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Abstract This paper is first of the two papers deal-

ing with analytical investigation of resonant multi-

modal dynamics due to 2:1 internal resonances in the

finite-amplitude free vibrations of horizontal/inclined

cables. Part I deals with theoretical formulation and

validation of the general cable model. Approximate

nonlinear partial differential equations of 3-D cou-

pled motion of small sagged cables – which account

for both spatio-temporal variation of nonlinear dy-

namic tension and system asymmetry due to inclined

sagged configurations – are presented. A multi-

dimensional Galerkin expansion of the solution of

nonplanar/planar motion is performed, yielding a

complete set of system quadratic/cubic coefficients.

With the aim of parametrically studying the behav-

ior of horizontal/inclined cables in Part II [25], a

second-order asymptotic analysis under planar 2:1

resonance is accomplished by the method of mul-

tiple scales. On accounting for higher-order effects

of quadratic/cubic nonlinearities, approximate closed-

form solutions of nonlinear amplitudes, frequencies
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and dynamic configurations of resonant nonlinear nor-

mal modes reveal the dependence of cable response on

resonant/nonresonant modal contributions. Depending

on simplifying kinematic modeling and assigned sys-

tem parameters, approximate horizontal/inclined cable

models are thoroughly validated by numerically eval-

uating statics and non-planar/planar linear/non-linear

dynamics against those of the exact model. Moreover,

the modal coupling role and contribution of system lon-

gitudinal dynamics are discussed for horizontal cables,

showing some meaningful effects due to kinematic

condensation.

Keywords Exact/approximate model .

Horizontal/inclined sagged cable . Higher-order

effects . Internal resonance . Longitudinal dynamics .
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1 Introduction

Internally resonant nonlinear dynamics due to finite

vibration amplitudes of elastic suspended cables have

received a considerable amount of attention over the

years, as they exhibit a variety of extraordinarily rich

phenomena induced by the overall structural high-

flexibility and low-damping characteristics. Depending

on the values of some geometrical/mechanical con-

trol parameters and on system frequencies, the ac-

tivated internal resonances enhance modal coupling

capacity, even in the absence of external excitations.
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A comprehensive account of internal resonance mech-

anisms in suspended cables can be found in a recent

updated review on cable nonlinear dynamics [1, 2].

Suspended cables exhibit various planar (e.g., 2:1,

3:1, 1:1) and nonplanar (e.g., 2:1, 1:1) internal reso-

nance conditions due to the inherent combination of

system quadratic and cubic nonlinearities [3]. The sys-

tem, involving different interacting planar/nonplanar

modes in the response, may, in turn, experience a mul-

tiple internal resonance [2, 4]. The richness of cable

nonlinear dynamics due to single [5–7] or multiple

[8–12] internal resonances has been highlighted by a

large number of theoretical, numerical, and/or exper-

imental studies based on low- or multi-dimensional

models. While most works deal with resonant hori-

zontal cables, usually at the so-called first crossover in

the natural frequency spectrum [13], few have been de-

voted to resonant inclined cables exhibiting the system

asymmetry due to actual inclined configurations [14].

Some studies involving other non-crossover resonant

horizontal cables have also been carried out [3, 15]. As

to the theoretical modeling, the following main situa-

tions – particularly those worth easing the analytical

computations – have been addressed:

(i) Parabolic (i.e., shallow) horizontal or nearly taut

inclined [16–18] cables exhibiting either symmet-

ric or anti-symmetric modal shapes.

(ii) Kinematically condensed cable model exhibiting

space-independent dynamic tension, in which the

governing integro-partial differential equations of

motion ensue from neglecting the longitudinal in-

ertia according to a quasi-static stretching assump-

tion of cable in motion and linking the longitudinal

displacement field to the transversal ones.

(iii) Low finite-dimensional models of system ordinary

differential equations (ODEs) obtained by expand-

ing the dynamic displacement fields in terms of

some eigenfunctions, e.g., usually, of the solely

resonant modes, via a Galerkin-based approxima-

tion.

