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Abstract In this work, we study the nonlinear oscil-
lations of mechanical systems resting on a (unilateral)
elastic substrate reacting in compression only. We con-
sider both semi-infinite cables and semi-infinite beams,
subject to a constant distributed load and to a harmonic
displacement applied to the finite boundary. Due to the
nonlinearity of the substrate, the problem falls in the
realm of free-boundary problems, because the position
of the points where the system detaches from the sub-
strate, called Touch Down Points (TDP), is not known
in advance. By an appropriate change of variables, the
problem is transformed into a fixed-boundary problem,
which is successively approached by a perturbative ex-
pansion method. In order to detect the main mechanical
phenomenon, terms up to the second order have to be
considered. Two different regimes have been identified
in the behaviour of the system, one below (called sub-
critical) and one above (called supercritical) a certain
critical excitation frequency. In the latter, energy is lost
by radiation at infinity, while in the former this phe-
nomenon does not occur and various resonances are
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observed instead; their number depends on the statical
configuration around which the system performs non-
linear oscillations.
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1 Introduction

This work is aimed at studying the nonlinear forced
oscillations of mechanical systems resting on a (uni-
lateral) elastic substrate reacting in compression only.
We consider both semi-infinite cables and semi-infinite
beams, subject to a constant distributed load and to a
harmonic displacement applied to the finite boundary.

Our original motivation was that of describing the
laying of marine pipelines through the J-lay technique
[2]. However, this work applies also to other laying
techniques, such as the S-lay method. From an en-
gineering point of view, the study of the mechanical
behaviour of pipelines during the laying phase is cru-
cial to avoid failures and damages, this phase being the
most demanding in terms of mechanical strength. Some
models were proposed by Lenci and Callegari in [10],
and analytical solutions were found in the static case.
Here, we study the dynamic behaviour of pipelines
which undergo vertical motions due, e.g., to the os-
cillations of the barge on the sea surface.
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Fig. 1 A schematic picture of the considered mechanical sys-
tems

Since this problem is too difficult to be handled with
analytical techniques, we focus on two prototype prob-
lems, which, on the one hand, are governed by easier,
piece-wise linear equations, and, on the other hand, are
able to describe some of the mechanical phenomena of
the original problem we wish to investigate.

More specifically, we focus our attention on the laid
part of the pipe and on the first part of the suspended
span. These two portions are divided by the so-called
Touch-Down Point (TDP) (Fig.1). We refer to [5] for
the study of the motion of the suspended part from the
TDP to the laying barge. Our simplifications are mo-
tivated by the fact that these models capture two main
sources of difficulties, namely, the semi-infinite length
of the laid part and the nonlinearity due to the unilateral
behaviour of the springs, whose combined study is the
subject of the present work. The problem considered
here falls in the realm of unilateral problems [7], also
known as “moving” or “free” boundary problems [6];
it arises in various engineering applications, e.g., in the
field of the dynamics of soil-foundation interactions
[16] and in the dynamics of railways tracks, and it has
an interest per se, because it is able to detect in a sim-
ple way complex dynamical behaviours. This explains
the reason for a joint study of cables and beams, which
is that of investigating how the considered phenomena
depend on the specific mechanical model.

Analytical and numerical solutions for the dynamics
of a beam on unilateral elastic springs can be found,
e.g., in [3, 15], respectively. A more mathematically
oriented approach can be found in [14]. The dynamics
is governed by a moving-boundary problem where the
position of the TDP is an additional unknown. Since
there is no hope to find an exact solution, because
of the nonlinearity, we look for approximate solutions
by using asymptotic analysis [1, 12, 13]. Perturbation
techniques were previously applied to study the non-
linear dynamics of finite length beams (see, e.g., [4],

where the method of multiple scales is used to attack
directly the integro-partial differential equation of mo-
tion). In this work the extension to infinite length is
considered.

In our perturbation expansion, the zero-order terms
correspond to the static solution obtained in the absence
of a time-dependent excitation applied at the boundary,
and are the starting point of the analysis. The first-order
terms are the most important ones, and permit to un-
derstand the resonance behaviour of the system and
the questions related to the wave propagation toward
infinity. In particular, these terms permit to identify two
different regimes, below and above a certain critical ex-
citation frequency, with very different wave properties
[8].

The second-order terms give information on the non-
linear coupling between various modes. Their compu-
tation is very hard, and this task will be left for a future
work. However, much information on their behaviour
can be inferred from the analysis of their governing
equations; these aspects have been verified numerically
elsewhere [11] for the case of the beam equation.

2 The mathematical models

Here, we introduce the differential equations that gov-
ern the time-dependent behaviour of the profiles of the
cables (wave equation) or beams (beam equation). In
either case, the profile is represented by the function
u(x, t), where 0 ≤ x < +∞ is the space variable and
t ≥ 0 the time. A restoring force, with elastic constant
k, acts only on the portion of the spatial domain where
the solution u(x, t) is negative. This describes the action
of the elastic substrate that acts in compression only.

