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Abstract Resonant multi-modal dynamics due to pla-

nar 2:1 internal resonances in the non-linear, finite-

amplitude, free vibrations of horizontal/inclined cables

are parametrically investigated based on the second-

order multiple scales solution in Part I [1] (in press).

The already validated kinematically non-condensed ca-

ble model accounts for the effects of both non-linear

dynamic extensibility and system asymmetry due to in-

clined sagged configurations. Actual activation of 2:1

resonances is discussed, enlightening on a remarkable

qualitative difference of horizontal/inclined cables as

regards non-linear orthogonality properties of normal

modes. Based on the analysis of modal contribution and

solution convergence of various resonant cables, hints

are obtained on proper reduced-order model selections

from the asymptotic solution accounting for higher-

order effects of quadratic nonlinearities. The depen-

dence of resonant dynamics on coupled vibration am-

plitudes, and the significant effects of cable sag, incli-

nation and extensibility on system non-linear behavior

are highlighted, along with meaningful contributions

of longitudinal dynamics. The spatio-temporal varia-

tion of non-linear dynamic configurations and dynamic

tensions associated with 2:1 resonant non-linear nor-
mal modes is illustrated. Overall, the analytical predic-
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tions are validated by finite difference-based numerical

investigations of the original partial-differential equa-

tions of motion.
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1 Introduction

The goal of this paper is to parametrically investigate

the multi-modal dynamics due to planar 2:1 internal

resonances in the finite-amplitude free vibrations of

horizontal/inclined cables based on the approximate

closed-form solution obtained by the method of multi-

ple scales (MMS) in Part I [1]. The underlying me-

chanical formulation is based on the kinematically

non-condensed cable model accounting for the effects

of both non-linear dynamic extensibility and system

asymmetry due to inclined sagged configurations.

The suspended cable, aligned with the global

Cartesian co-ordinate system, refers to Fig. 1 in Part

I [1], with an inclination angle θ assigned by keeping

the horizontal span X H fixed and varying the verti-

cal span YH . The function y = y(x), where x is the

spatially independent co-ordinate, describes the cable

sagged static equilibrium, and the ensuing planar dy-

namics about it is described by the coupled longitudinal

(horizontal) u and vertical v displacements. The
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Fig. 1 Crossover (symmetric/anti-symmetric) and avoidance
(hybrid) phenomena (modes) in natural frequency spectrum of
(a) horizontal and (b) inclined (θ = 30◦) cables, with pairs (r, s)

of 2:1 resonant modes (vertical dotted lines) for non-crossover
and non-avoidance cables

dynamic behavior of horizontal/inclined cables is gov-

erned by several geometrical and mechanical parame-

ters that can be collected in the unique parameter [2]

λ/π = (1/π )
√

(wC S cos θ )2 E A/T 3
a , (1)

which accounts for also the inclination θ effects, S be-

ing the cable equilibrium length, E the cable Young’s

modulus, A its uniform cross-sectional area, wC its self-

weight per unit unstretched length, and Ta the static

tension at the cable point where the local inclination

angle is approximately equal to θ . The input values of

EA and wC are fixed for a given θ , whereas the cable

static tension (or its horizontal component H) is ad-

justed to attain the varying λ/π , which entails varying

values of Ta, S, and cable sag-to-span ratio d. Follow-

ing [1], a low-extensible cable with a fixed parameter

E A/wC X H ≈ 2580.35 is analyzed for different θ val-

ues. Variation of the lowest six planar frequencies ω/π ,

non-dimensionalized with respect to the fundamental

frequency of the corresponding taut string, is illustrated

versus λ/π in Fig. 1a and b for the horizontal (θ = 0◦)

and inclined (θ = 30◦) cables, respectively.

The distinguishing linear dynamic features between

horizontal and inclined cables are apparent from Fig. 1,

namely (i) the modification from crossover (Fig. 1a) to

avoidance or veering (Fig. 1b) phenomenon, and (ii)

the associated transition from purely symmetric/anti-

symmetric modes to hybrid or asymmetric modes.1

Amongst other planar (as well as non-planar) internal

resonances, nearly tuned planar 2:1 resonances, each

one involving the pair of modes (r, s) indicated along a

vertical dotted line, may occur away from (e.g., λ/π ≈
1.28, 2.95, 3.23 and 5.48) crossover/avoidance (λ/π ≈
2nπ , n = 1, 2, . . .), whereas nearly tuned planar 1:1 or

2:1 resonances may occur at each crossover/avoidance,

involving also out-of-plane modes, thus leading to a

multiple internal resonance [3]. Herein, we aim at

characterizing the non-linear dynamic features of hori-

zontal/inclined cables away from crossover/avoidance,

which are more likely responsible for purely planar res-

onant dynamics – rarely investigated in the literature –,

along with the combined effects of cable sag and in-

clination. Yet, near-avoidance inclined cables having

high modal density will also be analyzed here in order

to clarify the strong coupling role of the two coexist-

ing hybrid modes and their significant contribution to

system non-linear dynamics.

The paper is organized as follows. In Section 2,

the actual activation of planar 2:1 internal resonances

in various horizontal/inclined cables is investigated

by taking into account the non-linear orthogonality

1 Planar mode shapes in Fig. 1 are resolved in the local co-
ordinate system, with the displacement being normal to the tan-
gential axis of cable centerline.
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properties of normal modes. The first-order interac-

tion coefficients of different horizontal cable models

are also discussed. Then, on accounting for second-

order quadratic non-linear effects, a multi-dimensional,

resonant/non-resonant, modal contribution analysis of

the MMS solution is made in Section 3, and the so-

lution convergence is evaluated in Section 4 in terms

of resonantly coupled amplitudes and frequencies. Be-

cause the accurate determination of cable non-linear

modal shapes is of primary interest from a practical

point of view as regards long-term dynamic tension

effects, the coupled dynamic configurations of reso-

nant non-linear normal modes (NNMs) are determined

in Section 5, whereas Section 6 addresses the cable

non-linear dynamic tension and its space-time modi-

fication. Overall results highlight significant effects of

cable sag, inclination and extensibility on system non-

linear dynamics. Numerical time histories of the finite

difference-based solution, validating the analytical pre-

dictions and showing modal interaction features of the

original system, are presented in Section 7. The paper

ends with a summary and some conclusions. Through-

out the paper, reference to Part I [1] is made, where

needed, by labeling the relevant Section, Figure, Table

and Equation number with the preceding roman ‘I’

symbol.

2 Internal resonance activation

Actual activation (non-activation) of planar 2:1 res-

onance involving a high-frequency (s) and low-

frequency (r) mode is governed by the first-order

quadratic coefficient � obtained by the MMS, when it

is different from (equal to) zero [4]. Based on the kine-

matically non-condensed model holding for a generic

inclined cable, it reads [1]

� = −2

∫ 1

0

α

ρ3

{
φ′

s

(
3

2
φ′

rφ
′
r + y′φ′

rϕ
′
r + 1

2
ϕ′

rϕ
′
r

)

+ ϕ′
s

(
y′

2
φ′

rφ
′
r + φ′

rϕ
′
r + 3

2
y′ϕ′

rϕ
′
r

)}
dx, (2)

where a prime denotes differentiation with respect to x,

ρ =
√

1 + y ′2, α = E A/H , φm and ϕm are the longitu-

dinal and vertical shape functions of the m (m = r, s)

planar mode obtained by the Galerkin method using

a properly truncated N sine-based series, see Section

I.2.4. To discuss also the strain condensation effects

on the resonance activation, we evaluate � with the

condensed model of horizontal cable as well,

� = 2α

{∫ 1

0

ϕsϕ
′′
r dx

∫ 1

0

y′ϕ′
r dx

+1

2

∫ 1

0

ϕs y′′dx
∫ 1

0

ϕ′
rϕ

′
r dx

}
, (3)

whose ϕm are available in closed form, see Appendix

I.A. The � value in Equations (2) and (3) is seen to

depend on the contribution of three factors: the me-

chanical coefficient α, the normal modes (φm, ϕm) and

the static shape (y′, y′′, ρ) function, the latter ensuing

from Equation I.11 valid for small-sagged arbitrarily

inclined cables.

