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Abstract Conditions are derived for the linearizabil-

ity via invertible maps of a system of n second-

order quadratically semi-linear differential equations

that have no lower degree lower order terms in them,

i.e., for the symmetry Lie algebra of the system to

be sl(n + 2, R). These conditions are stated in terms

of the coefficients of the equations and hence provide

simple invariant criteria for such systems to admit the

maximal symmetry algebra. We provide the explicit

procedure for the construction of the linearizing trans-

formation. In the simplest case of a system of two

second-order quadratically semi-linear equations with-

out the linear terms in the derivatives, we also provide

the construction of the linearizing point transforma-

tion using complex variables. Examples are given to

illustrate our approach for two- and three-dimensional

systems.
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1 Introduction

It is of interest to provide general criteria for the

linearizability of systems of nonlinear ordinary differ-

ential equations, as they can then be reduced to eas-

ily solvable systems. Linearization criteria via invert-

ible transformations for ordinary differential equations

(ODEs) have been of great interest and have been dealt

with by many authors over the years (see, e.g., [3, 7, 8,

11]). These are also of current interest both for scalar

and systems of ODEs (see, e.g., [5, 6, 12]). The Lie

algebraic criteria for linearization via point transfor-

mations for systems of second-order ODEs have been

studied in [12] and the decoupling problem in [10].

A recently proved theorem [4], providing the rela-

tion between symmetries of systems of geodesic equa-

tions and the underlying manifold, leads to a simple

procedure to check global linearizability for a large

class of systems of second-order quadratically semi-

linear ODEs. Related prior works can be seen at [1–3].

The class of equations for which the criteria can be

simply stated consists of those that are formally like the

system of geodesic equations. These equations have no

linear terms in the derivatives or terms involving deriva-

tives of the dependent variables in a linear fashion.

Springer



418 Nonlinear Dyn (2007) 48:417–422

It is natural to expect that there is a connection

between the symmetries of differential equations and

the isometries of manifolds. A connection was found

in the theorem proved in [4], which states that the

symmetries of the system of geodesic equations in

spaces of constant positive or negative curvature (be-

ing maximally symmetric spaces) are simply the di-

rect product of the two-dimensional dilatation group

and the isometry group of the manifold. Classification

of symmetries of systems of geodesic equations us-

ing projective methods was earlier given in [1]. For

zero curvature, the isometry group is SO(p, q) ⊗s Rn ,

where p + q = n and ⊗s stands for the semi-direct

product, while the symmetry group of the geodesic

equations is SL(n + 2, R). It can be expected that

for less symmetric spaces the geodesics would con-

tinue to inherit the isometry group apart from con-

tinuing to carry the symmetry of re-parametrization

of the geodetic parameter. This was conjectured

in [4].

Using the Einstein summation convention, the sys-

tem of geodesic equations can be written as

ẍ i + �i
jk ẋ j ẋ k = 0, i, j, k = 1, . . . , n, (1)

where the �i
jk are the Christoffel symbols and depend

on xi . Any system of ODEs of this form can be dealt

with as if it was a system of geodesic equations. Con-

sequently, the results obtained here are more generally

applicable and the �i
jk need no longer be thought of

as Christoffel symbols but simply as coefficients of the

relevant terms in the system of ODEs.

In Section 2, we state a theorem that yields simple

criteria for the general system (1) to be linearizable

via invertible transformations, i.e., have the symmetry

algebra sl(n + 2, R), and write down explicitly the cri-

teria for linearization of a system of three second-order

ODEs. In Section 3, we solve the problem for a system

of two equations in terms of the coefficients of the sys-

tem explicitly and then construct the transformations

that do the reduction to a linear system with sl(4, R)

symmetry algebra. An example that illustrates the con-

struction procedure is included in Section 4. Herein

other examples, including three-dimensional systems,

are also given which illustrate various other points.

Section 5 gives a summary and discussion of the

results.