In our models, we assume that there exists only one
point of the domain, x = c, where the profile function
vanishes, namely u(c, t) = 0; moreover, the bound-
ary conditions are such that u(x, t) > 0 for 0 ≤ x < c
and u(x, t) < 0 for c < x < ∞. This hypothesis is
supported by the following consideration. When only
a positive static displacement is applied at the finite
boundary, the static configuration clearly has only one
TDP (see Fig. 1 or, better, forthcoming Fig. 2B). If
the superimposed dynamic excitation is small enough,
as assumed in this work, the TDP remains unique by
continuity.

The mechanical systems are shown schematically in
Fig. 1.

Springer



Nonlinear Dyn (2007) 49:203–215 205

In our analysis, and for both models, the static so-
lution u(x, t) ≡ uS(x) plays an important role. In this
case, c = c0 is a constant, while for the time-dependent
solutions we have that c = c(t) is a function of time.
The point x = c is called Touch-Down-Point (TDP) in
the applications, and we adopt this terminology as well.
Suitable continuity conditions on the function u and its
spatial derivatives at x = c are also imposed. A con-
stant load p, representing the compound action of the
gravity acceleration and of the hydrostatic push, is also
added to the equations.

In this work, we shall look for time-dependent so-
lutions of the boundary-value problem that correspond
to small oscillations about the static solution. These
oscillations are induced by a time-dependent boundary
condition at x = 0, which we will assume of harmonic
behaviour. The TDP x = c(t) will then exhibit oscillat-
ing behaviour as well, and the main quantity of interest
in our work is the ratio of the amplitues of the oscil-
lation of the TDP and the oscillation of the boundary.
We shall define these quantities in Section 4.

2.1 Wave equation

If the mechanical system is given by taut inextensible
cables, the governing equation is the wave equation
with the addition of suitable terms describing the con-
stant load and the restoring force,

∂2u
∂t2

− v2 ∂2u
∂x2

+ p = 0, x < c(t) (1)

∂2u
∂t2

− v2 ∂2u
∂x2

+ γ 2u + p = 0, x > c(t), (2)

where v = √
T/ρ is the propagation speed (T is the ax-

ial force and ρ the mass per unit length), γ = √
k/ρ (k

is the mechanical stiffness of the unilateral springs) and
p = p̃/ρ ( p̃ is the transversal, uniformly distributed,
static load). Note that the same equations govern the
problem of axial vibrations of rods [9] (in which case
v = √

EA/ρ, EA being the axial stiffness of the rod),
and that Equation (2) is also known as Klein–Gordon
equation.

In the governing Equations (1) and (2), we have
not considered geometrical nonlinearities because we
focus only on the nonlinearity due to the unilat-
eral behaviour of the springs, which is the prin-
cipal phenomenon we wish to investigate without

spurious effects due to other sources of nonlinear-
ities. The same will be done for the beam equa-
tion. To further support our choice, we note that
there are applications (e.g., a beam resting on a Win-
kler foundation) in which the displacements are truly
small.

The boundary condition at x = 0 is u(0, t) =
Ũ0(1 + ε sin �t), while at x → ∞ we require that
u(x, t) be bounded; moreover, we assume that,
whenever the equations support travelling-wave so-
lutions, terms corresponding to waves returning
from +∞ are not present, so that only “outgo-
ing” waves (travelling to the right) are admitted. Fi-
nally, the additional continuity conditions at x = c
are

u(c−, t) = u(c+, t) = 0 (3)

∂u
∂x

(c−, t) = ∂u
∂x

(c+, t), (4)

where c = c0 for static solutions and c = c(t) for time-
dependent solutions. Also, with c− and c+ we indicate
the limits of x → c from the left and from the right,
respectively.

It is convenient to write the equations and the
boundary conditions in dimensionless form. It is eas-
ily seen that, if we introduce the dimensionless vari-
ables t̂ , x̂ and û, given by t̂ = γ t , x̂ = xγ /(v

√
2) and

û = (γ 2/p)u, Equations (1) and (2) can be cast in the
“universal” form

∂2u
∂t2

− 1

2

∂2u
∂x2

+ 1 = 0, x < c(t) (5)

∂2u
∂t2

− 1

2

∂2u
∂x2

+ u + 1 = 0, x > c(t), (6)

where we have omitted the hat in order not to burden
the notation. The boundary condition at x = 0 now be-
comes

u(0, t) = U0(1 + ε sin ωt), (7)

where U0 = γ 2Ũ0/p and ω = �/γ . Therefore, we see
that the problem depends only upon two dimensionless
parameters, ω and U0, entirely included in the boundary
condition at x = 0, while the model equations are free
of parameters. The continuity conditions are still given
by Equations (3) and (4).
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2.2 Beam equation

If the mechanical system is given by beams, the gov-
erning equation is the beam equation with the addition
of suitable terms describing gravity and the restoring
force; in the original physical variables, the equations
are

∂2u
∂t2

+ b2 ∂4u
∂x4

+ p = 0, x < c(t) (8)

∂2u
∂t2

+ b2 ∂4u
∂x4

+ γ 2u + p = 0, x > c(t), (9)

where b = √
EI/ρ is a constant (EI is the bending stiff-

ness of the beam), while γ and p have the same mean-
ing as in the wave equation. The boundary conditions
are

u(0, t) = Ũ0(1 + ε sin �t) (10)