2.1 Horizontal cables

Previous analytical [4] and numerical [5] investiga-

tions have shown that a planar 2:1 internal reso-

nance in horizontal cables is not activated when the

high-frequency mode is anti-symmetric, even though

a 2:1 (ωs : ωr ) frequency ratio is satisfied. Such cir-

cumstance is herein ensured in Table 1 by the van-

ishing of � coefficients of both the non-condensed

(NC) and condensed (CC) crossover cables (λ/π ≈
2, 4) because of the non-linear orthogonality prop-

erties of the anti-symmetric/symmetric (high/low-

frequency) modes. On the other hand, due to the in-

volvement of just symmetric high-frequency s modes

for non-crossover (λ/π ≈ 1.28, 2.95, 3.23, 5.48) and

crossover (λ/π ≈ 4) cables (Fig. 1a) having different

geometrical (d) and mechanical (α) properties, the 2:1

resonances are activated for both NC and CC models

(� �= 0), regardless of the low-frequency r modes being

symmetric or anti-symmetric.

To highlight also the ρ-term effects – already ad-

dressed through numerical studies in Section I.5.3 – on

the � values of the resonantly activated cables, two NC

cases, i.e., with ρ �= 1 and ρ ≈ 1, are considered. It can

be seen that the � values of the NC (ρ ≈ 1) and CC

models are slightly different from each other, whereas

the latter differ more significantly from those obtained

with the general NC (ρ �= 1) model, notwithstanding

the corresponding sag d values are small for all consid-

ered cables (i.e., d < 1:8, see [6]).
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Table 1 Cable properties and � values with NC (N = 30) and CC models for different resonant/non-resonant horizontal
cables

�
Order (Modea) NC

λ/π α d r–s ωr ωs ρ �=1 ρ≈1 CC

1.28 475.7 .023 1(S)–3(S) 4.76 9.51 465.733 453.730 448.991

2 640.6 .031 1(A)–4(A) 6.26 12.55 0 0 0

2(S)–4(A) 6.28 12.55 0 0 0

2.95 828.2 .040 2(S)–5(S) 7.91 15.82 1210.677 1419.739 1432.430

3.23 878.1 .043 3(S)–7(S) 10.94 22.03 3071.039 3092.333 3189.458

4 1013.5 .049 1(A)–3(S) 6.22 12.48 −12265.279 −12534.834 −12851.058

1(A)–4(A) 6.22 12.54 0 0 0

5.48 1246.7 .060 2(S)–5(S) 8.82 17.57 −31316.003 −31928.934 −31744.898

aS (A): symmetric (anti-symmetric)

Generally speaking, these analytical results are in

agreement with the numerical results in Section I.5.3,

which reveal how accounting (ρ �= 1) or not (ρ ≈ 1) for

the varying ρ-terms in the approximate PDEs of motion

of the NC model entails, at least, quantitative differ-

ences in the non-linear dynamic responses, depending

on also the system parameters and initial conditions.

In turn, the difference between the CC- and NC-based

� values stands in the influence of the kinematic con-

densation procedure applied to the CC model, which

essentially neglects the higher-order non-linear effects

of longitudinal dynamic deformation on the physics of

the problem. Overall, neglecting the longitudinal in-

ertia and the associated coupled displacement contri-

butions affects the resonance activation only slightly

through the � values appearing at the first-order MMS.

However, when continuing the MMS analysis to second

order, the discrepancies in the quadratic and, especially,

cubic coefficients between NC and CC models become

outstanding due to the different combination of cou-

pled quadratic/cubic-based coefficients governing var-

ious resonant/non-resonant modes (see Table I.3 and

Section I.5.4). As a consequence, greater differences

may occur. It is also important to remark that the kine-

matic condensation effect plays a more pronounced role

when considering a larger-sagged or higher-extensible

resonant cable [1].

In Fig. 2, we show the negligible difference in the

ϕm modal shape functions of the NC and CC mod-

els through the normalized vertical configurations (vn)

of the symmetric 2nd (r = 2) and 5th (s = 5) modes

of the cables with λ/π ≈ 2.95 (Fig. 2a,b) and 5.48

(Fig. 2c,d). Solid (dotted) lines represent NC (CC) re-

sults. It is worth noting that, in spite of the apparent

opposite phase occurring in ϕr between the two mod-

els for λ/π ≈ 5.48 (Fig. 2c), there is no sign difference

in the associated � values in Table 1. This is because the

r-mode enters Equations (2) and (3) in couple, so that

they are independent of the relevant phase change. In

contrast, if the phases of the solely-appearing s-mode

of the two models are opposite to each other, a sign

difference is expected, which, in turn, could affect the

resonant NNMs (Equations I.41–I.45) for given system

parameters. Yet, such opposite phase does not affect the

sign of second-order quadratic coefficients as the latter,

embedded in Equations (I.33)–(I.35), appear in couple.

As the sag d increases (from .04 to .06) when in-

creasing λ/π (from 2.95 to 5.48), the |�| value notably

increases, despite the associated |σ | value of frequency

detuning (≈ |ωs − 2ωr |) also increases from 0 to .07.

In view of Equations (2) and (3), this augmented inter-

action is due, on one side, to the increasing sag effect,

which is a direct consequence of the decreased H value

(and ensuing increased α value) to attain a greater λ/π ,

on the other side, to the relative changes in the asso-

ciated static and linear dynamic, mostly vertical, (r, s)

shape functions (see Fig. 2). In addition, a sign differ-

ence in � between the two cables is noticeable.

Section I.5.3 has shown how the non-linear planar

responses of the approximate NC model with ρ ≈ 1

exhibit greater numerical errors, with respect to

the exact model, than those of the corresponding

NC model with ρ �= 1. Moreover, Table 1 exhibits

different � values of various NC or CC models,

whose differences become much stronger at second

order (see, e.g., Table I.3). Accordingly, in order

to achieve the most reliable analytical results, the

following parametric studies, which are based on the
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Fig. 2 Vertical vn

components of 2nd and 5th
modes for horizontal cables
with λ/π ≈ 2.95 (a, b) and
λ/π ≈ 5.48 (c, d): solid
(dotted) lines refer to NC
(CC) model

second-order MMS, will rely upon the NC model,

with the pertinent non-linear coefficients accounting

for higher-order longitudinal dynamics (no strain

condensation) and ρ �= 1. In turn, some results based

on ρ ≈ 1 of the NC model are reported in [7, 8].

