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Abstract This paper describes a new tuning method
for fractional PIα controllers. The main theoretical con-
tribution of the paper is the analytical solution of a non-
linear function minimization problem, which plays a
central role in deriving the tuning formulae. These for-
mulae take advantage of the fractional order α to offer
an excellent tradeoff between dynamic performances
and stability robustness. Finally, a position control is
implemented to compare laboratory experiments with
computer simulations. The comparison results show the
good performance of the tuning formulae.
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1 Introduction

Six decades after the seminal paper of Ziegler and
Nichols (see [27]), proportional integral (PI) and pro-
portional integral derivative (PID) controllers are still
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at the heart of control applications. However, in spite
of their central role in control engineering, PID have
attracted relatively little attention of research commu-
nity (see [1]). Only recently, indeed, many authors have
observed that the practice of PID can take considerable
benefits from specific research in this field (see [1, 14]).
Certainly, a better understanding of these control de-
vices is highly desirable because it can contribute to
enhance the quality of products and the efficiency of
manufacturing.

In the context of controller design, the old Bode’s
idea of a reference optimal loop response is recently ex-
periencing a revival of interest. The optimal response
is an ideal open-loop asymptotic gain diagram, pos-
sibly including segments with slopes that, at least in
principle, may assume any value. The controller de-
sign mainly consists in shaping the asymptotic gain
diagram and, in particular, in choosing the slope of the
segment crossing the frequency axis. In addition, the
gain diagram must maintain this slope in a wide fre-
quency interval around the crossover. So, the phase
margin is constant in the same interval and stabil-
ity robustness is guaranteed even for high gain vari-
ations. Clearly, the required slope corresponds to ir-
rational functions of the type ( jω)ν , where ν is real,
which represent fractional integro-differential oper-
ators in the Laplace domain (see [15, 20]). Frac-
tional calculus, indeed, is the framework underlying the
fractional-order controllers (FOC) design and it is just
a recent focus of interest of dynamic systems control
(see [2, 24]).
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The application of the frequency response technique
and of the fractional integro-differential operators to the
controllers design dates back to [11]. Frequency anal-
ysis is also applied to fractional-order PID-like con-
trollers which were introduced some years later, i.e.,
in the TID scheme proposed by [10], the proportional
compensating unit of a classical PID device is replaced
by an element referred to as a “tilt” compensator with
transfer function equal to s1/n or s−1/n with n integer.
The synthesis approach to the CRONE control pro-
posed by [16] and [17] pursues the “fractal robustness”
on the basis of a desired frequency template (see [18]).
Also, the PIλDμ controller, introduced by [21] in the
time domain, is studied by [19] in the frequency do-
main. Recently, the subclass of the fractional-order
controllers is still analyzed in the frequency domain
to take advantage of the fractional order λ in process
compensation (see [12]).

However, the design methods for PIλ and PIλDμ con-
trollers are a recent research area (see [3, 5, 6, 13, 22,
23, 25]). The aim of this paper is to introduce a new
approach to the design of PIλ controllers, which is in-
spired to the classical “symmetrical optimum” method
(SOM), which is very popular in the design of elec-
tromechanical systems and position control. This ap-
proach, which dates back to [8], is recently used by [26]
for auto-calibration of conventional PID controllers.

This paper is organized as follows. Section 2 briefly
reviews the reference models of the plant and the frac-
tional controller. For convenience, the performance of
the SOM is recalled and the symbols are also intro-
duced. Section 3 derives the solution of a nonlinear
equation which leads to the tuning method. Section 4
provides simulations and laboratory experiments con-
firming the performances of the PIα controller. Section
5 gives concluding remarks.