∂2u
∂x2

(0, t) = 0 (11)

u(x, t) bounded as x → ∞ (12)

and the additional continuity conditions at x = c are in
this case

u(c−, t) = u(c+, t) = 0 (13)

∂u
∂x

(c−, t) = ∂u
∂x

(c+, t) (14)

∂2u
∂x2

(c−, t) = ∂2u
∂x2

(c+, t) (15)

∂3u
∂x3

(c−, t) = ∂u3

∂x3
(c+, t). (16)

Again, we assume that the solution is bounded at in-
finity and that there are no travelling waves returning
from +∞. In order to cast the equations in dimen-
sionless form, we again introduce the dimensionless
variables t̂ , x̂ and û given by t̂ = γ t , x̂ = x

√
γ /2b and

û = (γ 2/p)u. Equations (8) and (9) then become (the
hat has again been omitted to simplify the notation)

∂2u
∂t2

+ 1

4

∂4u
∂x4

+ 1 = 0, x < c(t) (17)

∂2u
∂t2

+ 1

4

∂4u
∂x4

+ u + 1 = 0, x > c(t), (18)

which are again free of parameters. The boundary con-
dition at x = 0 takes the form (7) as for the wave equa-
tion, and the problem is seen again to depend upon the
same two parameters ω and U0, with U0 = γ 2Ũ0/p
and ω = �/γ again. The continuity conditions are still
given by Equations (13)–(16).

3 The static solutions

The static solutions of the model equations play a very
important role in our analysis, since they give the zero-
order terms in our perturbative approach. In this section,
we derive these solutions for the wave equation and for
the beam equation.

3.1 Wave equation

We begin by considering Equations (5) and (6), in
which we switch off the time derivatives, thus obtaining
the static equations

−1

2
u′′

S + 1 = 0, x < c0 (19)

−1

2
u′′

S + uS + 1 = 0, x > c0, (20)

where we have indicated with uS(x) the static solu-
tion and by c0 the TDP position, which is fixed in
this case. The boundary condition at x = 0, in this sta-
tionary case, is now uS(0) = U0, while the continuity
conditions imply uS(c−

0 ) = uS(c+
0 ) = 0 and u′

S(c−
0 ) =

u′
S(c+

0 ). Equations (19) and (20) with the assigned
boundary and continuity conditions are easily inte-
grated, giving

uS(x) = (x − c0)

(
x − U0

c0

)
, x < c0 (21)

uS(x) = e(c0−x)
√

2 − 1, x > c0 (22)

with the TDP position c0 given by

c0 =
√

2

2
(
√

1 + 2U0 − 1), (23)

which depends only upon U0.
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Fig. 2 (A) The Touch-Down Point c0 for the wave equation
(solid line) and for the beam equation (dashed line) as a function
of U0 for 0 ≤ U0 ≤ 100 and (B) the static solution uS(x) for the

wave equation (solid line) and for the beam equation (dashed
line) as a function of x , 0 ≤ x ≤ 10, for U0 = 10

3.2 Beam equation

For the beam Equations (17) and (18), by switching off
the time derivatives we obtain

1

4
u(I V )

S + 1 = 0, x < c0 (24)

1

4
u(I V )

S + uS + 1 = 0, x > c0. (25)

The boundary conditions are the same as for the
stationary wave equation with the additional condi-
tion u′′

S(0) = 0, while for the continuity conditions
we now add u′′

S(c−
0 ) = u′′

S(c+
0 ) and u′′′

S (c−
0 ) = u′′′

S (c+
0 ).

Equations (24) and (25) with the assigned boundary
and continuity conditions are easily integrated, giving

uS(x) = (c0 − x)

[
x3 − (2 + c0)(c0 + x)x

6
+ U0

c0

]
,

x < c0 (26)

uS(x) = e(c0−x) [cos(x − c0) − c0 sin(x − c0)] − 1,

x > c0 (27)

with c0 given by the solution of the quartic equation

c4
0 + 4c3

0 + 6c2
0 + 6c0 − 6U0 = 0, (28)

which again depends only upon U0. Equation (28) can
also be thought of as a linear equation for U0, with c0

playing the role of a free parameter.
In Fig. 2A we show the TDP as a function of U0 for

the wave equation (solid line) and for the beam equa-
tion (dashed line), for 0 ≤ U0 ≤ 100 and in Fig. 2B
we show the static solution uS(x), 0 ≤ x ≤ 10, for the
wave equation (solid line) and for the beam equation

(dashed line) for U0 = 10. Note that the TDP for the
wave equation lies to the right of the TDP for the
beam equation for all the values of U0 considered
here.

4 Perturbative approach to the

time-dependent model

The moving-boundary conditions at x = c(t) for
Equations (5) and (6) (wave equation), or Equations
(17) and (18) (beam equation) make the problem very
hard to approach. However, since we are interested
in motions corresponding to small deviations from
the static solution, we approach the problem by per-
turbative expansions. Before applying the perturba-
tive expansion, however, we perform a variable trans-
formation which maps the original moving-boundary
problem into a fixed-boundary problem, which is then
amenable to asymptotic analysis.

