can result in poor accuracy and tool wear. This un-
desired state of vibration can also limit the material
remove rate, which, in turn, results in a low production
rate. Hence, considerable attention has been devoted to
understand the chatter mechanisms, predict the onset of
chatter, and suppress the chatter. As in self-excited sys-
tems (e.g. [1]), there is a regenerative effect in a milling
process. This effect is in the form of a time-delay ef-
fect in the governing equations, and the physical basis
for this effect is the cutting forces in the workpiece–
tool system. This force depends on the chip thickness,
which is determined not only by the present state of mo-
tion of the workpiece–tool system but also by the past
state of motion of this system. In the context of milling
processes, considerable research on chatter due to this
time-delay effect has been carried out [2–9].

As discussed in the studies of Balachandran [9],
Balachandran and Zhao [10], Zhao and Balachandran
[11], and Balachandran and Gilsinn [12], in general, the
governing system of equations of a milling process is
a nonlinear, non-homogeneous, delay-differential sys-
tem with time-periodic coefficients. Over the years, this
system of equations have been approximated on a phys-
ical basis as well as a mathematical basis to determine
the stability of motions of the workpiece–tool system.
These approximations are to do with consideration of
nonlinearities, time-periodic nature of the cutting-force
coefficients, and the feed terms. For example, if one
does not consider multiple regenerative effects, loss-
of-contact dynamics, friction, structural nonlinearities,
and other sources of nonlinearities, then, the resulting
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system of equations is linear [2, 4, 5, 7, 8]. Tlusty
and Polacek [2] presented a frequency-domain ap-
proach based on transfer functions between the system
displacements and the cutting forces to determine the
instability due to the regenerative effect. In milling pro-
cesses, the orientations of the cutting forces and chip
thickness are the explicit periodic functions of time.
If the cutting forces are averaged over the period of
contact time of each cutter with the workpiece, then
the resulting system of delay-differential equations no
longer has time-periodic coefficients but rather constant
coefficients. This type of averaging was carried out in
the Opitz et al. [4] who examined the stability of a face
milling process and also in the work of Altintas and
Budak [8]. Prior to the stability analysis, Sridhar et al.
[5] dropped the feed terms from their model and then
studied the stability of the zero solution of the resulting
linear, homogeneous delay-differential system with pe-
riodic coefficients. Hahn [13] presented an extension
of Floquet’s theorem for delay-differential equations
with periodic coefficients. This provided a basis for the
work of Sridhar et al., who numerically computed the
fundamental matrix and the eigenvalues of this matrix.
In the study of Minis and Yanushevsky [7], as in pre-
vious studies [5, 8], milling operations with straight
fluted cutters are considered. They used Floquet the-
ory to determine the stability of the zero solution of
a linear, homogeneous delay-differential system. The
periodic terms were expanded by using a Fourier ex-
pansion with the basic frequency defined by the spindle
speed. The Hill’s determinant [1] was obtained and the
zeroth-order and first-order truncations of the resulting
characteristic equation were used in determining the
stability charts in the space of spindle speed and depth
of cut.

In the work of Hanna and Tobias [6], face milling
processes were considered and modeled by using struc-
tural nonlinearities and cutting-force nonlinearities.
Quadratic and cubic nonlinearities were included in
a delay-differential system with constant coefficients,
and the stability of the zero solution of this system was
studied. Unlike the model used by Hanna and Tobias
[6], the models used by Sridhar et al. [5], Minis and
Yanushevsky [7], and Altintas and Budak [8] are lin-
ear. While these linear models are useful for predict-
ing the onset of chatter, they are not suited for under-
standing the nature of the instability as well as post-
instability motions. In the work of Balachandran and
Zhao [10] and Zhao and Balachandran [11], loss-of-

contact nonlinearities and feed rate effects are consid-
ered. They pointed out that linear models can provide
quite accurate stability predictions for high-immersion
milling operations but inaccurate stability predictions
for low-immersion operations. Stability of these op-
erations in the space of spindle speed and depth of
cut can be constructed through time-domain simula-
tions of this nonlinear system. However, for deter-
mining the type of instability of the periodic motion
of this nonlinear, non-homogeneous, non-autonomous,
delay-differential system, numerical schemes with an
analytical basis are required. To this end, the semi-
discretization scheme is used here. This scheme has
been shown to be an efficient numerical scheme for
studying the stability of the zero solution of non-
autonomous systems with a continuous time delay
[14, 15].

