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Abstract This study investigates the rotating magne-
tohydrodynamic (MHD) flow of a third-grade fluid in
a porous space. Modified Darcy’s law has been utilized
for the flow modeling. The Hall effects are taken into
consideration. The basic equations governing the flow
are reduced to a highly nonlinear ordinary differential
equation. This equation has been solved analytically
by employing the homotopy analysis method (HAM).
The effects of the various interesting parameters on the
velocity distribution have been discussed.

Keywords Rotating flow . Third-grade fluid . Porous
space . HAM solution

T. Hayat · S. B. Khan (�)
Department of Mathematics, Quaid-I-Azam University
45320, Islamabad 44000, Pakistan
e-mail: sherbazkhan@gmail.com

M. Sajid
Department of Mathematics, Quaid-I-Azam University
45320, Islamabad 44000, Pakistan; Physics Research
Division, PINSTECH, P.O. Nilore, Islamabad 44000,
Pakistan

S. Asghar
Department of Mathematics, COMSATS Institute of
Information Technology, H-8, Islamabad 44000, Pakistan

1 Introduction

It is well known that in technological applications, non-
Newtonian fluids exhibiting a nonlinear relationship
between the stresses and the rate of strain are more
appropriate than Newtonian fluids. One of the impor-
tant classes of non-Newtonian fluids is viscoelastic flu-
ids for which one can reasonably hope to obtain ana-
lytic solutions. The governing equations for such fluids
are of higher order, much more complicated, and sub-
tle than the Newtonian fluids. These equations present
various challenges to engineers, mathematicians, Nu-
merical simulists and physicists alike. Even then, sev-
eral workers [1–10] are now engaged in obtaining ana-
lytic solutions for flows of non-Newtonian fluids. Very
limited attention has also been given to flows of non-
Newtonian fluids in a rotating frame [11–16].

In all the above-mentioned studies, the flows have
been considered in a nonporous space. Recently, the
flow of non-Newtonian fluids in a porous space is a
topic of special interest in many engineering appli-
cations. Examples of these applications are filtration
processes, flows in biomechanics, packed bed reac-
tors, geothermal engineering, insulation systems, ce-
ramic processing, enhanced oil recovery, chromatog-
raphy, and many others. Specifically, the rotating flows
of non-Newtonian fluids through a porous medium are
important in geophysical applications.

The main goal of the present study is to investigate
the rotating flow of a third-grade fluid in a porous space.
The fluid is electrically conducting in the presence
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of a uniform strong applied magnetic field. The in-
duced magnetic field is neglected for small magnetic
Reynolds number and the Hall effect is taken into ac-
count. No electric field is applied. The fluid is bounded
by an insulated plate. The fluid motion is caused by
suddenly moved plate. The relevant problem which
governs the flow has been first modeled and then solved
using homotopy analysis method (HAM) [17–30]. The
convergence of the obtained solution is properly dis-
cussed. Graphs for the velocity components have also
been plotted and discussed for various values of emerg-
ing parameters. To the best of our knowledge, such in-
vestigation for a rotating third-grade fluid in a porous
domain is not available yet in the literature.

2 Development of the flow

Consider the hydromagnetic flow of an incompress-
ible third-grade fluid bounded by an insulated plate
at z = 0. The fluid occupying the space z > 0 fills
the porous medium. The fluid has uniform properties
and porous medium is isotropic and homogeneous. A
uniform strong magnetic field B0 is applied in the z-
direction. In the undisturbed state, both fluid and the
plate are in a state of rigid body rotation with constant
angular velocity � = �k̂ (k̂ is a unit vector parallel
to the z-axis). The flow is driven by a sudden motion
to the plate. The magnetic Reynolds number is taken
small and hence the induced magnetic field is negligi-
ble. However, the Hall current effects are retained. In
a porous space, the equations governing the motions
and magnetic fields within the fluid may be written in
a rotating coordinate system as

ρ[(V · ∇)V + 2Ω × V + Ω × (Ω × r )]