We seek a transformation from the original variables
(x, t) to a new set of variables, (z, τ ), which maps the
line x = c(t) of the (x, t) plane into the line z = con-
stant in the new (z, τ ) plane. Of course, there are many
transformations that possess this property; we choose
the simplest of all, namely

z = x
c(t)

(29)

τ = t (30)

u(x, t) = u(zc(t), t) = U (z, t), (31)

in which we keep the original time variable. The same
transformation has been used, in a different context, by
Yilmaz [17]. In order not to burden the notation and not
to dirty the pages, we shall not change the notation for
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the function u, which will now be denoted as u(z, t),
instead of U (z, t). With this transformation, the moving
TDP x = c(t) becomes z = 1 and is now fixed, so that
u(1, t) = 0, while x = 0 and x → ∞ correspond to
z = 0 and z → ∞, respectively.

After performing the variable transformation to the
wave equation and to the beam equation, we expand
the unknown function u(z, t) and the location of the
TDP c(t) (unknown as well) in powers of ε according
to

u(z, t) = u0(z) + εu1(z, t) + ε2u2(z, t)

+ ε3u3(z, t) + O(ε4) (32)

c(t) = c0 + εc1(t) + ε2c2(t) + ε3c3(t) + O(ε4). (33)

Note that the zero-order terms are independent of time
and therefore, with this expansion, the zero-order quan-
tities will be given by the solutions of the static prob-
lems, consistently with our search for solutions near
the static profiles.

In general, we shall look for solutions that corre-
spond to small periodic oscillations about the static so-
lutions. Therefore, we shall assume that the functions
uk(z, t) and ck(t), k ≥ 1, admit a Fourier-like expansion
of the type

uk(z, t) = gk0(z)

+
∞∑

n=1

[ fkn(z) sin nωt + gkn(z) cos nωt] (34)

ck(t) = bk0 +
∞∑

n=1

[akn sin nωt + bkn cos nωt] . (35)

Our aim is to determine the coefficients f , g, a and b
of these expansions.

As we mentioned in the Introduction, the main quan-
tity of interest for us is the ratio of the amplitude of
the oscillation of the TDP and the oscillation of the
boundary at z = 0. If we denote by 	(ε) the maximum
elongation of the TDP from the static position c0, we
introduce the function

D(U0, ω) = 	(ε)

εU0
; (36)

D is called amplification factor, since it gives the mea-
sure of the amplification with which the oscillation at
the boundary is reflected on the oscillation of the TDP.

In general, the amplitude 	 inherits the expansion in
powers of ε from (33), starting from a first-order term,
and therefore the amplification factor also admits a
similar expansion, starting from a term of order zero
in ε.

4.1 Wave equation

We begin by performing the variable transformation
(29)–(31) on the wave Equations (5) and (6). After eval-
uating all composed derivatives by using the chain rule,
we obtain the transformed differential equations for the
new unknown function u(z, t):

c2 ∂2u
∂t2

+
(

ċ2z2 − 1

2

)
∂2u
∂z2

− 2cċz
∂2u
∂t∂z

+ (2ċ2 − cc̈)z
∂u
∂z

+ c2 = 0, z < 1 (37)

c2 ∂2u
∂t2

+
(

ċ2z2 − 1

2

)
∂2u
∂z2

− 2cċz
∂2u
∂t∂z

+ (2ċ2 − cc̈)z
∂u
∂z

+ c2(1 + u) = 0, z > 1 (38)

with the boundary conditions

u(0, t) = U0(1 + ε sin ωt) (39)

u(z, t) bounded as z → ∞ (40)

and the additional continuity conditions

u(1−, t) = u(1+, t) = 0 (41)

∂u
∂z

(1−, t) = ∂u
∂z

(1+, t). (42)

Next, we introduce the perturbative expansion (32)–
(33) into the transformed Equations (37) and (38) and
obtain the usual hierarchy of equations by equating to
zero the coefficients of the powers of ε. The details of
the calculations are very long and tedious, and we have
carried them out with the help of a symbolic manipu-
lation program.

To order ε0 we have:

1 − u0
′′(z)

2 c0
2

= 0, z < 1 (43)

1 + u0(z) − u0
′′(z)

2 c0
2

= 0, z > 1; (44)
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to order ε1:

∂2u1

∂t2
− 1

2c2
0

∂2u1

∂z2
− z u0

′(z) c̈1(t)
c0

+c1(t) u0
′′(z)

c0
3

= 0, z < 1 (45)

∂2u1

∂t2
− 1

2c2
0

∂2u1

∂z2
+ u1(z, t) − z u0

′(z) c̈1(t)
c0

+c1(t) u0
′′(z)

c0
3

= 0, z > 1;

(46)

to order ε2:

∂2u2

∂t2
− 1

2c2
0

∂2u2

∂z2
− z u0

′(z) c̈2(t)
c0

+ c2(t)
c3

0

u′′
0(z)

− 3c1(t)2

2c4
0

u′′
0(z) + 2 z ċ1(t)2 u0

′(z)

c0
2

+ z c1(t) u0
′(z) c̈1(t)

c0
2

+ z2 ċ1(t)2 u0
′′(z)

c0
2

− z c̈1(t)
c0

∂u1

∂z
− 2 z ċ1(t)

c0

∂2u1

∂z∂t

+ c1(t)
c0

3

∂2u1

∂z2
= 0, z < 1 (47)