2 The models of the plant and of the PIα controller

The design approach proposed in this paper is inspired
by the SOM (see [8, 26]). Despite being an old method,
the SOM contains several ideas that have been widely
developed in the years following its introduction. The
most important one is to define the class of plants of
interest in an effective manner. It is a common and
widely-accepted by-product of the SOM to approxi-
mate many high-order processes, e.g., thermal and elec-
tromechanical systems (see [9, 26]) by an integration

plus a first-order model. More precisely, let the plant
be represented by

G P (s) = K P L

∏
j (1 + τ j s)

s
∏

i (1 + τi s)
e−Ls . (1)

The dead time L , the time constants τ j and τi may be
gathered into an equivalent time constant TE as follows
(see [8, 9]):

TE =
∑

i

τi −
∑

j

τ j + L , (2)

so that the reference transfer function of the plant be-
comes:

G P (s) = K P L

s (1 + TE s)
. (3)

Hence, TE may represent either the sum of un-
compensable negligible time delays and time constants
of the plant, or the small time constant which deter-
mines the closed-loop bandwidth necessary for tuning
the controller. The SOM can be also applied to plants
represented by:

G P L1(s) = K P L1

(1 + T s)

∏
j (1 + τ j s)∏
i (1 + τi s)

e−Ls, (4)

with T � TE and T � τi . In this case, the transfer
function (3) can be also assumed as reference, with
K P L = K P L1/T and TE given by (2). Note that the gain
K P L is variable in many electrical drives applications.

Next, let us to briefly introduce the fractional con-
trollers. According to the symbolism suggested by [15],
consider the fractional integral of order α, of the generic
function f :

d−α f
dt−α

= 1

�(α)

∫ t

0

f (τ ) dτ

(t − τ )1−α
, (5)

where � is the gamma function. The (5) is the
Riemann–Liouville definition, written for the order
0 < α ≤ 1. For α = 1, the (5) gives the ordinary
integral of the generic function f . It can be also proved
that (see [15]) :

L

{
d−α f
dt−α

}
= F(s)

sα
, (6)
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where L is the unilateral Laplace transform, and F(s)
is the Laplace transform of f . This makes the analysis
of dynamical systems easier. In particular, it is also
possible to define the PIα controller as:

GC (s) = KC

[
1 + 1

(TI s)α

]
, (7)

where KC and TI are the gain and the integral con-
stants, respectively. Of course, for α = 1, (7) becomes
the transfer function of an ordinary PI controller.

Now, introducing the non-dimensional frequency ν,
with s = ν ω0, ω0 = 2π/T0 and T0 = 2πTI , with the
position K P = K P L TI , yields:

G(ν) = G P (ν)GC (ν) = K P KC (1 + να)

ν1+α(1 + νa−2)
, (8)

where TI = a2TE with a > 1. Moreover, if ω = u ω0,
then for ω = ωI = 1/TI and ω = ωE = 1/TE it fol-
lows uI = 1 and uE = a2, respectively, and (8) gives:

G( ju) = K P KC [1 + ( ju)α]

( ju)1+α(1 + jua−2)
. (9)

Equation (9) leads to a very simple formulation of
the proposed design approach. In addition, with α = 1
in (9), the classical tuning formula of the SOM can be
rewritten with respect to the phase margin P M (design
specification) as follows:

a = 1 + sin(P M)

cos(P M)
. (10)

The P M is reached at the frequencyωmax = (aTE )−1 =
aT −1

I , and hence for umax = a. Since the SOM as-
sumes ωmax = ωGC, where ωGC is the gain-crossover
frequency, the condition |G( ja)| = 1 with α = 1 gives:

KC = a
K P

. (11)

Note that, putting P M ≈ 37◦ in (10), we obtain a =
2.0057 ≈ 2, which is the value commonly used by
the tuning rule. Moreover, uE is one octave on the
right of uGC. With this standard tuning, the response
to a command step shows a very steep normalized
rise time, tR/TE = tRωE = a2tR/TI = a2tRωI = 3.1,
and a short normalized settling time tS/TE = tSωE =

a2tS/TI = a2tSωI = 16.5, but a large percentage over-
shoot O S% = 43.4%. However, the overshoot can be
reduced by introducing an adequate filtering of the
command signal (see [26]). So, the disadvantage of
the SOM remains in a still rather unacceptable phase
margin in the case of high sensitivity to variable plant
gain K P .