2 Linearization criteria for geodesic equations

Our criteria use some geometrical notation that we pro-

vide first for completeness. For a metric tensor, gi j , the

Christoffel symbols are defined by

�i
jk = 1

2
gim(g jm,k + gkm, j − g jk,m), (2)

where the “,” stands for the partial derivative, i.e.,

f,i = ∂ f/∂xi . For the geometrically relevant, covari-

ant derivative, we use “;”, which is the same as the “,”

for a scalar but defined for vectors by

Ai
; j = Ai

, j + �i
jk Ak, Bi ; j = Bi, j − �k

i j Bk . (3)

The Christoffel symbols are symmetric in the lower

pair of indices, i.e., �i
jk = �i

k j . The Riemann tensor,

which gives a measure of the curvature of the space, is

defined by

Ri
jkl = �i

jl,k − �i
jk,l + �i

mk�
m
jl − �i

ml�
m
jk, (4)

and has the properties that

Ri
jkl = −Ri

jlk, (5)

Ri
jkl + Ri

kl j + Ri
l jk = 0, (6)

and

Ri
jkl;m + Ri

jlm;k + Ri
jmk;l = 0. (7)

The tensor, written in fully covariant form by “lower-

ing” the first index

Ri jkl = gim Rm
jlk, (8)

satisfies the additional property that

Ri jkl = −R jikl . (9)

The following theorem provides simple criteria for

linearization of a system of ODEs of the form (1) by

means of invertible transformations.

Theorem 1. If, for a system of n second-order quad-
ratically semi-linear ODEs for n dependent variables
of the form (1), the Riemann tensor constructed from the
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coefficients of the quadratic terms treated as Christof-
fel symbols, is zero, then the resulting system of ODEs
is linearizable via a point transformation of the depen-
dent variables, and the admitted symmetry algebra is
sl(n + 2, R).

Proof: Treat the system of ODEs (1) as geodesic equa-

tions. From Theorem 1 of [4], since the space is flat it

will have the corresponding isometries and hence the

symmetry algebra of the system of geodesic equations

is sl(n + 2, R). Note that the �i
jk need not necessarily

be consistently read as Christoffel symbols. However,

the compatibility condition for them to be Christoffel

symbols is simply that the Riemann tensor constructed

from them be well defined and satisfy the conditions

(4)–(9). When Ri
jkl = 0 this is automatically guaran-

teed. Hence, the system is linearizable via a point trans-

formation of the dependent variables. Note that geo-

metrically the space is locally flat and the geodesics

are locally straight lines, regardless of the choice of

coordinates that may be curvilinear. Hence the system

of ODEs is linearizable. Note, further, that if the man-

ifold is simply connected the space is globally flat and

the geodesics are globally straight in the manifold. �

Corollary . If the coefficients are constant, then the
linearizability condition reduces to

�i
mk�

m
jl = �i

ml�
m
jk . (10)

Note that these conditions are trivially satisfied when
k = l but are nontrivial otherwise.

To make the criterion more explicit, we write out the

conditions in the theorem for a system of three geodesic

equations in which i, j, k = 1, 2, 3 in (1). For this case

the linearizabilty conditions are

�i
jl,k − �i

jk,l + �i
mk�

m
jl − �i

ml�
m
jk = 0. (11)

If we take k = 1, l = 2, then(
�i

j2

)
x − (

�i
j1

)
y + �i

m1�
m
j2 − �i

m2�
m
j1 = 0. (12)

These give nine conditions. If we take k = 1, l = 3,

then(
�i

j3

)
x − (

�i
j1

)
z + �i

m1�
m
j3 − �i

m3�
m
j1 = 0. (13)

Here too nine conditions arise. If we take k = 2, l = 3,

then(
�i

j3

)
y − (

�i
j2

)
z + �i

m2�
m
j3 − �i

m3�
m
j2 = 0 (14)

which give nine conditions. Not all the conditions in

(11), (12) and (13) are linearly independent. In fact,

only nine of them are in this case. In general, there will

be n2 independent equations. A general (not limited

to a system of three equations) computer algorithm to

check these conditions is being developed [9].

3 System of two equations and flat space

The essential principle may be seen by considering a

system of two geodesic equations for two functions of

one variable

x ′′ = a(x, y)x ′2 + 2b(x, y)x ′y′ + c(x, y)y′2, (15)

y′′ = d(x, y)x ′2 + 2e(x, y)x ′y′ + f (x, y)y′2, (16)

where we have used the prime instead of the dot usu-

ally used in geodesic equations to fit with the nota-

tion familiar in differential equations. We read off the

Christoffel symbols as the negative of the coefficients

of the quadratic terms. Thus,

�1
11 = −a, �1

12 = −b, �1
22 = −c,

�2
11 = −d, �2

12 = −e, �2
22 = − f. (17)

For a known metric tensor, the Christoffel symbols are

given by (2). If Ri
jkl = 0, the equation is linearizable

as the space is flat.