∂2u2

∂t2
− 1

2c2
0

∂2u2

∂z2
+ u2(z, t) − z u0

′(z) c̈2(t)
c0

+ c2(t)
c3

0

u′′
0(z) − 3c1(t)2

2c4
0

u′′
0(z)

+ 2 z ċ1(t)2 u0
′(z)

c0
2

+ z c1(t) u0
′(z) c̈1(t)

c0
2

+ z2 ċ1(t)2 u0
′′(z)

c0
2

− z c̈1(t)
c0

∂u1

∂z
− 2 z ċ1(t)

c0

∂2u1

∂z∂t

+ c1(t)
c0

3

∂2u1

∂z2
= 0, z > 1,

(48)

The boundary conditions associated with this hierarchy
of equations are

u0(0) = U0 u0(1) = 0

u1(0, t) = U0 sin ωt u1(1, t) = 0 (49)

u2(0, t) = 0 u2(1, t) = 0,

while the continuity conditions on the derivatives (42)
have to hold at all orders.

4.1.1 Zero-order solution

Equations (43) and (44), with the boundary conditions
for u0 given in (49) are easily integrated giving

u0(z) = c0

(
c0z − U0

c0

)
(z − 1) , z < 1, (50)

u0(z) = ec0(1−z)
√

2 − 1, z > 1. (51)

It is easy to see that these two equations define the
same function given in (21) and (22) as the static so-
lution of the problem, provided that the identification
x = c0z between the new and the old variables is made.
The value of c0 is then obtained by using the continu-
ity condition on the derivative, Equation (42), and is
consistent with Equation (23).

4.1.2 First-order solution

We obtain the first-order solution by substituting the
expansions (34) and (35) for u1 and c1 in Equations
(45) and (46), and then equating separately to zero the
coefficient of cos nωt and sin nωt for each n. In this
way, we obtain an infinite set of equations from which
the expansion coefficients f1n(z), g1n(z), a1n and b1n

are determined. Again, the calculations are rather long
and we carried them out with a symbolic manipula-
tion program. The functions f1n(z) and g1n(z) satisfy
non-homogeneous second-order differential equations,
in which the known term is proportional to some of
the coefficients a1n and b1n , and are equipped with the
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boundary conditions

f11(0) = U0

f1n(0) = 0, n 
= 1

g1n(0) = 0, ∀n

f1n(1) = g1n(1) = 0 ∀n.

In addition, the requirements that the functions be
bounded as z → ∞ and that there are no waves
travelling to the left have to be imposed. We
show here the differential equation governing f11(z),
which gives the only non-vanishing contribution to
u1(z, t):

f ′′
11 + 2c2

0ω
2 f11 + [zω2c0U0 − 2c0 + zω2(1 − z)c0]

× a11 = 0, z < 1 (52)

f ′′
11 + 2c2

0(ω2 − 1) f11 + (zω2c2
0

√
2 − 4c0)

× ec0(1−z)/
√

2 a11 = 0, z > 1. (53)

We notice that the solutions of Equation (53) depend
crucially upon ω: the two linearly independent solu-
tions of the associated homogeneous equation are of
hyperbolic type if ω < 1 (“subcritical” regime) and
of oscillatory type if ω > 1 (“supercritical” regime).
As shown by the analysis of the higher order terms,
the threshold between subcritical and supercritical be-
haviour is different at different orders in ε; for the
second-order terms, for example, the transition occurs
at ω = 1/2. In the subcritical case, the boundary con-
ditions that the solution be bounded as z → ∞ must
be used, while in the supercritical case we must also
ensure that there are no travelling waves returning from
infinity.

4.1.2.1 Subcritical regime (ω < 1). Due to the fact
that f11 is the only function which satisfies non-
homogeneous boundary conditions for z < 1 and by
matching the left and right derivatives at z = 1, we
find that f11 and a11 are the only non-vanishing contri-
butions to the solution for u1(z, t) and c1(t); therefore,

we obtain

u1(z, t) = f11(z) sin ωt (54)

c1(t) = a11 sin ωt, (55)

where f11(z) is the solution of Equations (52) and (53)
with the assigned boundary conditions; the coefficient
a11 is then determined by the continuity condition on
f ′
11(z) at z = 1. We have

a11 = A−(U0, ω)

B−(U0, ω)
(56)

where

A−(U0, ω) = U0 ω5 csc(
√

2 ω c0) c2
0,

B−(U0, ω) =
(
U0 − c2

0

)
ω4

√
2

+ ω5 c3
0 cot(

√
2 ω c0)

−ω c0

(
U0 ω4 cot(

√
2 ω c0) + ω3

×
(

1 + c0

√
2(1 − ω2)

))
.