2.2 Inclined cables

Consider now inclined cables with the general NC

model. The 2:1 resonance activation, with � �= 0,

is nearly always possible in the frequency spectrum

(Fig. 1b), due to vanishing of the purely symmetric or

anti-symmetric spatial character of one of the two (or

both) involved modes as a consequence of the asym-

metry effects due to inclined sagged configurations.

In other words, the non-linear orthogonality properties

of normal modes never hold. As an example, the 2:1

resonance involving the high-frequency (asymmetric

or hybrid) third (I3) or fourth (I4) mode and the low-

frequency first (I1) mode may be activated near second

avoidance (λ/π ≈ 4), besides those of non-avoidance

cables having the same λ/π as non-crossover cables

(1.28, 2.95, 3.23, 5.48). This is shown in Fig. 3a and b

by the variation versus λ/π of the |�| parameters and

Fig. 3 Variation of (a) |�| and (b) σ versus λ/π around second
avoidance in 2:1 resonance case involving third (I3) and first (I1)
modes (solid lines) or fourth (I4) and first (I1) modes (dashed
lines), for inclined cable with θ = 30◦
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of the frequency-tuning σ effects, respectively, for the

cable with θ = 30◦ and N = 15.

Inspecting Fig. 3, it is found that no perfect tuning

(σ = 0) occurs for the I4-I1 interaction (i.e., σ > 0),

whereas it occurs near avoidance (λ/π ≈ 4.1) for the

I3-I1 interaction. All resonant interactions are activated

as |�| �= 0, being relatively high as λ/π approaches

avoidance. However, when varying λ/π farther from

avoidance, either to the left (λ/π < 4) for the I3-I1

interaction or to the right (λ/π > 4) for the I4-I1 in-

teraction, the 2:1 resonances may no longer be acti-

vated, despite the non-vanishing |�|. Indeed, being σ

significantly different from zero, the frequencies may

be far away from proper tuning, consider, e.g., the high

values of both |�| ≈ 7729 (7360) and σ ≈ .5 (−.5)

at λ/π ≈ 4.16 (3.73) for the I4-I1 (I3-I1) interaction.

This implies that � �= 0 is a necessary, but not suffi-

cient, condition for such internal resonance to be ac-

tivated, and that the σ value has also to be accounted

for. Regardless of the latter, it is worth noting that the

two I3-I1 and I4-I1 interactions involving the same I1

mode yield almost equal values of |�| (≈5964.018 and

5967.215) at λ/π ≈ 4.019, thus showing the negligible

effect of the difference in hybrid shape functions asso-

ciated with the two coexisting avoidance modes (I3, I4)

on the |�| value. However, this effect increases as λ/π

is far away from avoidance.

In contrast with near-avoidance cables, the |�| val-

ues of the I3-I1, I4-I1 interactions progressively de-

crease – due to decreasing level of “modal hybrid-

ity” – as λ/π moves towards the right (λ/π → ∞)

or left (λ/π → 2) of second avoidance, respectively,

which ultimately reflects the occurrence of a nearly

anti-symmetric high-frequency mode.

Overall, the outcomes of the nearly tuned 2:1 res-

onance activated at second avoidance, irrespective of

the involved high-frequency, hybrid, 3rd or 4th mode,

theoretically confirm the numerical results in [9], and

enlighten on the distinguishing dynamic behaviors of

the second-avoidance cable with respect to those of the

second-crossover cable, whose 2:1 resonance is acti-

vated only when the high-frequency mode, out of the

two coexisting modes, is symmetric [5]. As a general

remark, the present analysis gives broad hints about

the most likely involvement of a larger number of

modes within a multiple internal resonance for avoid-

ance than for crossover cables e.g., [10, 11], owing to

the non-satisfied non-linear orthogonality of the rele-

vant modes.

Table 2 Cable properties and � values by NC model (N = 30)
for different resonant inclined cables

λ
/
π θ α d r–s ωr ωs �

1.28 30◦ 548.6 .031 1–3 4.42 8.84 312.729

2.95 30◦ 955.6 .053 2–5 7.36 14.70 959.154

45◦ 1170.8 .080 2–5 6.70 13.30 494.389

60◦ 1655.5 .161 2–5 5.73 11.22 115.426

3.23 30◦ 1014.3 .057 3–7 10.16 20.46 −2144.941

3.84 30◦ 1137.5 .064 1–4 5.75 11.72 3231.275

4.14 30◦ 1195.7 .067 1–3 5.75 11.51 −4297.997

1–4 5.75 11.97 7513.074

5.48 30◦ 1439.0 .080 2–5 8.19 16.26 −21348.404

Some resonant non-avoidance (λ/π ≈ 1.28, 2.95,

3.23, 5.48) and near-avoidance (λ/π ≈ 3.84, 4.14) in-

clined cables are given in Table 2, with their properties

(θ, d, α, ωr , ωs) and � values (N = 30). The varying

θ effects (θ = 30◦, 45◦, 60◦) on the resonance activa-

tion are also highlighted for λ/π ≈ 2.95. It is seen

that, in comparison with the |�| values in Table 1 for

the corresponding non-crossover cables, those of all

non-avoidance cables (θ = 30◦) decrease, even though

both the sag d and α parameters substantially increase.

This is likely due to the role played by the inclina-

tion θ , which, in fact, significantly alters the relative

importance of the longitudinal and vertical shape func-

tions affecting the � value. Accordingly, this further

decreases as θ becomes 45◦ and 60◦ for λ/π ≈ 2.95,

consistent with the increasing (absolute) value of σ

(≈−.02, −.10, −.24) as θ = 30◦, 45◦, 60◦, respec-

tively, which shifts the system dynamics far away from

nearly-perfect tuning. Indeed, as displayed in Fig. 4,

though involving the same resonant modes (r = 2, s =
5) for all θ , the (normalized) un plays an increasing

role with respect to the corresponding vn in both the

low- (4a, 4c) and high-frequency (4b, 4d) modes as θ

increases, up to becoming the most significant compo-

nent. This shows how the cable inclination plays a role

in linear dynamics not only as regards the occurrence

of asymmetric modes at avoidance, and generally af-

fects the non-linear dynamics up to giving the smallest

� value for the maximum θ (60◦).

3 Resonant/non-resonant quadratic modal
contributions

Apart from the first-order quadratic coefficient � gov-

erning resonance activation, the second-order MMS

solution of the coupled amplitudes and frequencies
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Fig. 4 Longitudinal un (a,
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components of 2nd and 5th
modes for various inclined
cables having λ/π ≈ 2.95:
dashed (dotted,
dashed-dotted, solid) lines
denote θ = 0◦

(θ = 30◦, 45◦, 60◦)

also depend on the second-order coefficients Krr , Kss ,

and Krs (Equations (I.33)–(I.35)), which account for

the combined effects of quadratic/cubic contributions

due to the two resonant (modeled) modes, and for the

solely quadratic contributions due to the non-resonant

(non-modeled) modes. Thus, prior to evaluating the

non-linear dynamic displacement and tension profiles,

which are amplitude- and frequency-dependent, it is

deemed necessary to examine the quadratic modal con-

tributions responsible for solution convergence. Ac-

cordingly, the pertinent percent contributions to each

of the quadratic coefficients (labeled K Q
ii , i = r, s) are

evaluated by considering a finite-dimensional model

through which M is the highest order of retained modes.