= divT + J × B + R, (1)

divV = 0, (2)

divB = 0, curlB = μeJ, CurlE = 0, (3)

J + ωeτe

B0
(J × B) = σ

[
E + V × B + 1

ene
∇ pe

]
. (4)

In above equations, T is the Cauchy stress tensor, ρ

the fluid density, V the velocity, r the radial coordi-
nate, and R the Darcy’s resistance in the porous space.
In Maxwell’s Equations (3), the total magnetic field
B = B0 + b, where B0 is the applied magnetic field

and b the induced magnetic field. E is the total electric
field, μe the magnetic permeability, and J the current
density. Note that in the generalized Ohm’s law (4),
ωe is the cyclotron frequency of electrons, τe the elec-
tron collision time, σ the electrical conductivity, e the
electron charge, 1/ene the Hall factor, ne the number
density of the electrons, and pe the electron pressure.
The ion-slip and applied voltage are neglected.

The constitutive equations for a third-grade fluid are

T = −pI + S, (5)

S = μA1 + α1A2 + α2A2
1 + β1A3

+ β2(A1A2 + A2A1) + β3(trA2)A1. (6)

Considering the thermodynamic conditions [31]

μ ≥ 0, α1 ≥ 0, β1 = β2 = 0, β3 ≥ 0,

|α1 + α2| ≤
√

24μβ3, (7)

we have

S = μA1 + α1A1 + α2A2
1 + β3(trA2)A1, (8)

where

A1 = L + L�, L = ∇V, (9)

Ai = (V · ∇)Ai−1 + Ai−1L + L�Ai−1, i > 1.

(10)

In previous equations, ρ is the pressure, I and S are
the identity and extra stress tensors, respectively, μ is
the dynamic viscosity, Ai (i = 1, 2, . . .) are the Rivlin–
Ericksen tensors, L the velocity gradient, and L� the
transpose of L.

In porous space, the relationship between pressure
drop and velocity is

∇p = − φ

k1

[
μ + 2β3

{(
du
dz

)2

+
(

dv

dz

)2
}]

V, (11)

where φ and k1, respectively, indicate the porosity and
permeability of the porous space, and u and v are the
velocity components. Since the pressure gradient in Eq.
(11) is a measure of the resistance to the flow in the bulk
of porous space and in Eq. (1), R is interpreted as the
flow resistance offered by the solid matrix. Therefore,
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through Eq. (11), R satisfies [10]

R = − φ

k1

[
μ + 2β3

{(
du
dz

)2

+
(

dv

dz

)2
}]

V, (12)

For the problem under consideration, the extra stress
tensor and velocity are defined as follows:

S(z) =

⎛⎜⎝ Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

⎞⎟⎠ , (13)

V(z) = (u(z), v(z), 0). (14)

Clearly, Eq. (14) satisfies the incompressibility condi-
tion (2), and in scalar form, Eq. (1) gives

−2�ρ
du
dz

= μ
d3u
dz3

+ 2β3
d2

dz2

[{(
du
dz

)2

+
(

dv

dz

)2}du
dz

]
− φ

k
d
dz

[
μu

+ 2β3

{(
du
dz

)2

+
(

dv

dz

)2}
u
]

− σ B2
0

1 − im0

du
dz

, (15)

2�ρ
du
dz

= μ
d3v

dz3
+ 2β3

d2

dz2

[{(
du
dz

)2

+
(

dv

dz

)2}du
dz

]
− φ

k
d
dz

[
μv

+ 2β3

{(
du
dz

)2

+
(

dv

dz

)2}
v

]
− σ B2

0

1 − im0

du
dz

, (16)

where m0 = weτe is the Hall parameter. The boundary
conditions are given by

u = U, v = 0 at z = 0

u → 0, v → 0 as z → ∞. (17)

Equations (15) and (16) can be combined in the fol-
lowing form

2�iρ
d F
dz

= μ
d3 F
dz3

+ 2β3
d2

dz2

{(
d F
dz

)2 d F̄
dz

}
− φ

k
d
dz

{
μF + 2β3

d F
dz

d F̄
dz

F
}

− σ B2
0

1 − im0

d F
dz

, (18)

where

F = u + iv, F̄ = u − iv. (19)

The boundary conditions (17) can be written as

F(0) = U, F(∞) = 0. (20)

We introduce the following dimensionless variables

z∗ = ρU
μ

z, F∗ = F
U

, F̄∗ = F̄
U

, �∗ = μ

ρU 2
�

β = β3ρ
2U 4

μ3
, M2 = σ B2

0

ρ�
, K = �ρk

φμ
.