3 The proposed tuning method

Now, consider the PIα controller (7) and use (9) with
0 < α < 1. Then:

Arg (G( ju)) = tan−1

[
uα sin(0.5απ )

1 + uα cos(0.5απ )

]
− tan−1

[ u
a2

]
− 0.5(1 + α)π. (12)

Given (12), determine the frequency umax for which
the value of Arg (G( ju)) is maximum and impose
uGC = umax, where uGC is the gain-crossover fre-
quency, |G( juGC)| = 1.

Hence, taking into account (9), umax must satisfy:

d

du
Arg (G( ju)) = 0, (13)

and thus

αuα−1 sin(0.5απ )
[
1 + (

a−2u
)2 ]

− a−2[1 + u2α + 2uα cos(0.5απ )] = 0. (14)

The solution of this equation is not trivial. In many
cases, a numerical algorithm and the support of
an appropriate software are necessary. Here, how-
ever, the following new simple solution pattern is
proposed.

Assume that the real parameter a can be chosen arbi-
trarily, provided that the constraint a > 1 holds. More-
over, let umax be the value satisfying (14). If we define
Q = u/a2, we can choose a so that: 1 + Q2

m = βQm ,
where Qm corresponds to umax and β > 0 is a new pa-
rameter depending on Qm and hence on a only. This
position also implies that Qm must satisfy q(Q) =
Q2 − βQ + 1 = 0, i.e., it must coincide with one of
the roots Q1 and Q2 of q(Q) = 0. Since, to have phys-
ical meaning, Q1 and Q2 must be both real and posi-
tive, this requires β ≥ 2. Moreover, q(Q) is a reciprocal
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polynomial, so that Q1 = Q−1
2 . Consequently, if Q1 >

1, then Q2 < 1. Now, we assume that the un-modeled
dynamics, due to time constants smaller than the equiv-
alent parameter TE , have little effects on the plant out-
put, as long as the plant contains the bulk of its energy
at low frequencies. If we design the controller to pro-
duce only low-frequency inputs for the plant, we ob-
tain good closed-loop performances. In line with this
strategy, we consider umax < a2 = uE , so that the con-
troller introduces a positive phase lead over a frequency
range below a2. For this reason, only the root Q2 < 1 is
considered. However, there is a need for a tradeoff be-
tween using high-frequency inputs for quick response
and avoiding high-frequency inputs for safety against
un-modeled dynamics. This tradeoff is ruled by the fre-
quency uE , and hence by the parameter a, as it is further
developed.

If q(Qm) = 0 is satisfied, then using uα = P ,
Equation (14) becomes:

p(P) = P2 + γ P + 1 = 0, (15)

where γ = 2 cos(0.5απ ) − αβ sin(0.5απ ). Since the
roots P1 and P2 of p(P) = 0 must be real and pos-
itive, it is necessary that γ 2 − 4 ≥ 0 and γ < 0, so
that γ ≤ −2. Moreover, also p(P) is a reciprocal
polynomial, so that P1 = P−1

2 . Now, consider two
cases.

3.1 Case a

Let γ = −2. Then, with C = 1 + cos(0.5απ ) and S =
sin(0.5απ ), the definition of γ leads to:

β = β̂ = 2C
αS

, (16)

with 0 < α < 1 and β > 0. The choice β = β̂ leads
to a particularly simple and effective algorithm. In this
case, indeed, γ = γ̂ = −2, and the solutions of (15)
are P̂1 = P̂2 = 1, so that it is umax = ûmax = 1. Note
also that, with a given α, β̂ is determined by (16) and
q(Q) = 0 can be solved. Let Q̂2 = 1/a2

0 be the root
where Q̂2 < 1, a0 > 1. This equation also gives a0 =√

Q̂1 because Q̂1 = Q̂−1
2 . Consequently, the integral

constant of the controller is:

TI = a2TE = Q̂1TE . (17)

At this point, it is possible to determine the gain
K̂C K̂ P necessary to make the gain-crossover fre-
quency uGC equal to ûmax. Namely, using |G( j ûmax)| =
|G( j1)| = 1 gives:

K̂C K̂ P =
√

1 + a4
0

2a4
0C

=
√

1 + Q̂2
1

2Q̂2
1C

. (18)

Now, it is possible to determine the performances
corresponding to the controller constants with the sub-
stitution of ûmax = 1 and a0 =

√
Q̂1 in Arg (G( ju)).