4.1.2.2 Supercritical regime (ω > 1). Also in this
case, only terms with n = 1 are present in the solu-
tion, like in the subcritical case. This time, however,
by taking the boundary conditions into account and by
matching the left and right derivatives of f11 and g11 at
z = 1, we find that the terms proportional to cos ωt are
also present, and the solution is given by

u1(z, t) = f11(z) sin ωt + g11(z) cos ωt (57)

c1(t) = a11 sin ωt + b11 cos ωt, (58)

with a11 and b11 given by

a11 = A+(U0, ω)

B+(U0, ω)
(59)

b11 = C(U0, ω)

B+(U0, ω)
(60)
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Fig. 3 D(U0, ω) for the wave equation as a function of ω, 0 ≤
ω ≤ 2, for three different values of c0: c0 = 1.02 (solid line),
c0 = 2 (dashed line) and c0 = 6 (dotted line)

where

A+(U0, ω) = U0ωc3
0

[
1 + U0ω cot(

√
2ωc0)

− U0 − c2
0

c0

√
2

− ωc2
0 cot(

√
2ωc0)

]
,

B+(U0, ω) = 2(ω2 − 1) c4
0

+
[

U0 − c2
0√

2
− (1 + U0ω cot(

√
2ωc0))

+ωc3
0 cot(

√
2ωc0)

]2
,

C(U0, ω) =
√

2U0 c4
0 ω

√
ω2 − 1 csc(

√
2 ω c0).

To first order in ε, the maximum elongation 	(ε) of
the TDP is given by 	 = |a11| ε in the subcritical case,

and by 	 =
√

a2
11 + b2

11 ε in the supercritical case. In-
Fig. 3, we show the amplification factor D(U0, ω) as a
function of ω for three different values of c0: c0 = 1.02
(solid line, corresponding to U0 = 2.4), c0 = 2 (dashed
line, corresponding to U0 = 6.8) and c0 = 6 (dotted
line, corresponding to U0 = 44.5). The results show
the presence of resonances, all lying in the subcritical
region, and whose number increases with increasing
U0 or c0.

In fact, resonances are observed also in the super-
critical region, although the peaks are not pronounced.
This can be explained by noting that in the supercritical
regime energy is lost by radiation at infinity, so that the
system experiences dissipation, which is responsible
for the reduction of the peaks of the resonance curve,
as in classical damped oscillators. The large reduction
of the height of the peaks for ω > 1, seen in Fig. 3,
means that the systems is very damped, namely, that a
lot of energy flows toward infinity.

To end this section, we remark that the resonance
frequencies could be computed by simply consider-
ing a free vibration problem. This analysis, however,
would not provide a justification for the amplification
factor D, which is very important from a practical
point of view, and which is fully expressive only in
the forced oscillations framework considered in this
work.

4.1.3 Second-order solution

The PDE governing the second-order terms has the
same homogenous part of the one governing the first-
order terms (compare Equations (45) with (47) and
Equations (46) with (48)). They differ only in the
known terms, and in the fact that homogenous boundary
conditions now hold. Thus, the solution can be sought
in the same form as for the first-order terms. However,
the known terms are much more complicated in this
case, so that the actual computation of the solution is
much harder. This notwithstanding, the main proper-
ties of the second-order terms can be inferred directly
from the governing Equations (47) and (48).

The most important property is that, since the known
term contains expressions proportional to sin(2ωt) and
cos(2ωt), the second-order solutions exhibit superhar-
monic oscillations with frequency 2ω, and the criti-
cal frequency, which is the boundary between the sub-
critical and the supercritical regimes, is ω = 1/2. This
implies that, for ω < 1/2, the first- and second-order
terms decay exponentially as x → ∞. In the frequency
interval 1/2 < ω < 1, the first-order term still decays
exponentially, but the second-order term behaves like a
propagating wave. Thus, for x large enough, the beam
experiences superharmonic oscillations, although of
small (of the order of ε2) amplitude, and this is the
most evident consequence of the nonlinearity of the
problem. Finally, forω > 1 both first- and second-order
terms behave like propagating waves, and the harmonic
behaviour is dominant.

Of course, the previous argument can be repeated
for the terms of order n in ε, n > 2, which exhibit su-
perharmonic behaviour with frequency nω, and which
become supercritical when the frequency overcomes
the critical threshold 1/n. However, the amplitudes of
this terms are very small (of the order of εn) and are
not interesting from a practical point of view.
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4.2 Beam equation

We now turn to the beam Equations (17) and (18). The
transformed equations are in this case

c4 ∂2u
∂t2

+ c2ċ2z2 ∂2u
∂z2

+ 1

4

∂4u
∂z4

− 2c3ċz
∂2u
∂t∂z

+ c2(2ċ2 − cc̈)z
∂u
∂z

+ c4 = 0, z < 1 (61)

c4 ∂2u
∂t2

+ c2ċ2z2 ∂2u
∂z2

+ 1

4

∂4u
∂z4

− 2c3ċz
∂2u
∂t∂z

+ c2(2ċ2− cc̈)z
∂u
∂z

+c4(1 + u) = 0, z > 1 (62)

with the boundary conditions

u(0, t) = U0(1 + ε sin ωt) (63)

∂2u
∂z2

(0, t) = 0 (64)

u(z, t) bounded as z → ∞ (65)

and the additional continuity conditions

u(1−, t) = u(1+, t) = 0 (66)

∂u
∂z

(1−, t) = ∂u
∂z

(1+, t) (67)

∂2u
∂z2

(1−, t) = ∂2u
∂z2

(1+, t) (68)

∂3u
∂z3

(1−, t) = ∂3u
∂z3

(1+, t). (69)

Next, we introduce the perturbative expansion (32) and
(33) into the transformed Equations (61) and (62) and
obtain the usual hierarchy of equations by equating
to zero the coefficients of the powers of ε. Again, the
details of the calculations are very long and tedious, and
we have carried them out with the help of a symbolic
manipulation program.