The primary contribution of this article is in the
formulation and use of semi-discretization method for
study of stability of periodic motions of workpiece–
tool systems associated with milling operations. In for-
mulating this method, an extension has been made to
handle cases with multiple time delays. Numerical ev-
idence for bifurcations is also shown by examining the
Poincaré sections of periodic motions. The model used
in this article is discussed in Section 2, and stability
analysis is detailed in Section 3. Results and discus-
sion are presented in Section 4.

2 Governing equations of workpiece–tool system

In this section, the model developed by Balachandran
and Zhao [10] is revisited, features of this model are dis-
cussed, and a state-space form of the governing equa-
tions suitable for stability analysis is formulated. In
Fig. 1, a multi-degree-of-freedom system representa-
tive of a workpiece–tool system is illustrated for milling
operations with a cylindrical end mill. The cutting tool
has a radius R, N flutes, and a helix angle η. For con-
venience, the X -direction is oriented along the feed di-
rection of cutter, and the feed rate is specified by f . The
governing equations of motion are of the form [10, 11]

mx q̈x (t) + cx q̇x (t) + kx qx (t) = Fx (t ; τ1, τ2)
myq̈y(t) + cyq̇y(t) + kyqy(t) = Fy(t ; τ1, τ2)
muq̈u(t) + cuq̇u(t) + kuqu(t) = Fu(t ; τ1, τ2)
mvq̈v(t) + cvq̇v(t) + kvqv(t) = Fv(t ; τ1, τ2)

(1)
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Fig. 1 Workpiece–tool system model

where the tool has 2 degrees of freedom, and the work-
piece has 2 degrees of freedom. The cutting force com-
ponents, which appear on the right-hand side of the
equations, are time periodic functions. Furthermore,
the discrete time delays τ1 and τ2 are introduced in the
governing equations through the cutting force compo-
nents. As discussed later in this section, these delays
depend on the feed rate and the spindle rotation speed.
The dependence of the cutting forces on the system
states are not explicitly shown in Equation (1).

In the cutting zone θ ′
s < θ (i, t, z) < θ ′

e, when the
i th cutting tooth is in contact with workpiece, the
corresponding cutting force components are given
by

{
Fi

x (t ; τ1, τ2)
Fi

y(t ; τ1, τ2)

}
=

[
κ i

11(t) κ i
12(t)

κ i
21(t) κ i

22(t)

] {
A(t ; τ1)
B(t ; τ2)

}
+

[
ci

11(t) ci
12(t)

ci
21(t) ci

22(t)

] {
Ȧ(t ; τ1)
Ḃ(t ; τ2)

}
(2)

where the relative displacement functions are given by

A(t ; τ1) = qx (t) − qx (t − τ1)

+qu(t) − qu(t − τ1) + f τ1

B(t ; τ2) = qy(t) − qy(t − τ2) + qv(t) − qv(t − τ2) (3)

When a cutting flute is outside the cutting zone, then
the cutting force components associated with this flute
are zero. In addition, when the dynamic uncut chip
thickness associated with the i th flute is zero, then there
is no contact between the workpiece and the corre-
sponding cutter flute. The corresponding cutting force
components are zero when there is loss of contact, i.e.,{

Fi
x (t ; τ1, τ2)

Fi
y(t ; τ1, τ2)

}
= 0 (4)

Carrying out a summation over the N cutting flutes,
the cutting force components are determined to be

{
Fx (t ; τ1, τ2)
Fy(t ; τ1, τ2)

}
=

N∑
i=1

{
Fi

x (t ; τ1, τ2)
Fi

y(t ; τ1, τ2)

}

=
[

κ11(t) κ12(t)
κ21(t) κ22(t)

] {
A(t ; τ1)
B(t ; τ2)

}
+

[
c11(t) c12(t)
c21(t) c22(t)

] {
Ȧ(t ; τ1)
Ḃ(t ; τ2)

}
(5)