The maximum phase margin P Mα is uniquely deter-
mined as:

P Mα = tan−1

(
S
C

)
− tan−1(Q̂2) + 0.5π (1 − α).

(19)

As it is to be expected, larger values of P Mα cor-
respond to smaller values of α. More precisely, for
α = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, P Mα assumes the val-
ues 80.1, 74.4, 68.3, 61.5, 54.1, 45.8, respectively.

3.2 Case b

Let γ < −2, which implies β > β̂ because

β = 2(C − 1) − γ

α S
. (20)

Therefore, the roots P1 and P2 of (15) are real and
positive and the former (say P1 > 1) is the reciprocal of
the latter (say P2 < 1). Then, if α is assigned, umax1 =
α
√

P1 and umax2 = α
√

P2 follow. Moreover, from (20)
we may obtain the value of β which is necessary to
compute Q2 < 1 and Q1 = Q−1

2 . However, the value
Q2 < 1 is considered here because of the constraint
umax < a2.

Note that the (20) with γ = −2 leads to β = β̂ and
P1 = P2 again. For each β > β̂, two values P1 and P2

are obtained for P . However, the following considera-
tions justify why only P1 is considered for determining
P M . Namely, consider:

θ (P) = tan−1

(
P sin(0.5απ )

1 + P cos(0.5απ )

)
, (21)

which is a continuous, monotonically increasing func-
tion of the variable P . Then, for P2 < 1 < P1, θ (P)
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assumes higher (positive) values for P = P1: θ (P1) >

θ (1) > θ (P2). Hence, the value P1 is chosen for achiev-
ing the objective of maximizing P M . Namely, using
S1 = P1 sin(0.5απ ) and C1 = 1 + P1 cos(0.5απ ), the
P M is given by:

P M1 = tan−1

(
S1

C1

)
− tan−1(Q2) + 0.5π (1 − α),

(22)

and the first term gives the major contribution to P M
if P1 is chosen.

For example, γ = −2 and α = 0.6 lead to P Mα =
54.1◦. Moreover, for each (smaller) value of γ , we
obtain two points. In fact, a decrement in γ of 6%
giving γ = −2.12 leads to P M1 = 58.3◦ (P1 = 1.41),
P M2 = 49.7◦ (P2 = 0.71). Using P1 only, we may
now write a2

1 = α
√

P1/Q2 = α
√

P1 · Q1 and determine
the integral constant of the controller:

TI = a2
1 TE = α

√
P1 · Q1 · TE . (23)

Note that the value of TI given by (23) is α
√

P1 higher
than the value corresponding to case a (see (17)).

Finally, from |G( jumaxi )| = 1 we may deduce that:

KC1 K P =
P1+1/α

1

√
1 + Q2

2√
1 + P2

1 + 2P1(C − 1)
, (24)

which yields the value KC1. Clearly, the case b com-
pares favorably with the previous case a because of
the additional freedom improving the tradeoff between
robustness and time-domain performances.

4 Simulation and experimental results

Since s−α is irrational, it is difficult to directly im-
plement this fractional operator in the time-domain
simulations. Thus, to analyze the performance of the
PIα controller tuned with formulae (18) and (24), it
is necessary to approximate s−α with a rational in-
teger order operator in the s-domain. Some research
has been done in this area already; here, we con-
sider the approximation of s−α due to [4] and reported
by [7] with a fifth-order rational transfer function. Us-
ing this approximation, Fig. 1 shows the Bode plots of
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Fig. 1 Bode plots of G( ju) for different values of parameter α
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Fig. 2 Step response of closed-loop PIα controlled system for
different values of parameter α