The modal contributions for the low- and higher-

sagged cables with λ/π ≈ 1.28 (r = 1, s = 3, M = 5)

and 5.48 (r = 2, s = 5, M = 15) are considered in

Tables 3 and 4, respectively, to highlight the cable

sag effects. In each λ/π case, the results for θ = 0◦

(Table 1) and 30◦ (Table 2) are comparatively reported

to show the influence of cable inclination. It can be

seen that only the non-resonant symmetric modes con-

tribute to all coefficients for horizontal (non-crossover)

cables [5, 12], whereas all non-resonant modes – re-

gardless of their order or spatial character – come into

play for inclined cables. This distinctive aspect also

holds for the second-order spatial functions of dynamic

displacement and velocity (Equations (I.51)–(I.52)).

Table 3 Second-order
quadratic modal
contributions for horizontal
and inclined (θ = 30◦)
cables with λ/π ≈ 1.28,
N = 30 and M = 5

Modal contributions (%)

θ = 0◦ θ = 30◦

m K Q
rr K Q

ss K Q
rs K Q

rr K Q
ss K Q

rs

1 (r) 98.476 74.014 76.771 98.559 73.776 76.794

2 0 0 0 0.007 0.346 −0.047

3 (s) 1.308 26.009 23.119 1.214 25.886 23.267

4 0 0 0 0.012 0.015 −0.056

M = 5 0.216 −0.023 0.110 0.209 −0.023 0.042
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Table 4 Second-order
quadratic modal
contributions for horizontal
and inclined (θ = 30◦)
cables with
λ/π ≈ 5.48, N = 30 and
M = 15

Modal contributions (%)

θ = 0◦ θ = 30◦

m K Q
rr K Q

ss K Q
rs K Q

rr K Q
ss K Q

rs

1 0 0 0 0.328 0.337 −0.717

2 (r) 35.134 2.131 −6.673 32.805 2.293 −8.105

3 0 0 0 0.433 1.148 −2.091

4 −3.345 15.818 −22.223 −3.229 11.446 −18.826

5 (s) 56.672 81.280 137.184 51.519 84.329 138.869

6 0 0 0 7.497 0.424 −1.536

7 9.650 2.528 −10.053 8.806 1.972 −9.398

8 0 0 0 0.110 0.062 −0.787

9 1.268 0.033 1.850 1.144 0.028 2.517

10 0 0 0 0.021 −0.033 0.044

11 0.381 −2.042 −0.010 0.342 −2.343 0.067

: : : : : : :

M = 15 0.080 0.067 −0.032 0.071 0.069 −0.021

For the cables with λ/π ≈ 1.28, the quadratic effects

due to non-resonant modes, which, in general, can

be either positive (softening-type correction) or neg-

ative (hardening-type correction), are very small com-

pared with those produced by the two resonant modes

(>99%). Therefore, for these cables, it makes sense

to consider a two-degree-of-freedom reduced-order
model accounting for only the two resonant modes.

However, this is not the case for the larger-sagged ca-

bles with λ/π ≈ 5.48, for which the higher-order ef-

fects of quadratic nonlinearities become pronounced.

As shown in Table 4, a number of non-resonant modes,

e.g., the intermediate-order 4th (3rd and 4th) and the

higher-order 7th, 9th, 11th (6th, 7th, 9th and 11th)

modes play a meaningful role, too, in all quadratic co-

efficients of the horizontal (inclined) cable.

In other cases, some non-resonant modes are seen

to play a role even greater than the resonant ones. This

may happen, for instance, when the associated λ/π val-

ues fall in the avoidance zones (Fig. 1b), where multi-

ple internal resonances are realized. Consider, e.g., the

resonant inclined (θ = 30◦) cable in Table 2 involving

the coupled 1st and 4th modes or the coupled 1st and

3rd modes, whose λ/π is nearly below (λ/π ≈ 3.84)

or above (λ/π ≈ 4.14) second avoidance, respectively.

As shown in Table 5 with M = 15, the combinations

(103.514%, 94.865%) of non-resonant modal contri-

butions in the K Q
rr are greater than those (−3.514%,

5.135%) of resonant modal contributions for both λ/π

(3.84, 4.14), whereas, in the K Q
rs , the former may be

greater than (65.832%) or nearly equal to (44.038%) the

latter (34.168% or 55.962%) for λ/π ≈ 3.84 or 4.14,

respectively. As a matter of fact, the major influence

substantially results from the contribution of the 3rd

(4th) hybrid mode which nearly coexists with the 4th

(3rd) one near avoidance at λ/π ≈ 3.84 (λ/π ≈ 4.14).

Yet, other non-resonant modes, e.g., the intermediate-

order 2nd and the higher-order 5th modes also play a

significant role for both λ/π , like those in Table 4 for

cables with λ/π ≈ 5.48.

In conjunction with Equations (I.33)–(I.35), these

meaningful contributions are due to the associated

nearly-vanishing denominators where the difference

between squared resonant and non-resonant frequen-

cies appears, as well as to the coupled quadratic terms

whose values are non-trivially affected by the asymmet-

ric spatial character of the coexisting hybrid modes. The

former are responsible for a multiple resonance condi-

tion of near-avoidance cables. Overall, the quadratic

modal contributions put into evidence the significance

of accounting for both resonant and non-resonant

(higher-order) modes in the resonant dynamic solution

of cables exhibiting significant sag and/or remarkable

asymmetry due to inclination effects. Of course, the

higher-order modal contributions become less impor-

tant when increasing the order of modal truncation up

to finally yielding converging results. It is also worth

noticing how the resonant two-mode solution, when

embedded in an infinite-dimensional Galerkin expan-

sion, is capable of properly signaling the breakdown of
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Table 5 Second-order
quadratic modal
contributions for inclined
(θ = 30◦) cables near
second avoidance: (a)
λ/π ≈ 3.84 and (b)
λ/π ≈ 4.14, with N = 30
and M = 15

Modal contributions (%)

λ/π = 3.84a λ/π = 4.14b

m K Q
rr K Q

ss K Q
rs K Q

rr K Q
ss K Q

rs

a,b1(r) −0.670 0.150 2.162 0.528 0.013 2.868

2 −2.446 6.998 12.911 1.625 3.643 8.943
b3 (s) 110.895 25.124 45.217 4.607 86.348 53.094
a4 (s) −2.844 64.530 32.006 86.348 8.930 29.140

5 −4.326 3.079 6.541 6.159 0.957 4.841

6 −0.036 0.008 0.055 0.053 0.003 0.149

7 −0.397 −0.293 0.752 0.482 −0.171 0.660

8 −0.006 −0.256 0.009 0.007 0.016 0.005

9 −0.102 0.483 0.208 0.116 0.185 0.179

: : : : : : :

M = 15 −0.009 0.022 0.019 0.010 0.010 0.017

the lowest reduced-order modeling. Thus, accounting

for also non-resonant modes becomes mandatory.

4 Resonant non-linear amplitudes and frequencies

The second-order effects on resonant non-linear am-

plitudes are now investigated, aimed at verifying the

solution convergence based on the quadratic modal

contributions previously discussed. Equation (I.41) is

employed by evaluating the low-frequency ar ampli-

tude for given high-frequency as amplitude. Two hor-

izontal non-crossover cables involving different reso-

nant symmetric modes (λ/π ≈ 1.28 and 2.95) are first

considered. Then, to illustrate the asymmetry effects

due to the hybrid modes, an inclined near-avoidance

cable (θ = 30
◦
, λ/π ≈ 4.14) is analyzed. The as − ar

relationships obtained with first-order and M-varying

second-order solutions are comparatively displayed in

Fig. 5a, b and c for λ/π ≈ 1.28 (r = 1, s = 3), λ/π ≈
2.95 (r = 2, s = 5) andλ/π ≈ 4.14 (r = 1, s = 3), re-

spectively. For the sake of comparison, fixed σ = 0 and

γ = π values are considered, and only stable positive

amplitudes according to Equation (I.42) are presented.