To overcome some of the aforementioned issues,

either analytical/numerical [19] or purely numerical

[20, 21] approaches have been used for investigat-

ing some important aspects of the response of non-

condensed, multi-dimensional, arbitrarily sagged, or

inclined cables whose theoretical formulation relies

on exact kinematic modeling. Alternatively, refined

analytical techniques – still applied to the parabolic

condensed horizontal cable – have been proposed to

improve the (iii) issue. They consist of applying the

method of multiple scales (MMS) either directly to

the original PDEs without a priori assumptions of the

displacement solution form [11, 12, 22, 23], or to the

discretized model accounting for the full-basis eigen-

spectrum of linear modes in the Galerkin projection

of the PDEs [23]. As a matter of fact, the outcomes of

the latter technique are substantially equivalent to those

provided by the former, if enough modes are retained

in the discretization [24].

The present work in two parts still fits in an an-

alytical framework, which is deemed capable of en-

lightening the fundamental features of system non-

linear dynamics, while also establishing a link be-

tween analytical and numerical treatments, the predic-

tion of the former being observed against some out-

comes of the latter. Accordingly, Part I presents and

compares exact and approximate models of a general,

non-condensed, arbitrarily inclined cable, as well as

the discretization-type perturbation analysis of the ap-

proximate model, to be subsequently used in Part II [25]

for investigating the nonlinear free vibrations of hor-

izontal/inclined cables due to 2:1 internal resonances.

Nonlinear free vibrations have mostly been studied by

considering a condensed horizontal cable, with only

one or two degrees-of-freedom (DOF) [26–29]. The

non-condensed horizontal/inclined cable model with

three DOF has been considered in [30]. Yet, the sig-

nificant role played by internal resonances has been

overlooked in all of these studies. Recently, the basic

(i.e., 2:1, 3:1, 1:1) internal resonances of a still con-

densed horizontal cable have been addressed [3] based

on a general analytical formulation [23]. Herein, at-

tention is focused on 2:1 resonances because, besides

discriminating a typical dynamic scenario between hor-

izontal and inclined cables, it is the solely resonance

where it makes sense to develop a higher-order asymp-

totic analysis accounting for contributions from all of

resonant/nonresonant modes due to system quadratic

nonlinearities.

The paper is organized as follows. In Section 2,

the nonlinear PDEs of 3-D motion accounting for

both dynamic tension space–time variation and system

asymmetry due to inclined sagged configurations are

presented for exact/approximate cable models. Closed-

form static and linear dynamic solutions of small-

sagged cables are summarized. An infinite-dimensional

Galerkin expansion of the solution of approximate
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PDEs is presented in Section 3, wherein the effects of

neglecting the system longitudinal inertia are also ev-

idenced. For planar 2:1 internal resonances, a second-

order asymptotic analysis is accomplished through the

MMS in Section 4, accounting for higher-order effects

of quadratic/cubic nonlinearities. Approximate non-

linear solutions of resonant amplitudes, frequencies,

space–time displacement, and velocity fields associ-

ated with the nonlinear normal modes are determined,

highlighting the dependence of cable response on dif-

ferent resonant/nonresonant modes. In Section 5, the

approximate static, nonplanar/planar linear and non-

linear dynamic results of horizontal/inclined cables are

thoroughly validated against those of the exact model,

and the role played by the system longitudinal dynam-

ics is discussed, along with some observed effects due

to kinematic condensation. The outcomes allow for a

proper approximate model selection. The concluding

remarks are drawn in Section 6.

2 Cable model and governing equations

Figure 1 displays a suspended cable with arbitrary incli-

nation angle θ in a fixed Cartesian coordinate (X, Y, Z )

system. Three different configurations of the infinites-

imal cable element in the natural (dsn), static (ds), and

dynamic (final, dsf) states are considered for the ex-

act model, whereas for the approximate model it is

usually assumed ds ≈ dsn. The function y = y(x) de-

scribes the cable planar static equilibrium under gravity

g. While keeping the horizontal span X H fixed, the ver-

tical span YH is varied to attain specified θ values. The

relevant in-plane (out-of-plane) dynamics is described

by the longitudinal or horizontal u and vertical v(w)

displacements measured from the static configuration.

Here, x is the spatially independent variable, and t de-

notes time. A prime (overdot) denotes differentiation

with respect to x(t).