G( ju) for α = 0.3, 0.4, 0.5, 0.6. In a wide frequency
range around u ≈ 1, phase plots are nearly flat and
indicate that Arg(G( ju)) and hence P Mα are nearly
constant. This behavior guarantees robust stability for
wide variations in the plant gain. In addition, Fig. 2
shows the simulated step responses (dashed lines) of
the closed-loop transfer function for α = i · 0.1, with
i = 2, . . . , 7. The values of a0 and of K̂C K̂ P are de-
termined by the tuning procedure (18). The step per-
formances in Table 1 and Fig. 2 show that a proper
choice of α can lead to a low percentage overshoot
combined with an excellent P M (note that Table 1 re-
ports P M values that are computed using the approxi-
mated fractional integrator). Namely, with α ≤ 0.7, the
overshoots are considerably lower than 43%, the value
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Table 1 Percentage overshoot (O S%), normalized rise time (tR/TI ), normalized settling time (tS/TI ), phase margin
(P Mα), as functions of parameter α

O S% tR/TI (0–100%) tS/TI (2%)

α Simulation Experimental Simulation Experimental Simulation Experimental P Mα (◦)

0.2 2.97 2.32 2.60 2.91 7.05 6.16 81.3
0.3 6.09 6.27 2.25 2.27 7.28 7.44 73.2
0.4 10.3 10.7 2.03 2.00 6.84 8.09 66.4
0.5 14.8 14.6 1.85 1.83 6.90 9.26 60.9
0.6 21.6 21.3 1.74 1.71 6.58 6.21 54.5
0.7 28.4 28.7 1.62 1.60 6.17 6.14 48.0
SO 43.4 43.8 0.53 0.48 4.11 2.65 37.0
SO (p.f.) 8.10 5.97 1.89 1.88 3.31 3.09 37.0

achieved by the SOM (α = 1) using an ordinary PI
controller. We also recall that, it is common practice
of the classical SOM to reduce the overshoot to 8.1%
by using a pre-filter (see [26]). Figure 2 also shows the
closed-loop step response for α = 1, with an ordinary
PI tuned with the SOM using a pre-filter in the com-
mand channel. Simulation experiments confirm that the
overshoot is 8.1% in this case. However, the P M is still
37◦ (see Table 1). To sum up, FOC conciliate a good
dynamic performance and an improved robustness. The
only drawback of FOC are their settling times, which
are greater than the values obtained with a standard PI
tuned with the SOM and the pre-filter.

To validate the tuning approach, we have also per-
formed a laboratory experiment. The experimental
setup consists of a nonlinear 370 W dc servomotor
(AMIRA DR300), a power amplifier driving the plant,
and a PC equipped with a floating point 250 MHz
Motorola PPC dSPACE board (DS1104), which pro-
vides the position reference and runs the controllers.
All routines run in discrete time with a l ms sampling
period. The dc motor transfer function has been ob-
tained through a frequency domain identification pro-
cess, yielding:

G(s) = 0.935

s(1 + 0.124s)
. (25)

A 1024 pulses incremental encoder gives the rotor po-
sition measurement. We implemented the control algo-
rithms in the MATLAB/Simulink R© environment. The
dSPACE code generator compiles the Simulink pro-
gram and then the real-time executable code is down-
loaded to the board memory. During motor operation,

the board processor receives the feedback from the
encoder and applies the appropriate control action to
the power unit. The signals are processed using 16 bit
A/D–D/A converters that are integrated in the dSPACE
board.

Figure 2 and Table 1 compare the step responses
obtained by simulation (dashed line) and by measured
data (continuous line), for α = 0.2–0.7. The tuning for-
mula (18) is employed. The responses show a very good
agreement between simulations and laboratory exper-
iments. As Fig. 3 indicates for α = 0.4, 0.5, 0.6, tun-
ing formula (24) can improve the performance indexes.
Namely, simulations and experiments agree each other
also showing that, the greater is a1, the smaller are the
rise times and the settling times.
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5 Conclusion

We have developed a design approach for FOC, which
is inspired by the SOM. Of course, the method leads to a
phase diagram of the resulting open-loop frequency re-
sponse which is no more symmetrical around the gain-
crossover frequency. However, it is nearly flat in a wide
range around the crossover. The parameter α also in-
fluences overshoot and rise time. Values in the range
0.4 ≤ α ≤ 0.6 assure a good tradeoff between robust-
ness and dynamic performance.
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