To order ε0 we have:

1 + u(I V )
0 (z)

4 c4
0

= 0, z < 1 (70)

1 + u0(z) + u(I V )
0 (z)

4 c4
0

= 0, z > 1; (71)

to order ε1:

∂2u1

∂t2
+ 1

4c4
0

∂4u1

∂z4
− z u′

0(z) c̈1(t)
c0

− c1(t) u(I V )
0 (z)

c0
5

= 0, z < 1 (72)

∂2u1

∂t2
+ 1

4c4
0

∂4u1

∂z4
+ u1(z, t) − z u′

0(z) c̈1(t)
c0

−c1(t) u(I V )
0 (z)

c0
5

= 0, z > 1; (73)

to order ε2:

∂2u2

∂t2
+ 1

4c4
0

∂4u2

∂z4
+ 2 z ċ1(t)2 u′

0(z)

c2
0

+ z c1(t) u′
0(z) c̈1(t)

c2
0

− z u0
′(z) c̈2(t)
c0

+ z2 ċ1(t)2 u′′
0(z)

c0
2

+
(

16 c1(t)2

4 c0
6

−24 c0
2 c1(t)2 + 16 c0

3 c2(t)
16 c0

8

)
u(I V )

0 (z)

− z c̈1(t)
c0

∂u1

∂z
− 2 z ċ1(t)

c0

∂2u1

∂z∂t

−c1(t)
c5

0

∂4u1

∂z4
= 0, z < 1 (74)

∂2u2

∂t2
+ 1

4c4
0

∂4u2

∂z4
+ u2(z, t) + 2 z ċ1(t)2 u′

0(z)

c2
0

+ z c1(t) u′
0(z) c̈1(t)

c2
0

− z u′
0(z) c̈2(t)

c0
+ z2 ċ1(t)2 u′′

0(z)

c2
0

+
(

16 c1(t)2

4 c0
6 −24 c0

2 c1(t)2 + 16 c0
3 c2(t)

16 c0
8

)
u(I V )

0 (z) − z c̈1(t)
c0

∂u1

∂z
− 2 z ċ1(t)

c0

∂2u1

∂z∂t

−c1(t)
c5

0

∂4u1

∂z4
= 0, z > 1. (75)
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The boundary conditions associated with this hierarchy
of equations are

u0(0) = U0, u′′
0(0) = 0, u0(1) = 0

u1(0, t) = U0 sin ωt,
∂2u1

∂z2
(0) = 0, u1(1, t) = 0

u2(0, t) = 0,
∂2u2

∂z2
(0) = 0, u2(1, t) = 0

(76)

while the continuity conditions on the derivatives (67)–
(69) have to hold at all orders.

4.2.1 Zero-order solution

Equations (70) and (71), with the boundary conditions
for u0 given in (76) are easily integrated giving

u0(z) = c0 + c0
2 + 2 c0

3

3
+ c0

4

6
− z4 c0

4

6

+ z
(

−c0 − c0
2 − c0

3 − c0
4

3

)
+ z3

(
c0

3

3
+ c0

4

3

)
, z < 1, (77)

u0(z) = −1 + ec0−z c0 (cos(c0 − z c0)

+ sin(c0 − z c0) c0), z > 1. (78)

These two equations define the same function given
in (26) and (27) as the static solution of the prob-
lem for the beam equation, with the identifica-
tion x = c0z. The value of c0 is then obtained
by using the continuity conditions on the deriva-
tives, Equations (67)–(69), and is consistent with
Equation (28).

4.2.2 First-order solution

We obtain the first-order solution by following the same
steps outlined in Section 4.1.2 for the wave equation.

The boundary conditions for f1n(z) and g1n(z) now are

f11(0) = U0

f1n(0) = 0, n 
= 1

g1n(0) = 0, ∀n

f ′′
1n(0) = g′′

1n(0) = 0, ∀n

f1n(1) = g1n(1) = 0, ∀n

Also, the requirements that the functions be bounded
as z → ∞ and that there are no waves travelling to the
left have to be imposed. We show here the differential
equation governing f11(z), which gives the only non-
vanishing contribution to u1(z, t):

ω2

(
−z + 4ω2

c0
− z c0 − z c0

2 + z3 c0
2 − z c0

3

3

+z3 c0
3 − 2 z4 c0

3

3

)
a11

−ω2 f11(z) + f (I V )
11 (z)

4 c0
4

= 0, z < 1 (79)

e(1−z) c0
{
sin[(1 − z) c0]

[
4 + z ω2 (1 − c0)

]
− cos[(1 − z) c0]

[
z ω2 (1 + c0) − 4

c0

]}
a11

+(1 − ω2) f11(z) + f (I V )
11 (z)

4 c0
4

= 0, z > 1. (80)

Again, the solutions of Equation (80) depend cru-
cially upon ω: two of the four linearly independent
solutions of the associated homogeneous equation ex-
hibit exponential behaviour if ω < 1 (“subcritical”
regime) and oscillatory behaviour if ω > 1 (“super-
critical” regime). As in the case of the wave equa-
tion, the threshold between subcritical and supercritical
behaviour is different at different orders in ε; for the
second-order terms, for example, the transition occurs
at ω = 1/2. In the subcritical case, the boundary con-
ditions that the solution be bounded as z → ∞ must
be used, while in the supercritical case we must also
ensure that there are no travelling waves returning from
infinity.