The problem under consideration now becomes

d3 F
dz3

= �

{
M2

1 + m2
0

+
(

2 − M2m0

1 + m2
0

)
i
}

d F
dz

− 2β
d2

dz2

{(
d F
dz

)2 d F̄
dz

}
+ �

K

{
d F
dz

+ 2β
d
dz

(
d F
dz

d F̄
dz

F
)}

, (21)

F(0) = 1, f (∞) = 0, (22)

where the asterisks have been omitted for simplicity.
Using

η = e−z (23)

the problem reduces to

η3 d3 F
dη3

+ 3η2 d2 F
dη2

+ η
d F
dη
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= �η

{
M2

1 + m2
0

+
(

2 − M2m0

1+, m2
0

)
i
}

d F
dη

− 2βη3

⎡⎢⎢⎢⎣
9

(
d F
dη

)2 d F̄
dη

+ 7η
d

dη

{(
d F
dη

)2 d F̄
dη

}
+η2 d2

dη2

{(
d F
dη

)2 d F̄
dη

}
⎤⎥⎥⎥⎦

+ �

K
η

⎡⎢⎢⎣
d F
dη

+ 2βη2 d
dη

(
d F
dη

d F̄
dη

F
)

+4βη
d F
dη

d F̄
dη

F

⎤⎥⎥⎦ , (24)

F(1) = 1, F(0) = 0. (25)

It is worth pointing out that by setting φ = 0 or k →
∞, we get the governing problem for rotating flow of
a third grade fluid in a nonporous space. Equation (24)
is highly nonlinear and its HAM solution subject to
the boundary conditions (25) can be sought in the next
section.

3 HAM solution

For the HAM solution, we choose

F0(η) = η, (26)

and the auxiliary linear operator

L( f ) = f ′′, (27)

satisfying

L(C1 + C2η) = 0, (28)

in which C1 and C2 are arbitrary constants.
The deformation problem at the zeroth order satisfies

(1 − p)L[F̂(η, p) − F0(η)] = p�N [F̂(η, p)], (29)

F̂(0, p) = 0, F̂(1, p) = 1, (30)

where � and p ∈ [0, 1] are the auxiliary and embedding
parameters, respectively, and

N [F̂(η, p)] = η3 ∂3 F̂(η, p)

∂η3
+ 3η2 ∂2 F̂(η, p)

∂η2

+ η
∂ F̂(η, p)

∂η
− �η

[
M2

1 + m2
0

+
(

2 − M2m0

1 + m2
0

)
i

]
∂ E(η, p)

∂η

+ 2βη3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

9
(

∂ F̂(η,p)
∂η

)2
∂ ¯̂F(η,p)

∂η

+7η ∂
∂η

{(
∂ F̂(η,p)

∂η

)2

∂ ¯̂F(η,p)
∂η

}

+η2 ∂2

∂η2

{(
∂ F̂(η,p)

∂η

)2

∂ ¯̂F(η,p)
∂η

}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

− �

K
η

⎡⎢⎢⎢⎢⎣ ∂ F̂(η, p)

∂η
+ 2β

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
η2 ∂

∂η

(
∂ F̂(η,p)

∂η
∂ ¯̂F(η,p)

∂η
F(η, p)

)

+2η

(
∂ F̂(η,p)

∂η
∂ ¯̂F(η,p)

∂η
F(η, p)

)
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎦
(31)

is the nonlinear differential operator. For p = 0 and
p = 1, we have

F̂(η, 0) = F0(η), F̂(η, 1) = F(η). (32)

From the previous equation, we note that the derivation
of p from 0 to 1 is continuous variation of F̂(η, p) from
F0(η) to F(η). Due to Taylor’s theorem and Eq. (32),
we can write

F̂(η, p) = F0(η) +
∞∑

m=1

Fm(η)pm (33)

in which

Fm(η) = 1

m!