Figure 5a and 5b highlight that considering only

the first-order term gives considerably overestimated

ar versus as values with respect to those obtained

by second-order solutions. For the low-sagged cable

(λ/π ≈ 1.28), the second-order amplitude curves, ob-

tained with M = R (accounting for only the two res-

onant modes), M = 3 (confirming the no-contribution

of the anti-symmetric 2nd mode) or M = 5 in Fig. 5a,

are nearly undistinguishable from each other. Thus,

it is definitely reasonable to consider only the mini-

mal (2-DOF) reduced-order resonant model for this ca-

ble, because the quadratic effects due to non-resonant

modes are negligible. However, as the cable sag in-

creases (Fig. 5b, λ/π ≈ 2.95), considering only the

resonant modes (M = R) in the second-order solu-

tion entails underestimated ar values which, in addi-

tion, are limited to a low amplitude as range, due to

the rapidly approaching negative value of the result-

ing term in the bracket of Equation (I.41). The solu-

tions improve and converge at once when considering

M = 5. This means that, since there is no contribu-

tion from the anti-symmetric 1st and 4th modes (see

Fig. 1a), accounting for only the intermediate sym-

metric 3rd mode is already satisfactory. Of course,

in other λ/π ≈ 2.95 cases with θ �= 0, the 1st and

4th modal contributions are non-trivial. Depending

on the symmetric modal interaction, it is also ob-

served that the obtained ar amplitudes decrease as

the sag or λ/π increases for the fixed θ and given as

amplitudes.

Unlike horizontal cables, the asymmetry effects play

a significant role for the near-avoidance cable shown

in Fig. 5c. The first-order and M = R second-order so-

lutions yield almost the same ar values, which remain

unchanged even if accounting for also the 2nd mode

(M = 3). When taking the 4th mode – namely, the hy-

brid non-modeled mode coexisting at second avoidance

– into consideration (M = 4), the ar values consider-

ably increase over the larger as amplitude range. Even-

tually, the results converge when M = 5, confirming
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Fig. 5 Resonant as − ar amplitudes for different MMS solutions: (a) θ = 0◦, λ/π ≈ 1.28; (b) θ = 0◦, λ/π ≈ 2.95; (c) θ = 30◦,
λ/π ≈ 4.14

the need to consider also some non-resonant higher-

order modes in Table 5.

The effects of varying θ on both the ar − as rela-

tionship and the backbone curve are now displayed in

Fig. 6a and b, respectively. Since ω(N )
s ≈ 2ω(N )

r [1],

only the r-mode non-linear frequency (ω(N )
r ) is evalu-

ated through Equation (I.45) and then normalized with

respect to the associated linear frequency ωr . With

λ/π ≈ 2.95, the second-order results are shown for the

horizontal and inclined (θ = 30◦, 45◦, 60◦) cables with

M = 5 and 10, respectively. In view of Fig. 6a, the esti-

mated ar amplitudes increase as θ (as well as the cable

sag) increases for given as values, contrary to the case

exhibiting the increased sag effects alone (Fig. 5b vs a).

This may be due to exchanged importance of the

u/v shape functions (Fig. 4) as θ increases, accord-

ing to which the u component becomes the dominant

contribution to cable response and gives rise to signif-

icant changes in the associated non-linear coefficients

(�, Krr , Kss , Krs). As shown in Table 6, the inclination

affects both the second-order quadratic (K Q
ii ) and cu-

bic (K C
ii ) coefficients, which are of softening-type and

hardening-type, respectively. As θ increases, all of the

absolute summations (
∑

) of quadratic and cubic coef-

ficients decrease, without changing the sign indicating

the effective nonlinearity. Evidently, together with the

�decrement in Table 2, this entails an overall increment

of the estimated ar values through Equation (I.41),

while keeping σ and γ fixed. Thus, while the back-

bone curves in Fig. 6b exhibit, in general, a hardening

behaviour, they become as less hardening as higher θ is.

This occurs because, as θ increases, the softening cor-

rection due to the ar -dependent term in Equation (I.45)

somehow reduces the prevailing hardening corrections
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Table 6 Second-order quadratic and cubic coefficients of vari-
ous inclined cables with λ/π ≈ 2.95, N = 30 and M = 10: (a)
Krr , (b) Kss , (c) Krs

(a) Krr

θ K Q
rr K C

rr

∑
0◦ 3380245.348 −2443516.680 936728.668

30◦ 1918638.007 −1405070.502 513567.505

45◦ 891003.539 −705675.662 185327.877

60◦ 241233.251 −230468.875 10764.376

(b) Kss

K Q
ss K C

ss

∑
0◦ 43656384.761 −109638064.379 −65981679.618

30◦ 24731628.708 −61808123.938 −37076495.229

45◦ 11127469.293 −28054512.094 −16927042.801

60◦ 2886187.962 −7461794.632 −4575606.670

(c) Krs

K Q
rs K C

rs

∑
0◦ 10538434.283 −21960899.470 −11422465.188

30◦ 5918207.453 −12468727.488 −6550520.035

45◦ 2677493.735 −5945924.924 −3268431.189

60◦ 698677.986 −1754799.169 −1056121.184

due to the first-order (remind that � is positive, while

cosγ is negative) and as – dependent terms. This aug-

mented softening behaviour appears consistent with the

effects of the solely increased sag in non-resonant hor-

izontal cables [3].

The effects of varying the cable extensibility

E A/wC X H on the resonant amplitudes and r-mode

backbone curve are illustrated in Fig. 7a and b,

respectively, by focusing on horizontal cables with

λ/π ≈ 2.95 (N = 30, M = 5). While keeping A, wC

and X H fixed, the E value (extensibility) is increased

(decreased) such that E A/wC X H ≈ 10000, 20000

with respect to the reference one (2580.35). Mean-

while, in order to maintain λ/π ≈ 2.95 in Fig. 1a,

the H and Ta (sag) values increase (decrease) as E
increases. The assumption of small static strain [1]

is still satisfied, and the second-order contributions

from the non-resonant 3rd mode remain significant. In

addition, the absolute values of first-order – as well as

second-order (� and Krr remain positive, while Kss

and Krs remain negative) – coefficients decrease as

E A/wC X H decreases, even though the sag increases.

Because of the slight changes in the modal shape func-

tions of low-extensible cables, this decrement is mainly

due to the decrement of the pertinent α(=E A/H )

parameter, despite H also decreases. Similar to the

increasing θ case, the estimated ar values increase

as the extensibility increases for given as , as shown

in Fig. 7a. This is a physically expected behaviour

because a lower-extensible (e.g., metallic) cable

vibrates with smaller amplitudes than a corresponding

higher-extensible (e.g., synthetic) cable. Accordingly,

the backbone curve in Fig. 7b exhibits as more harden-

ing behaviour as lower the extensibility is: this is again

expected as the metallic cable is typically stiffer than

the synthetic cable. The σ and γ parameter effects

as
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Fig. 6 Cable inclination effects on (a) resonant as − ar amplitudes and (b) r-mode backbone curve for various inclined cables with
λ/π ≈ 2.95
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Fig. 7 Cable extensibility effects on (a) resonant as − ar amplitudes and (b) r-mode backbone curve for horizontal cables with
λ/π ≈ 2.95

on the amplitude/frequency results can be found in

[7].