The general discussion of the system of two equa-

tions when Ri
jkl �= 0 is given in [9]. Here we restrict

our attention to the case when the space is flat. In

Cartesian coordinates, we can take g11 = g22 =
1, g12 = 0. However, if we want the coordinate trans-

formations from the coordinates that were used in the

equation to the Cartesian coordinates, we need to solve

the set of six equations which result from Theorem 1.

These reduce to the four (22) equations

ay − bx + be − cd = 0, (18)

by − cx + (ac − b2) + (b f − ce) = 0, (19)

dy − ex − (ae − bd) − (d f − e2) = 0, (20)

(b + f )x = (a + e)y, (21)
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which together with (2) and (17) yield

px = −2(ap + dq), (22)

qx = −bp − (a + e)q − dr, (23)

rx = −2(bq + er ), (24)

py = −2(bp + eq), (25)

qy = −cp − (b + f )q − er, (26)

ry = −2(cq + f r ). (27)

Note that the compatibility of this set of six equations

gives the above four linearization conditions (18)–(21).

Also note that in the case of a system of three equations,

we would get eighteen such equations out. In general,

these would be n2(n + 1)/2, n ≥ 2.

So far, we have not obtained the required coordinate

transformation. We only know that the metric could be

chosen to be the identity matrix in Cartesian coordi-

nates, and in the given coordinates we have

g11 = p, (28)

g12 = q = g21, (29)

g22 = r. (30)

To obtain the Cartesian coordinates u(x, y), v(x, y) in

which the metric is the identity matrix, use the ten-

sor transformation laws for the covariant second rank

tensor, gab(x),

gab(x) = ∂ui

∂xa

∂u j

∂xb
gi j (u), (31)

where x = (x1, x2) = (x, y), u = (u1, u2) = (u, v)

and require that gi j (u) be the identity matrix. We must

then solve the equations

u2
x + v2

x = p, (32)

ux uy + vxvy = q, (33)

u2
y + v2

y = r. (34)

One can use the three equations to write ux and uy

in terms of vx and vy . Finally, one can use the com-

patibility condition obtained by setting uxy = uyx and

(say) Equation (34) to evaluate vx and vy and hence

ux and uy . This procedure leads to a highly nonlinear

first-order ODE.

Another approach is as follows. Let

z = u + iv, i = √−1. (35)

Then, the complex conjugate is

z̄ = u − iv. (36)

Consequently, the above set of Equations (32)–(34) re-

duces to

zx z̄x = p, (37)

zx z̄y + z̄x zy = 2q, (38)

zy z̄y = r. (39)

Since p �= 0 we can divide the last equation by the

first and the second by the first to obtain an equivalent

system, viz.

zy − αzx = 0, (40)

z̄ y − β z̄x = 0, (41)

zx z̄x = p, (42)

where

α = q ±
√

q2 − pr

p
, (43)

β = r

q ±
√

q2 − pr
. (44)

From the above procedure made explicit for a two-

dimensional system, it is clear that it can be general-

ized to an n-dimensional system. Hence, we have the

following theorem.

Theorem 2. A system of n ODEs of the form (1) is lin-
earizable by point transformations if and only if the cur-
vature tensor (4) formed by treating the coefficients in
(1) as Christoffel symbols is zero. The point transforma-
tion is obtainable from (31) with a, b, i, j = 1, . . . , n
and gi j (u) is the identity matrix.
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4 Examples

We now consider a few examples to illustrate our ap-

proach.

1. For a = c = e = 1, b = d = f = 0, the system of

two geodesic equations are linearizable as (18)–(21)

hold. Equations (22)–(27) then yield

px = −2p, py = −2q, qx = −2q,

qy = −p − r, rx = −2r, ry = −2q.