∂m F̂(η, p)

∂pm

∣∣∣∣
p=0

.

Clearly, the convergence of the series (33) depends on
the auxiliary parameter �. Assume that � is selected
such that the series (33) is convergent at p = 1, then
due to Equation (32), we have

F̂(η, p) = F0(η) +
∞∑

m=1

Fm(η). (34)

Differentiating m-times the zeroth-order deforma-
tion (29) with respect to p and then dividing them by
m! and finally setting p = 0, we have the mth-order
deformation problem

L[Fm(η) − χm fm−1(η)] = �Rm(η), (35)

Fm(0) = Fm(1) = 0, (36)
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Rm (η) = η3 F ′′′
m−1(η) + 3η2 F ′′

m−1(η) + ηF ′
m−1(η)

− �η

{
M2

1 + m2
0

+
(

2 − M2m0

1 + m2
0

)
i
}

F ′
m−1(η)

+ 2βη3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9
∑m−1

k=0 F ′
m−1−k (η)

∑k
l=0 F ′

k−l (η)F̄ ′
l (η)

+ 7η

⎧⎨⎩ 2
∑m−1

k=0 F ′
m−1−k (η)

∑k
l=0 F ′′

k−l (η)F̄ ′
l (η)

+ ∑m−1
k=0 F ′

m−1−k (η)
∑k

l=0 F ′
k−l (η)F̄ ′′

l (η)

⎫⎬⎭

+ η2

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2
∑m−1

k=0 F ′′
m−1−k (η)

∑k
l=0 F ′′

k−l (η)F̄ ′
l (η)

+ 2
∑m−1

k=0 F ′
m−1−k (η)

∑k
l=0 F ′′′

k−l (η)F̄ ′
l (η)

+ 4
∑m−1

k=0 F ′
m−1−k (η)

∑k
l=0 F ′′

k−l (η)F̄ ′
l (η)

+ ∑m−1
k=0 F ′

m−1−k (η)
∑k

l=0 F ′
k−l (η)F̄ ′′′

l (η)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− �

K
η

⎡⎢⎢⎢⎢⎢⎣
F ′

m−1(η) + 2βη2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑m−1

k=0 F ′′
m−1−k (η)

∑k
l=0 F̄ ′

k−l (η)Fl (η)

+ ∑m−1
k=0 F ′

m−1−k (η)
∑k

l=0 F̄ ′′
k−l (η)Fl (η)

+ ∑m−1
k=0 F ′

m−1−k (η)
∑k

l=0 F ′
k−l (η)F̄ ′

l (η)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+ 4βη

∑m−1
k=0 F ′

m−1−k (η)
∑k

l=0 F̄ ′
k−l (η)Fl (η)

⎤⎥⎥⎥⎥⎥⎦
(37)

and

χm =
{

0, m ≤ 1,

1, m > 1.
(38)

For the solution of the mth-order problem, we use the
symbolic computation software MATH-EMATICA up
to first few order of approximations and found that the
solution of this problem is given by the following series

Fm(η) =
4m+2∑
n=0

am,nη
n, m ≥ 0. (39)

In order to obtain the recurrence formulae for the co-
efficients am,n of Fm(η), we substitute Eq. (39) in Eq.
(35) and obtain for m ≥ 1 and 0 ≤ n ≤ 7m + 2:

am,1 = χmχ4m−1am−1,1 −
4m+2∑
n=0

m,n

(n + 1)(n + 2)
, (40)

am,n = χmχ4m−nam−1,n + m,n−2

n(n − 1)
, 2 ≤ n ≤ 4m + 2,

(41)

where the coefficient m,n is define by

m,n = �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

χ4m−n

⎧⎪⎨⎪⎩ χn−1dm−1,n−3 + 3χn cm−1,n−2

+χn+1bm−1,n−1

(
1 + �

K − �
(

M2

1+m2
0

+
(

2 − M2 m0

1+m2
0

)
i
))