In addition, from Newton’s third law of motion, the
forces acting on the workpiece can be determined as{

Fu(t ; τ1, τ2)
Fv(t ; τ1, τ2)

}
=

{
Fx (t ; τ1, τ2)
Fy(t ; τ1, τ2)

}
(6)

In the previous studies [3–9], the feed rate is as-
sumed to be very small compared to the cutting ve-
locity and the tool-pass period along the X - and Y -
directions is taken to be equal to the cutting tooth period
T . When, the feed rate is significant, the tool pass pe-
riod is likely to depend on the feed rate. To capture this
dependence, as an approximation, the time delay along
the X -direction is assumed to be different from the time
delay along the Y -direction, and these delays are de-
termined as follows. Let the tool-pass period along the
X -direction be

τ1 = T = 1

N�
(7)

where � is the spindle speed. Then, based on quasi-
static approximations, the tool-pass period along the
Y -direction can be determined as

τ2 = 4π R
N (4π�R + f )

(8)
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On substituting Equations (4)–(6) into Equations
(1), the resulting system is

Mq̈(t) + [C − Ĉ(t)]q̇(t) + [K − κ̂(t)]q(t)

= −Ĉ1(t)q̇(t − τ1)

−Ĉ2(t)q̇(t − τ2) − κ̂1(t)q(t − τ1)

−κ̂2(t)q(t − τ2) + κ̄ f τ1 (9)

where the different matrices are given by

M =

⎡⎢⎢⎢⎣
mx 0 0 0

0 my 0 0

0 0 mu 0

0 0 0 mv

⎤⎥⎥⎥⎦ (10)

C =

⎡⎢⎢⎢⎣
cx 0 0 0

0 cy 0 0

0 0 cu 0

0 0 0 cv

⎤⎥⎥⎥⎦ (11)

K =

⎡⎢⎢⎢⎣
kx 0 0 0

0 ky 0 0

0 0 ku 0

0 0 0 kv

⎤⎥⎥⎥⎦ (12)

Ĉ(t) = Ĉ1(t) + Ĉ2(t) (13)

Ĉ1(t) =

⎡⎢⎢⎢⎣
c11(t) 0 c11(t) 0

c21(t) 0 c21(t) 0

c11(t) 0 c11(t) 0

c21(t) 0 c21(t) 0

⎤⎥⎥⎥⎦ (14)

Ĉ2(t) =

⎡⎢⎢⎢⎣
0 c12(t) 0 c12(t)
0 c22(t) 0 c22(t)
0 c12(t) 0 c12(t)
0 c22(t) 0 c22(t)

⎤⎥⎥⎥⎦ (15)

κ̂(t) = κ̂1(t) + κ̂2(t) (16)

κ̂1(t) =

⎡⎢⎢⎣
κ11(t) 0 κ11(t) 0
κ21(t) 0 κ21(t) 0
κ11(t) 0 κ11(t) 0
κ21(t) 0 κ21(t) 0

⎤⎥⎥⎦ (17)

κ̂2(t) =

⎡⎢⎢⎣
0 κ12(t) 0 κ12(t)
0 κ22(t) 0 κ22(t)
0 κ12(t) 0 κ12(t)
0 κ22(t) 0 κ22(t)

⎤⎥⎥⎦ (18)

κ̄(t) =

⎧⎪⎪⎨⎪⎪⎩
κ11(t)
κ21(t)
κ11(t)
κ21(t)

⎫⎪⎪⎬⎪⎪⎭ (19)

Introducing the state vector,

Q =
{

q

q̇

}
(20)

Equation (9) can be rewritten as

Q̇(t) = W0(t)Q(t) + W1(t)Q(t − τ1)

+W2(t)Q(t − τ2) +
{

0
κ̄(t)

}
f τ1 (21)

where W0(t) is the coefficient matrix for the vector of
present states

W0(t) =
[

0 I

−M−1(K − κ̂(t)) −M−1(C − Ĉ(t))

]
(22)

and W1(t) and W2(t) are the coefficient matrices as-
sociated with vectors of delayed states. These matrices
are given by

W1(t) =
[

0 0

−M−1κ̂1(t)) −M−1Ĉ1(t))