5 Resonant NNMs and their space-time evolution

The second-order effects on the spatial dynamic con-

figurations of the 2:1 resonant NNMs are now illus-

trated. Three different cables are analyzed in Fig. 8a,

b and c, respectively, i.e. the horizontal cable with

λ/π ≈ 2.95 and as = .0002 (Table 1), and the in-

clined (θ = 30◦) cables (Table 2) far away from avoid-

ances (λ/π ≈ 5.48, as = .0015) or near second avoid-

ance (λ/π ≈ 4.14, as = .0003). To gain clear insights

into different MMS solutions, the first-order, improved

first-order and second-order dynamic configurations

(see their definitions in Section I.4.3) of the v am-

plitudes (with 51 cable nodes) are comparatively pre-

sented with γ = π, σ = βr0 = t = 0, the latter value

corresponding to zero-velocity configurations, see

Equation (I.44).

Overall, it can be seen that significant quantitative

(Fig. 8a–c) as well as qualitative (8b and c) errors occur

when considering the first-order configurations, due to

the overestimated (or underestimated) ar amplitudes

at first order, e.g., in Fig. 5a and b (or c). Thus, it is

very important to account for second-order corrections

– depending on the non-resonant modes – in both the

amplitudes and frequencies. In Fig. 8a, quantitative er-

rors are seen to occur also if considering M = R in the

second-order displacement. The results suggest taking

the symmetric 3rd mode (M = 5) into account, con-

sistent with the observation in Fig. 5b, the 7th mode

(M = 7) being instead useless. Yet, it is worth notic-

ing how only a small difference occurs between the

improved first-order and the second-order configura-

tions with M = 5, which fully highlights the major

importance of accounting for higher-order effects in the

amplitude and frequency even in a first-order displace-

ment solution, in order to achieve a reliable NNM. This

spatial convergence property also holds when varying

the time t.
In contrast, the importance of accounting for the

full second-order analysis (involving also spatial cor-

rections) is apparent in Fig. 8b and c which refer to

the larger-sagged and inclined cables, whose asym-

metric features of all superimposed configurations are

clearly noticed with respect to the symmetric horizon-

tal cable in Fig. 8a. In agreement with Tables 4 and 5,

the spatial configurations converge satisfactorily when

considering the second-order displacement solution ac-

counting for both resonant/non-resonant modes (e.g.,

M ≈ 7 in Fig. 8b and M ≈ 5 in Fig. 8c), whereas

the improved first-order solution does not converge al-

beit considering more modes (M = 15 in Fig. 8b and

M = 11 in Fig. 8c). This makes evident that the second-

order quadratic nonlinearities are significant for larger-

sagged and asymmetric cables, and gives clear hints

about the necessity of accounting for also second-order

spatial displacement corrections.

Overall, depending on coupled vibration ampli-

tudes, it can be inferred that, in order to obtain
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Fig. 8 Different first-order and second-order MMS v displacements of non-linear dynamic configurations for horizontal cable with (a)
λ/π ≈ 2.95, as = .0002 and inclined (θ = 30◦) cables with (b) λ/π ≈ 5.48, as = .0015 and (c) λ/π ≈ 4.14, as = .0003

reliable reduced-order MMS solutions of the reso-

nant NNMs: (i) Accounting for contributions of non-

resonant (higher-order) modes is very important, un-

less a very low-sagged cable is considered; (ii) it may

be sufficient to account for them in the non-linear am-

plitude and frequency solutions only, thereby devel-

oping an improved first-order displacement solution,

for relatively low-sagged cables; (iii) it is necessary

to take them into consideration also in the non-linear

dynamic displacements (the second-order spatial so-

lution) as the cable sag or inclination effects are

significant.

The space-time evolution of the second-order dis-

placements of resonant NNMs is addressed by referring

to both the u (dashed lines) and v (solid lines) com-

ponents in the analysis over a half non-dimensional

r-mode period Tr of non-linear oscillation. They are

shown in Fig. 9a, b and c, with M = 5, 10 and 15,

respectively, for the horizontal and inclined (θ = 45◦)

cables with λ/π ≈ 2.95, as = .0004, and for the in-

clined (θ = 30◦) cable with λ/π ≈ 5.48, as = .001.

Having in mind the u and v modal shapes of the un-

derlying 2nd and 5th resonant modes for the horizontal

and inclined (θ = 45◦) cables in Fig. 4, an apparently

distinctive time-varying non-linear superposition of the

two coupled modes is observable in Fig. 9a and b. Qual-

itatively, as θ increases, the longitudinal amplitudes –

which are quite small for the horizontal cable – mean-

ingfully increase, up to becoming comparable with the

combined vertical ones, which, in turn, are relatively

lower than in the horizontal cable. This visualizes how

the longitudinal displacements play an increasingly im-

portant role in the non-linear resonant dynamics as θ

increases for a fixed λ/π , and represents a closed-form
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Fig. 9 Comparison of space-time second-order u (dashed lines) and v (solid lines) components of resonant NNMs over a half non-linear
period Tr : (a) θ = 0◦, λ/π ≈ 2.95, as = .0004; (b) θ = 45◦, λ/π ≈ 2.95, as = .0004; (c) θ = 30◦, λ/π ≈ 5.48, as = .001

confirmation of a behavior already exemplified in [9]

within a purely numerical solution. Furthermore, a re-

markably different time evolution is observed between

the symmetric/asymmetric spatial distributions exhib-

ited by the horizontal/inclined cables, respectively.

With a higher number of retained modes and greater

amplitudes, the coupled configurations of the inclined

cable are likely to exhibit multi-harmonic responses,

as shown in Fig. 9c whose vertical scales are en-

larged with respect to Fig. 9a and b. This is revealed

by the small time-varying local curvatures (e.g., at

t = .1Tr , .4Tr , .5Tr ) due to spatial corrections from

higher-order non-resonant modes. The multi-harmonic

feature has already been observed through numerical

simulations in the vibrations of large-sagged horizontal

cables [5].
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Fig. 10 Spatially non-uniform total tension responses: (a) cables with λ/π ≈ 2.95, as = .0004 and t = 0.3Tr ; (b) inclined (θ = 30◦)
cable with λ/π ≈ 5.48, as = .001 and t = 0 − 0.5Tr

6 Space-time modification of cable non-linear
tensions

On accounting for the spatial variation of both static

e and non-linear dynamic ed strains, the space-time

modification of cable total tension can be evaluated

through Equation (I.5) with neglected out-of-plane

component, wherein the derivatives of the converg-

ing second-order u and v displacements are calculated

through Equation (I.43). T f is the non-linear total ten-

sion non-dimensionalized with respect to the maximum

static tension, which typically takes place at the left

support (both supports) for the inclined (horizontal)

cable (Fig. I.1). Two interesting aspects are empha-

sized: (i) the inclination effects on the spatial distribu-

tion of T f response shown inFig. 10a (for cables with

λ/π ≈ 2.95, as = .0004 and t = .3Tr ); (ii) the space-

time T f distribution exhibiting the strain variation ef-

fects shown in Fig. 10b (for the inclined cable with θ =
30◦, λ/π ≈ 5.48, as = .001, t = 0 − .5Tr ). Again, the

prescribed values γ = π, σ = βr0 = 0 are assigned in

all cases.