The solution of this system gives

p = r = (c1e2y−2x + c2e−2y−2x ), (45)

q = (c2e−2y−2x − c1e2y−2x ), (46)

where c1 and c2 are positive constants. A solution of

(40)–(42) then gives

z =
√

c1

2
ey−x +

√
c2

2
e−y−x

+ i

(√
c2

2
e−y−x −

√
c1

2
ey−x

)
(47)

A coordinate transformation that does the lineariza-

tion is then finally given by

u =
√

c1

2
ey−x +

√
c2

2
e−y−x , (48)

v =
√

c2

2
e−y−x −

√
c1

2
ey−x . (49)

The above example was also treated in [12] where

the algebraic approach is utilized. Another lineariz-

ing transformation distinct from the one obtained

here was given there.

2. The system of two geodesic equations which have

a = b = 0, c = x , d = f = 0, e = −1/x is lin-

earizable since (18)–(21) are satisfied. Here the sys-

tem has a singularity at x = 0. However, this is an

apparent, or coordinate, singularity. Indeed, this is

the system of geodesic equations in the Cartesian

plane in polar coordinates.

3. The system which has a = b = 0, c = sin x cos x ,

d = f = 0, e = − cot x is not linearizable and does

not admit sl(4, R) algebra as the linearizability

conditions (18) and (19) are not satisfied.

4. The system of three second-order ODEs

x ′′ + x ′2 = 0, y′′ + y′2 = 0,

z′′ + z′2 = 0 (50)

is linearizable (the linearization conditions (12)–

(14) are trivially satisfied) and a transformation that

does the reduction to the simplest system is

u = ex , v = ey, w = ez . (51)

5. The following system of three second-order ODEs

x ′′ = x ′2

x
+ y′2 xy + x

y2
, (52)

y′′ = −y′2, (53)

z′′ = −z′2 − 2y′z′, (54)

has coordinate singularity at x = y = 0 but is lin-

earizable as (12)–(14) are satisfied for the coefficient

functions of the above system. A linearizing trans-

formation is

u = ln xy, u = ey, w = ey+z . (55)

5 Summary and discussion

In this paper, we have demonstrated that the lin-

earizability conditions by invertible transformations

for second-order quadratically semi-linear ODEs can

be very simply stated by treating the coefficients of

the quadratic terms as Christoffel symbols and con-

structing the curvature tensor from them. As is intu-

itively obvious, if the corresponding space is flat the

geodesics are simply straight lines and so the original

system is linearizable, i.e., it has a symmetry algebra

sl(n + 2, R). As was seen in Examples 3 and 5, coordi-

nate singularities do not interfere with the linearization

criteria stated in the Theorem 1. The proof was given

for a system that had no other terms than the second

derivative and the quadratic terms.

The criteria presented are very simple. As an ex-

ample the system of two equations was solved in full

generality. The only problem that arose in the pro-

cess, was the construction of the coordinate transforma-

tion that converts to the Cartesian coordinates, where
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the solution can be written down directly. This was

achieved by using a complex transformation. The pro-

cedure was then applied to specific examples of sys-

tems of two and three equations. It is worth stressing

that the procedure used is constructive and hence yields
the solution fully when the system is linearizable!

The three dependent variable case criteria were also

written down explicitly. Solving such a system in full

generality does, indeed, become complicated to be

done by hand. However, a code has been written [9]

to achieve the implementation of checking the criteria

for all cases. Here we have taken simple cases of

three-dimensional systems and checked their lineariz-

ability explicitly. With the code [9] and the procedure

for converting a general case to the required form, the

n-dimensional system of linearizable equations can

also be solved directly.

Since Aminova and Aminov [1] have discussed the

case of geometric methods for symmetry analysis of

geodesic equations, which is also the subject of this

paper, it is necessary to point out the differences of ap-

proach and purpose of that work from ours. They are

concerned with general theorems for the symmetries of

the projective system of geodesic equations. Starting

with (1) they use one of the variables as a local param-

eter to project to a system of (n − 1) cubically semi-

linear equations, with all terms in such an equation

generally present. They also go on to consider the re-

duction of a system of two equations to a single, scalar,

equation. Then they proceed to discuss the complete

classification by symmetries of the two-dimensional

system (1). However, they do not give invariant crite-

ria for linearizability nor the construction procedure of

the transformations that we provide. They do mention,

in passing, the case of the flat space, but without dis-

cussing its use for providing the solution. We, on the

other hand, are only interested in the linearizability of

the system, and the explicit procedure for constructing

solutions (Theorem 2) and only mention the symmetry

classification in passing.
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