]
(23)

W2(t) =
[

0 0

−M−1κ̂2(t)) −M−1Ĉ2(t))

]
(24)

The matrices W0(t), W1(t), and W2(t) contain T -
periodic functions. Unlike the previous work reported
in [9–11], multiple regenerative effects are not consid-
ered here due to the limitation of the stability analysis
presented in the next section. Again, as pointed out
earlier, it is mentioned that in earlier studies [2, 4, 5, 7,
8], the feed term in system (21) was not considered or
dropped prior to the stability analysis.
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3 Stability analysis

The system of Equation (21) is a nonlinear, nonhomo-
geneous, and nonautonomous delay-differential equa-
tions with time-periodic coefficients. For a chosen set
of control parameters, which here are the spindle speed
and the axial depth of cut (ADOC), the stability of peri-
odic motions of this system of equations is to be deter-
mined. In this section, the semi-discretization method
presented by Insperger and Stépán [14, 15] is used to
determine the local stability of a periodic motion. This
method is extended here to handle systems with two
discrete time delays, and further, this scheme is applied
to a system with loss-of-contact nonlinearities.

Let the nominal periodic solution of Equation (21)
be represented by Q0(t). Then, a perturbation X(t) is
provided to this nominal solution resulting in

Q(t) = Q0(t) + X(t) (25)

After substituting Equation (25) into Equation (21),
the resulting system governing the perturbation is given
by

Ẋ(t) = W0(t)X(t) + W1(t)X(t − τ1)

+W2(t)X(t − τ2) (26)

The extended Floquet theory presented by Hahn [13]
and Farkas [16] provides a basis for determining the
stability of the trivial solution X(t) = 0 of the system
(26). If all of the Floquet multipliers are within the
unit circle, then the corresponding periodic solution of
(21) is stable. If one or more of the Floquet multipliers
are on the unit circle, while the rest of them are inside
the unit circle, then the corresponding periodic solu-
tion may undergo a bifurcation [17]. A difficulty with
systems such as (26) is in determining the monodromy
matrix [17], which has no closed-form solutions. Here,
an approximation for this monodromy matrix is sought
by using the semi-discretization method, and the eigen-
values of this matrix will be used to examine the local
stability of the considered periodic solution.

Next, the formulation of the semi-discretization
method is presented. In this formulation, the time pe-
riod T of the periodic orbit is first broken up into (k + 1)
intervals each of length �t , and in each interval, the
nonautonomous delay-differential system (26) is re-
placed by an autonomous ordinary differential system.

 

(N2+yr) t 
2 

t

t

 

(N2+ +yr) t 

N t 

(N + ) t 

T

Fig. 2 Discretization scheme

This piecewise linear system of ordinary differential
equations is solved to obtain a high-dimensional linear
map, which is examined for determining the stability
of X(t) = 0 of the system (26).

As illustrated in Fig. 2, the time interval �t is chosen
as [14]

�t = τ1

N1 + (1/2)
(27)

where N1 is an integer approximation. The relationship
between �t and the other discrete time delay τ2 is given
by

τ2 =
(

N2 + 1

2
+ yr

)
× �t (28)

where yr is given by

yr = mod

(
τ2 − (1/2)�t

�t

)
(29)

and

N2 = τ2

�t
− yr − 1

2
(30)

For t ∈ [ti , ti+1], the delayed states are approxi-
mated as

X(t − τ1) � X(ti + (1/2)�t − τ1) = X(ti−N1) (31)

X(t − τ2) � X(ti + (1/2)�t − τ2) = X(ti−N2−yr ) (32)

� (1 − yr )X(ti−N2) + yr · X(ti−N3) (33)

and N3 = N2 + 1.
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The time-periodic terms in Equation (26) are ap-
proximated as

Wi,0 = W0(ti ) � 1

�t

∫ ti+1

ti
W0(t)dt (34)

Wi,N1 = WN1(ti ) � 1

�t

∫ ti+1

ti
W1(t)dt (35)

Wi,N2 = WN2(ti ) � 1 − yr

�t

∫ ti+1

ti
W2(t)dt (36)

Wi,N3 = WN3(ti ) � yr

�t

∫ ti+1

ti
W2(t)dt (37)