⎫⎪⎬⎪⎭
+2β

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
χn−1(9�1m,n−3 − �

K (�8m,n−3 + �9m,n−3 + �1m,n−3))

+7χn−2(2�2m,n−4 + �3m,n−4) − 2�
K χn�10m,n−2

+χn−3(2�4m,n−5 + 2�5m,n−5 + 4�6m,n−5 + �7m,n−5)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,(42)

in which the coefficients �1m,n to �10m,n for m ≥ 1
and 0 ≤ n ≤ 4m + 2 are

�1m,n =
m−1∑
k=0

k∑
l=0

min{n,4k+4}∑
p=max{0,n−4m+4k−2}

min{p,4l+2}∑
s=max{0,p−4k+4l−2}

× b̄l,sbk−l,p−sbm−1−k,n−p,

�2m,n =
m−1∑
k=0

k∑
l=0

min{n,4k+4}∑
p=max{0,n−4m+4k−2}

min{p,4l+2}∑
s=max{0,p−4k+4l−2}

× b̄l,sck−l,p−sbm−1−k,n−p,

�3m,n =
m−1∑
k=0

k∑
l=0

min{n,4k+4}∑
p=max{0,n−4m+4k−2}

min{p,4l+2}∑
s=max{0,p−4k+4l−2}

× c̄l,sck−l,p−sbm−1−k,n−p,

�4m,n =
m−1∑
k=0

k∑
l=0

min{n,4k+4}∑
p=max{0,n−4m+4k−2}

min{p,4l+2}∑
s=max{0,p−4k+4l−2}

× b̄l,sck−l,p−scm−1−k,n−p,

�5m,n =
m−1∑
k=0

k∑
l=0

min{n,4k+4}∑
p=max{0,n−4m+4k−2}

min{p,4l+2}∑
s=max{0,p−4k+4l−2}

× b̄l,sdk−l,p−sbk−1−k,n−p,

�6m,n =
m−1∑
k=0

k∑
l=0

min{n,4k+4}∑
p=max{0,n−4m+4k−2}

min{p,4l+2}∑
s=max{0,p−4k+4l−2}

× c̄l,sck−l,p−sbm−1−k,n−p,

�7m,n =
m−1∑
k=0

k∑
l=0

min{n,4k+4}∑
p=max{0,n−4m+4k−2}

min{p,4l+2}∑
s=max{0,p−4k+4l−2}

× d̄l,sbk−l,p−sbm−1−k,n−p,

�8m,n =
m−1∑
k=0

k∑
l=0

min{n,4k+4}∑
p=max{0,n−4m+4k−2}

min{p,4l+2}∑
s=max{0,p−4k+4l−2}

× b̄l,sak−l,p−scm−1−k,n−p,

�9m,n =
m−1∑
k=0

k∑
l=0

min{n,4k+4}∑
p=max{0,n−4m+4k−2}

min{p,4l+2}∑
s=max{0,p−4k+4l−2}

× c̄l,sak−l,p−sbm−1−k,n−p,

�10m,n =
m−1∑
k=0

k∑
l=0

min{n,4k+4}∑
p=max{0,n−4m+4k−2}

min{p,4l+2}∑
s=max{0,p−4k+4l−2}

× b̄l,sak−l,p−sbm−1−k,n−p
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Fig. 1 �-curve for 10th order of approximation

Fig. 2 Variation of velocity profiles u and v with the change in parameter β for 10th-order approximation at � = −0.1

Fig. 3 Variation of velocity profiles u and v with the change in parameter M for 10th-order approximation at � = −0.1
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Fig. 4 Variation of velocity fields u and v with the change in parameter K for 10th-order approximation at � = −0.1