4.2.2.1 Subcritical regime (ω < 1). As in the case of
the wave equation, we find that f11 and a11 are the only
non-vanishing contributions to the solution for u1(z, t)
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and c1(t); therefore, we obtain

u1(z, t) = f11(z) sin ωt

c1(t) = a11 sin ωt,

where f11(z) is the solution of Equations (79) and (80)
with the assigned boundary conditions; the coefficient
a11 is then determined by the continuity conditions on
f ′
11(z), f ′′

11(z) and f ′′′
11(z) at z = 1. In the case of the

beam equation, we could not find a simple expression
for a11 as a function of U0 and ω, as we did for the
wave equation, and we had to solve numerically the
algebraic system which gives a11 as a solution.

4.2.2.2 Supercritical regime (ω > 1). Also in this
case, like for the wave equation, the solution is given
by

u1(z, t) = f11(z) sin ωt + g11(z) cos ωt

c1(t) = a11 sin ωt + b11 cos ωt,

with a11 and b11 given by the solution of the algebraic
system obtained by matching the derivatives at z = 1.

The maximum elongation 	(ε) of the TDP is again
given by 	 = |a11| ε in the subcritical case, and by

	 =
√

a2
11 + b2

11 ε in the supercritical case. In Fig. 4,
we show the amplification factor D(U0, ω) as a func-
tion of ω for three different values of c0: c0 = 0.5 (solid
line, corresponding to U0 = 0.8), c0 = 2 (dashed line,
corresponding to U0 = 14) and c0 = 6 (dotted line, cor-
responding to U0 = 402). The results are similar to the
ones of the wave equation, with the presence of marked

Fig. 4 D(U0, ω) for the beam equation as a function of ω, 0 ≤
ω ≤ 2, for three different values of c0: c0 = 0.5 (solid line), c0 =
2 (dashed line) and c0 = 6 (dotted line)

resonances in the subcritical region, and whose number
increases at increasing U0 or c0.

Also in this case, there exist very weak resonances
in the supercritical regime, represented by small am-
plitude peaks; however, due to the choice of the param-
eters, they are not visible in Fig. 4.

Similarly to the case of the wave equation, resonance
frequencies could be computed by considering a free
vibration problem, which however would not give the
amplification factor D.

4.2.3 Second-order solution

The computation of the second-order terms is here
even harder than in the case of Section 4.1.3, but the
main properties of the solution can still be understood
by examining the governing equation. Nicely enough,
for ω < 1/2 the first and second order terms still de-
cay exponentially as x → ∞; for 1/2 < ω < 1 and
for x large enough, the beam experiences superhar-
monic oscillations, although of small amplitude; and
for ω > 1 both first- and second-order terms behave
like propagating waves, and the harmonic behaviour is
dominant.

We conclude that the wave and the beam equations
share the same mechanical behaviour with respect to
the problem considered here.

5 Conclusions and outlook

The nonlinear dynamics of semi-infinite beams and ca-
bles resting on a unilateral elastic substrate has been
investigated by means of a classical perturbative ap-
proach, after an appropriate change of variables which
transforms the moving-boundary problem into one with
fixed boundaries.

Two different regimes have been identified, one be-
low (called subcritical) and one above (called super-
critical) a certain critical excitation frequency. In the
latter, energy is lost by radiation at infinity, while in the
former this phenomenon does not occur. On the con-
trary, in the subcritical regime various resonances are
observed; their number depends on the statical configu-
ration around which the system performs nonlinear os-
cillations and they are absent, or better, less pronounced
in the supercritical regime, due to the dissipation by
radiation.
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The coupling between the nonlinearity and the un-
boundedness of the domain is studied, and it is shown
that, in the subcritical regime, far enough from the TDP
in the direction of the unbounded boundary, the dom-
inant oscillation is superharmonic, although its ampli-
tude is orders of magnitude smaller than the amplitude
of the harmonic excitation.

Finally, it has been shown that beams and cables
share the previous mechanical properties, which there-
fore are supposed to be very general, in spite of the
known different behaviour of these two mechanical sys-
tems in terms of wave propagation.

Various developments are possible and worthy. The
first one is certainly the computation of the second-
order terms, which are expected to confirm the pre-
dictions of Sections 4.1.3 and 4.2.3 and to show the
presence of other resonances. Then, it would be inter-
esting to use more sophisticated analytical tools, such
as the multiple scales method, to get a more refined so-
lution. In this respect, we note that the problem would
be particularly enticing, because both slow time scales
and slow spatial scales would be required.

By the multiple scales method one can also approach
the problem of nonlinear normal modes, which will
allow a deep investigation of the nonlinearity of the
model.

Of course, the final objective is that of considering
the full J-lay problem which actually motivates this
work. However, the passage to (very) large displace-
ments is not expected to be easily solved.
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