Then, over each time interval t ∈ [ti , ti+1] for i =
0, 1, 2, . . . , k, Equations (26) can be approximated as

Ẋ(t) = Wi,0X(t) + Wi,N1Xi−N1

+Wi,N2Xi−N2 + Wi,N3Xi−N3 (38)

where X(ti ) has been rewritten as Xi . Thus, the infinite-
dimensional system (26) has been replaced by a piece-
wise system of ordinary differential equations in the
time period t ∈ [t0, t0 + T ]. Note that in each interval,
the autonomous system has a constant excitation or
forcing term that arises due to the delay effects.

To proceed further, it is assumed that Wi,0 is invert-
ible for all i . Then, the solution of Equations (38) takes
the form

X(t) = eWi,0(t−ti )

[
Xi + W−1

i,0

N1∑
j=1

Wi, j Xi− j

]

−W−1
i,0

N1∑
j=1

Wi, j Xi− j (39)

where Wi, j = 0 for j �= N1, N2, and N3. When t =
ti+1, the system (39) leads to

Xi+1 = Mi,0Xi +
N1∑
j=1

Mi, j Xi− j (40)

where the associated matrices are given by

Mi,0 = eWi,0�t (41)

and for j > 0,

Mi, j =
{

(eWi,0�t − I )W−1
i,0 Wi, j if j = N1, N2, N3

0 otherwise

(42)

The system (40) can be used to construct the state
vector

Yi = (Xi , Xi−1, . . . , Xi−N1)T (43)

and the linear map

Yi+1 = Bi Yi (44)

where the Bi matrix is given by

Bi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mi,0 0 · · · Mi,N2 Mi,N3 · · · 0 Mi,N1

I 0 · · · 0 0 · · · 0 0

0 I · · · 0 0 · · · 0 0
...

...
. . .

...
...

. . .
...

...
0 0 · · · I 0 · · · 0 0

0 0 · · · 0 I · · · 0 0
...

...
. . .

...
...

. . .
...

...
0 0 · · · 0 0 · · · I 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(45)

For a “small” feed rate, τ1 ≤ τ2 + �t , and hence,
N1 = N3. In this case, the matrix Bi can be shown to
be

Bi =

⎡⎢⎢⎢⎢⎢⎣
Mi,0 0 · · · Mi,N2 Mi,N3 + Mi,N1

I 0 · · · 0 0

0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

⎤⎥⎥⎥⎥⎥⎦(46)

From the system (44), it follows that

Yk+1 = Bk · · · B1B0Y0 (47)

from which the transition matrix can be identified as

Φ = Bk · · · B1B0 (48)

This matrix Φ represents a finite-dimensional ap-
proximation of the “monodromy matrix” associated
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Table 1 Modal parameters
of workpiece–tool system Mode Frequency (Hz) Damping (%) Stiffness (N/m) Mass (kg)

Tool (X ) 1006.58 1.0 8.0 × 105 2.0 × 10−2

Tool (Y ) 1027.34 1.5 1.0 × 106 2.4 × 10−2

Workpiece (U ) 503.29 1.0 1.0 × 106 1.0 × 10−1

Workpiece (V ) 711.76 1.0 3.0 × 106 1.5 × 10−1

Table 2 Tool and cutting
parameters Normal rake Helix Tooth Radius Cutting friction

angle (φn) angle (η) number (mm) Kt (MPa) kn coefficient (μ)

15◦ 30◦ 2 6.35 600 0.3 0.2

with the periodic orbit Q0(t) of (21) and the triv-
ial solution X(t) = 0 of (26). If the eigenvalues of
this matrix are all within the unit circle, then the
trivial fixed point of (26) is stable, and hence, the
associated periodic orbit of (21) is stable. At a bi-
furcation point, one or more of the eigenvalues of
the transition matrix will be on the unit circle. Here,
this information is used to determine when a period-
doubling bifurcation or a secondary Hopf bifurcation is
imminent.