Fig. 5 Variation of velocity profiles u and v with the change in parameter m0 for 10th-order approximation at � = −0.1

Fig. 6 Variation of velocity profiles u and v with the change in parameter � for 10th-order approximation at � = −0.1
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and the coefficients bm,n, cm,n and dm,n are

bm,n = (n + 1)am,n+1, (43)

cm,n = (n + 1)bm,n+1, (44)

dm,n = (n + 1)cm,n+1. (45)

For the detailed procedure of deriving the aforemen-
tioned relations, the reader is referred to [19]. With the
aforementioned recurrence formulae, we can calculate
all coefficients am,n using only the first three

a0,0 = 0, a0,1 = 1, a0,2 = 0 (46)

given by the initial guess approximation for the func-
tion F(η) in Eq. (26). The corresponding M-order ap-
proximation of Eqs. (24) and (25) is then given by

M∑
m=0

Fm(η) =
4M+2∑
n=1

4M+1∑
m=n−1

am,nη
n. (47)

Therefore, explicit, totally analytic solution of the
present flow is

F(η) =
∝∑

m=0

Fm(η) = lim
M→∞

[
4M+2∑
n=1

4M+1∑
m=n−1

am,nη
n

]
.(48)

4 Convergence of the analytic solution

The expression given in Eq. (48) contains the auxiliary
parameter � that gives the convergence region and rate
of approximation for the HAM. In Fig. 1(a) and (b),
the �-curves are plotted for different order of approxi-
mations for the nondimensional velocity fields u and v.
From Fig. 1(a) and (b), it is clear that the range for the
admissible values for � is −0.2 ≤ h < 0. Our calcula-
tions indicate that the real and imaginary parts of the
series given by Eq. (48) converge in the whole region
of z when � = −0.1.

5 Results and discussion

Figures 2(a) and (b) shows the variation of the velocity
profiles u and v for different values of β. This fig-
ure shows that the velocity profile u decreases with

increase in β, whereas the velocity profile v increases
and then decreases with increase in β when other pa-
rameters M = K = m0 = � = 1 are fixed. From these
figures, it is observed that the increase in the velocity
profile v is smaller in magnitude when compared with
the velocity profile u. Figures 3(a) and (b) depict the
variation of the velocity profiles u and v for various
values of M when β = K = m0 = � = 1. This figure
indicates that the velocity profile u increases with in-
crease in M , whereas the velocity profile v decreases
with increase in M , showing the reverse behavior as ob-
served in the previous case. However, the decrease in
the magnitude of the velocity profile v is smaller than
that in the increase of the velocity profile u. Figures
4(a) and (b) shows the variation of K on the velocity
profiles u and v for M = β = m0 = � = 1. The ve-
locity profile u decreases with increase in K , whereas
the velocity profile v increases with increase in K , but
with a small change when compared with the veloc-
ity profile u. In Figs. 5(a) and (b), it is observed that
the velocity profiles u and v increase for large values
of m0 when M = K = β = � = 1.5. The magnitude
of decrease in the velocity profile u is smaller than
that of decrease of u. Figures 6(a) and (b) depict the
variation in the velocity profiles u and v for different
values of �. From this figure, it is clearly seen that
the velocity profile u decreases with increase in �.
However, the velocity profile v increases by increas-
ing �. The increase is smaller for the velocity profile v

when compared with that of the velocity profile u when
M = K = m0 = β = 1.

6 Concluding remarks

In this work, the flow of a third-grade fluid over a moved
plate is investigated in the presence of Hall current. The
governing equation is modeled on the basis of the mod-
ified Darcy’s law for a third-grade fluid. The resulting
nonlinear problem has been solved analytically using
HAM. It is noted that the velocity profiles u and v have
reversed behavior for physical parameters β, M , K ,
and �, but the velocity profiles u and v show the same
behavior for the physical parameter m0. It is further
found that the boundary layer thickness for v is large
when compared to u.
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