Figure 10a clearly shows that, while the spatially

symmetric T f response of the horizontal cable exhibits

a limited variation along the cable span-length, the spa-

tially unsymmetrical T f responses of all inclined ca-

bles (see also Fig. 9b for θ = 45◦) markedly diminish

(non-linearly) as one moves towards the right support

or as θ increases. This entails a meaningful difference

between the maximum/minimum total tensions, which

increases with θ [9], and implies that, during non-linear

vibrations, the resulting total tension at any cable point

is smaller than the initial maximum static tension due

to a negative oscillation-induced tension. Accordingly,

the non-linearity produces a less-hardening behavior of

higher-inclined cables, as already observed in Fig. 6b.

From the engineering viewpoint, special care has to be

paid to the possibility of cable loosening [13] at the

lower-right end support as θ increases (see, e.g., Fig.

10a, θ = 60◦), this being one major design aspect. Yet,

also the maximum T f taking place at the left-end sup-

port for all θ must be properly considered by looking at

the relevant time history. As an example, this is reported

in Fig. 11 for the horizontal cable in Fig. 9a, along with

the T f time histories at other positions, i.e., at 1/8, 1/4

and middle span. It is seen that all periodic T f responses

become considerably greater or smaller than their ini-

tial estimated values, with the left-support tension still

exhibiting the maximum value, whereas the mid-span

tension exhibiting the minimum one. Consequently, the

time-varying difference between maximum/minimum

tensions becomes appreciable at a specific time, high-

lighting that the usual strain condensation model as-

suming spatially-uniform dynamic tension is no more

suitable for such small-sagged cable exhibiting internal

resonance.

In Fig. 10b, the overall space-time variability of

tension response becomes even more apparent for the

inclined and larger-sagged cable, where the spatially

non-uniform and non-symmetric features are seen to

entail the occurrence of the largest or smallest val-

ues of total tension along time evolution, also at cable
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Fig. 11 Total tension responses at different cable positions for horizontal cable with λ/π ≈ 2.95 in Fig. 9a

positions other than the supports: see, e.g., the dis-

tributed tension peaks occurring at t = 0 or .5Tr , and

their associated configurations in Fig. 9c. All of these

results confirm the advantage of making use of the non-

condensed model which properly accounts for the spa-

tial variability of non-linear dynamic strain, in order

to ascertain the actual extreme values of total tension

response.

7 Modal interaction features: Numerical
validation of analytical predictions

The analytical MMS predictions are now validated by

numerical results. Instead of integrating the system

ODEs (I.17) with a prescribed number of modes, the

space-time finite difference method (FDM), coupled

with a predictor-corrector iteration [5, 7], is directly

applied to the original PDEs (I.53–I.54) neglect-

ing the out-of-plane component, to determine the

actual dynamic responses under specified initial con-

ditions. To this end, the responses are initiated by

the associated coupled displacements (Equation I.43)

and velocities (Equation I.44). In the following, the

non-dimensionalized responses are plotted against the

time parameter T obtained by non-dimensionalizing the

physical time with respect to the r-mode natural period.

In the spatial convergence background of different

MMS solutions reported in Fig. 8a for the horizon-

tal cable with λ/π ≈ 2.95 and t = 0, the numerical

v responses at 1/8 span (node 6), obtained with the

u, v initial displacement conditions of first-order, im-

proved first-order and second-order configurations are

comparatively illustrated in Fig. 12. Depending on the

obtained ar amplitudes for the specified as = .0002

(Fig. 5b), it can be seen that all responses show the

periodically-modulated interaction features due to the

2:1 resonance, but some of them differ in both the ex-

tent and duration of the modulation, see the first-order

(Fig. 12a), improved first-order with M = 5 (Fig. 12b)

and second-order with M = R (Fig. 12c) time histories.

Yet, the modulation feature in the response initiated by

the improved first-order solution (Fig. 12b) is practi-

cally similar to those in the responses initiated by the

second-order solutions with M = 5 (solid lines) or 10

(circles) in Fig. 12d. This highlights, with regard to the

temporal aspect, both the possibility of considering just

the improved first-order solution and the convergence

properties of the second-order spatial solution, already

observed in the analytical framework. This holds also

for the corresponding inclined cable which exhibits

equally comparable FDM time laws as the present hor-

izontal cable [8]. Of course, the amplitude modulations

characterizing the actual resonant interaction in Fig. 12

initiated by the coupled-mode displacements are sub-

stantially different from those initiated by the single-

mode ones in Fig. I.7. On the other hand, they do not

occur in the periodic time laws corresponding to the

stationary amplitude MMS solutions.

Moving to various inclined cables with λ/π ≈ 2.95

and larger as = .0004 (corresponding to Fig. 6), mean-

ingful differences in terms of extent and duration of

resonant modal interactions are noticeable in the u
(solid lines) and v (dashed lines) responses at 1/8 span

shown in Fig. 13, which are initiated with the second-

order u and v displacements at t = 0. With respect to

Fig. 12d for the horizontal cable with as = .0002 and

ar ≈ .00023 (Fig. 6a), the horizontal cable response in

Fig. 13a has a longer modulation due to the relatively
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Fig. 12 FDM-based time
laws of v component at 1/8
span for horizontal cable
with λ/π ≈ 2.95 and
as = .0002, under different
initial conditions associated
with MMS solutions: (a)
first order, (b) improved first
order with M = 5, (c)
second order with M = R,
(d) M = 5 (solid line) and
M = 10 (circles)

different contribution of the lower ar ≈ .00018: this

reflects the amplitude-dependence of system resonant

dynamics into the time law. Apart from the consider-

able increment (decrement) in the u (v) response – as

well as in the ar amplitudes in Fig. 6a – as θ increases,

the maximum inclined cable with θ = 60◦ (Fig. 13d)

exhibits the shortest modulation. This highlights the

inclination effects on the non-linear temporal features

of the original system. The Fourier amplitude spec-

tral densities (PSDs) of the v responses in Fig. 13 are

also reported in Fig. 14, all of them clearly revealing

two major frequencies. This property and the observed

beating-type energy transfer due to modal interaction

confirm the theoretical prediction about activation of

the planar 2:1 resonance involving just the modeled 2nd

and 5th modes of non-crossover/non-avoidance cables.

With the second-order MMS initial displacement

conditions at t = 0, the numerical FDM v responses

(at node 6) showing the effects of varying the given as

amplitude, or the angle θ , or the extensibility E on the

response of cables with λ/π ≈ 2.95 are summarized in

Fig. 15a–c, respectively, also to the aim of validating

the non-linear behaviors predicted by the MMS solu-

tion. For a fixed θ , i.e. for the horizontal cable, Fig 15a

shows that (i) the system responses are as more hard-

ening as greater as is, in agreement with Fig. 6. In

turn, when varying the angle θ for a fixed as = .0004,

(ii) the responses in Fig. 15b reflect the less-hardening

non-linearity as θ increases, again in agreement with

Fig. 6. Moreover, when varying the extensibility for

fixed θ = 0◦ and as = .0002 values, (iii) the response

in Fig. 15c is seen to be as more hardening as higher

the parameter E A/WC X H is, in agreement with Fig. 7.