4 Results and discussion

In this section, results obtained through numerical in-
vestigations into the dynamics and stability of various
milling operations are presented. The workpiece–tool
system modal parameters are shown in Table 1, and the

tool and cutting parameters are shown in Table 2. The
feed rate is fixed at 0.102 mm per tooth for all different
cases. For comparison, the stability charts generated by
using time-domain simulations [9, 11] and an averaged
coefficients method is presented. The latter is labeled
with the legend “averaged coefficients” in the stabil-
ity charts. These stability charts are presented in the
space of ADOC and the spindle speed. For the semi-
discretization analysis, the periodic orbit is numerically
generated from (1). In formulating the averaged coeffi-
cients method, the periodic coefficients in system (26)
are averaged over one period of the orbit. The averaged
coefficients method may be viewed as an approxima-
tion of the semi-discretization method where the time
averaging is carried over segments spread over the pe-
riod of the orbit.

The stability charts for a full immersion operation
are presented in Fig. 3. The stability lobes determined
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Fig. 3 Stability charts for full immersion operations
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Fig. 4 Stability charts for 25% immersion up-milling operations
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Fig. 5 Stability charts for 25% immersion down-milling operations

by time-domain simulations mark the transition from
periodic motions to quasi-periodic motions of the
system (1). The stability lobes determined by the
averaged coefficients method are the loci of Hopf
bifurcation points of the time-averaged autonomous
system derived from (1). The stability lobes determined
through the semi-discretization method are the loci of
secondary Hopf bifurcation points. The stability chart
determined by the semi-discretization method is close
to the stability chart generated through time-domain

simulations, while the stability chart generated by
linear analysis is not close to these stability charts,
especially at high spindle speeds. This may be due to
a combination of two aspects, one being the averaging
carried out over one complete cycle of the orbit, and
the second is to do with neglect of the feed rate effect
during the stability analysis. It is remarked that the feed
rate term is retained in the time-domain simulations
and the analysis based on the semi-discretization
method.
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Fig. 6 Stability charts for 10% immersion up-milling operations
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Fig. 7 Stability charts for 10% immersion down-milling operations

The stability charts for different low-immersion op-
erations are presented in Figs. 4–7. As the immersion
percentage of the tool into the workpiece decreases,
the loss-of-contact effects become more prominent in
the workpiece–tool system dynamics. Figures 4 and
5 correspond to up-milling and down-milling opera-
tions (i.e., opposite directions of spindle rotation) at 25
% immersion, respectively. Figures 6 and 7 represent a
similar pair of results for 10% immersion, respectively.
As first reported by Zhao and Balachandran [11], sta-

bility charts generated for up-milling operations and
down-milling operations can be different, and this is
confirmed by the results presented in Figs. 4–7. In ad-
dition, the occurrence of period-doubling bifurcation is
indicated by time-domain simulations and confirmed
by the results of the semi-discretization analysis. The
period-doubling bifurcation points are marked by stars
in the figures. At other locations on the stability lobes,
secondary Hopf bifurcations occur. Due to the nature
of the formulation of the averaged coefficients method,
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Fig. 8 Bifurcation diagram on Poincaré section for 14,200 rpm, 10% immersion up-milling operations

period-doubling bifurcations cannot be picked up by
this method. In addition, as indicated in the charts for
up-milling operations, the stable regions predicted by
the averaged coefficients methods is much larger than
that predicted by both time-domain simulations and
the stability analysis based on the semi-discretization
method.

In Fig. 8, for a fixed spindle speed, the numeri-
cally generated bifurcation diagram is shown when the
ADOC is used as a control parameter. The first period-
doubling bifurcation occurs at ADOC = 1.87 mm, as
pointed out in Fig. 6. The Poincaré sections used for
this bifurcation diagram are constructed by using the
period of the orbit as the clock period.

This paper presents an attempt at using the semi-
discretization method for examining the stability of
milling operations. The development of this method
for a system with two discrete time delays is described.
Through representative examples, it is shown that
this scheme predicts stability charts in fairly good
agreement with those obtained by using time-domain
simulations. In addition, this scheme indicates that
apart from secondary Hopf bifurcations of periodic
orbits, period-doubling bifurcations of periodic orbits
can occur in low-immersion operations. A point to
note is that the stability analysis based on the semi-
discretization scheme is less time consuming compared
to the time-domain simulations.
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