Hence, overall analytical predictions are validated by

numerical FDM results.

Next, it is interesting to evaluate how the non-linear

resonant response evolves when initiating both the spa-

tial displacement and velocity fields of second-order

MMS solution, with respect to that initiated by zero-

velocity (t = 0) displacements. For this purpose, two

initial u, v conditions are considered: one correspond-

ing to the MMS displacements at t = 0; the other
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Fig. 13 Cable inclination
effects on FDM-based time
laws of u (solid lines) and v
(dotted lines) components at
1/8 span for cables with
λ/π ≈ 2.95 and
as = .0004, under
second-order MMS initial
displacements: (a) θ = 0◦

with M = 5; (b) θ = 30◦,
(c) θ = 45◦ and (d) θ = 60◦

with M = 10

corresponding to the MMS displacements/velocities

at t = .3Tr . The associated FDM u responses at vari-

ous positions, including nodes 6 (solid lines), 12 (open

circles), 26 (dashed lines) and 42 (dotted lines), are

comparatively shown in Fig. 16a and b, respectively,

for the inclined cable with θ = 60◦, λ/π ≈ 2.95 and

as = .00026. Obviously, though initiated with differ-

ent amplitudes, phases and velocities, the response at

each position exhibits the same qualitative behavior in

both figures regarding the extent and duration of the

resonantly periodic modulation, which, indeed, holds

true also for other inclined cables. Thus, the charac-

terizing amplitude-modulated response of the original

system is shown to be invariant with respect to the sta-

tionary MMS displacements and/or velocities entering

the initial conditions. In addition, the numerical results

confirm that, apart from the distinctive extent of mod-

ulation, the duration of modal interaction is the same

at different cable positions.

Finally, the amplitude modulation features of the

non-dimensional FDM-based displacement and veloc-

ity are illustrated through the phase portraits in Fig. 17a

(1/8 span), 17b (1/4 span) and 17c (mid-span) against

the corresponding stationary MMS-based portraits in

Fig. 17d, e and f, respectively, for the horizontal cable

with λ/π ≈ 2.95 and as = .0002 under initial condi-

tions of the second-order MMS at t = .3Tr . Besides

confirming the different extent of amplitude modula-

tion occurring at different cable positions, the over-

all similarity between non-stationary (FDM) and sta-

tionary (MMS) phase portraits is highlighted, with the

mid-span response exhibiting the largest portrait and

modulation.

8 Summary and conclusions

Based on the kinematically non-condensed cable model

accounting for the effects of both non-linear dynamic

extensibility and system asymmetry due to inclined

sagged configurations, planar 2:1 resonant multi-
modal non-linear free vibrations of horizontal/inclined

cables have been investigated through the second-order

Springer



Nonlinear Dyn (2007) 48:253–274 271

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4
x 10

-4

Frequency (Hz) 

P
S

D

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4
x 10

-4

Frequency (Hz)

P
S

D

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4
x 10

-4

Frequency (Hz)

P
S

D

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4
x 10

-4

Frequency (Hz)

P
S

D

(a) (b)

()c( d)

Fig. 14 Fourier amplitude spectral densities associated with v responses in Fig. 13: (a) θ = 0◦; (b) θ = 30◦, (c) θ = 45◦ and (d) θ = 60◦

multiple scales solution obtained in Part I [1]. The main

features of the parametric analysis are summarized as

follows:

(i) Internal resonance activation has been discussed

through the interaction coefficients, distinguishing

the dynamic characteristics of horizontal/inclined

cables as regards the non-linear orthogonality

properties of normal modes. For horizontal ca-

bles, the internal resonance is always activated

when the involved high-frequency mode is sym-

metric, whereas, owing to the asymmetry effects

of inclined configurations entailing modal hybrid-
ity, the resonance activation in inclined cables is

nearly always possible – depending on frequency-

tuning and hybridity capacity – and occurs over a

wide range of system parameters.

(ii) Based on a multi-dimensional Galerkin discretiza-

tion, analysis of second-order quadratic modal

contributions has shown that, besides the two res-

onant modes, only symmetric non-resonant modes

affect the solution of (non-crossover) horizontal

cables, whereas all non-resonant modes – irre-

spective of their order or spatial character – do

contribute for inclined cables. Moreover, some

non-resonant modes may play a role even greater

than the resonant ones. This occurs, for instance,

in the avoidance zone of the frequency spectrum

wherein, due to the system high modal density and

strong coupling, the non-modeled hybrid mode –

out of the two coexisting at avoidance – contributes

to the response greater than the directly-modeled

hybrid mode. This highlights the necessity of ac-

counting for both of them and the possible in-

volvement of a larger number of coupled modes

in avoidance cables than in crossover cables.

(iii) As regards the reduced-order modeling issue, the

convergence studies accounting for higher-order

effects of quadratic nonlinearities on non-linear

amplitudes, frequencies and dynamic configura-

tions of the resonant NNMs have indicated that,

depending on the system parameters and cou-

pled amplitudes, the contributions of non-resonant
(higher-order) modes are very important. The
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minimal (two-degree-of-freedom) model involv-

ing only the resonant modes shows capable of pro-

viding reliable results only for a very low-sagged

cable. In turn, it may be sufficient to account

for non-resonant modes in the non-linear ampli-

tudes and frequencies only, thereby developing

an improved first-order solution, for relatively

low-sagged cables; otherwise, they should be

accounted for also in the dynamic displace-

ments (the full second-order solution) as the ca-

ble sag and/or inclination (asymmetry) becomes

significant.
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phase portraits of v
component at different
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cable with λ/π ≈ 2.95 and
as = .0002, under
second-order MMS initial
displacements and
velocities at t = .3Tr

(iv) A qualitative difference in the symmetric/

asymmetric spatial distribution of the time-varying

superimposition of the two resonant modes be-

tween horizontal/inclined cables has been high-

lighted, showing also the meaningful role of lon-
gitudinal displacement dynamics as cable inclina-

tion increases, and the multi-harmonic response

features owed to higher-order non-resonant modes

for inclined sagged cables.

(v) The spatio-temporal variability of non-linear dy-

namic tension has been presented, emphasiz-

ing the importance of accounting for spatial

variation of cable non-linear strain through the

non-condensed model since appreciable time-

varying differences between maximum/minimum

total tensions occur even in shallow horizontal

cables.

Overall, significant effects of cable sag, inclination,

extensibility as well as longitudinal displacements on

the non-linear resonant dynamics have been evidenced.

Moreover, finite difference displacement time laws ob-

tained from the original partial-differential equations

of motion have confirmed the predictions and the

amplitude-dependent properties of the multiple scales
solution, by also showing periodically modulated in-

teraction features.

Springer



274 Nonlinear Dyn (2007) 48:253–274

Apart from making available the approximate gen-

eral non-condensed model valid for horizontal/inclined

sagged cables, and for showing its thorough accu-

racy with respect to the exact model in Part I [1], the

comprehensive analysis of resonant non-linear nor-
mal modes has provided worthwhile information as

regards deriving accurate reduced-order cable models

and qualifying the non-linear dynamic properties of

horizontal/inclined cables to be properly recognized

within an upcoming forced vibration analysis.
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