2.1 Exact equations of motion

In the absence of damping and external loading, a per-

fectly flexible, linear elastic cable with negligible tor-

sional, bending and shear rigidities is considered, with

the strain energy being only due to cable axial stretch-

ing. Based on the so-called engineering strain measure,

the exact kinematic modeling of the total strain of cable

element is given by

ef = dsf

dsn

− 1

= 1 + e√
1 + y′2

√
(1 + u′)2 + (y′ + v′)2 + w′2 − 1, (1)

where e = (ds − dsn) /dsn is the initial static strain.

By means of the variational formulation, the governing

exact PDEs of 3-D coupled undamped unforced motion

Fig. 1 Configurations of an
inclined cable
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of the cable about its static equilibrium read [20, 21,

31]:

⎛⎝ E A + E A (1 + e) u′√
1 + y′2 − E A

(
1 + u′)√

(1 + u′)2 + (y′ + v′)2 + w′2

⎞⎠′

= wC

√
1 + y′2

g (1 + e)
ü, (2)

⎛⎝ E Ay′ + E A (1 + e) v′√
1 + y′2 − E A

(
y′ + v′)√

(1 + u′)2 + (y′ + v′)2 + w′2

⎞⎠′

= wC

√
1 + y′2

g (1 + e)
v̈, (3)

⎛⎝ E A (1 + e) w′√
1 + y′2 − E Aw′√

(1 + u′)2 + (y′ + v′)2 + w′2

⎞⎠′

= wC

√
1 + y′2

g (1 + e)
ẅ, (4)

in which zero values of static and dynamic displace-

ments of the boundaries are considered. E is the

Young’s modulus, wC the cable self-weight per unit

unstretched length, and A its uniform cross-sectional

area. This system is highly nonlinear and its closed-

form analytical solution cannot be sought. Hence, ei-

ther a direct numerical [14, 21] or an approximate an-

alytical solution based on some assumptions has to be

pursued.

2.2 Approximate equations of motion

In conditions of moderately large vibration amplitudes,

the radical term in Equation (1) is expanded through the

binomial series by discarding the higher-order effects.

Along with the assumption of small initial strain (ds ≈
dsn), i.e., 1 + e ≈ 1, Equation (1) becomes

ef = e + ed

≈ e + 1

1 + y′2

(
u′ + y′v′ + 1

2
(u′2 + v′2 + w′2)

)
,

(5)

where the extensional dynamic strain ed is expressed

through its Lagrangian measure. For convenience in the

parametric analysis, the dimensionless variables,

x̃ = x

X H
, ỹ = y

X H
, ũ = u

X H
, ṽ = v

X H
,

w̃ = w

X H
, α = E A

H
, t̃ = t

X H

√
gH

wC

, (6)

are introduced, in which H is the horizontal component

of cable static tension. The approximate, third-order,

nonlinear PDEs, valid for both horizontal and arbitrar-

ily inclined cables, are given, in non-dimensional form,

by

ρü =
{

u′ + α

ρ3
(u′ + y′v′)

+ α

ρ3

(
u′2 + y′u′v′ + 1

2
(u′2 + v′2 + w′2)

)
+ α

2ρ3
(u′3 + u′v′2 + u′w′2)

}′
, (7)

ρv̈ =
{
v′ + α

ρ3
(y′u′ + y′2v′)

+ α

ρ3

(
u′v′ + y′v′2 + y′

2
(u′2 + v′2 + w′2)

)
+ α

2ρ3
(u′2v′ + v′3 + v′w′2)

}′
, (8)

ρẅ =
{
w′ + α

ρ3
(u′w′ + y′v′w′)

+ α

2ρ3
(w′u′2 + w′v′2 + w′3)

}′
, (9)

where ρ =
√

1 + y′2. The (∼) notation has been

dropped for brevity, and the corresponding homo-

geneous boundary conditions (b.c.) are u (0, t) =
u (1, t) = v (0, t) = v (1, t) = w (0, t) = w (1, t) = 0.

Apart from damping and external forces, sets of

equations similar to (7)–(9), based on the Lagrangian

strain measure, have been previously reported in

the literature [e.g., 28, 30, 32–34] yet with few

(typo) errors found in some references. However, in

contrast with the so-called kinematically condensed

model (see Appendix A), herein (i) the second-order

term of the longitudinal displacement gradient u′2

and (ii) the corresponding inertia ü are kept in the

formulation. Moreover, (iii) Equations (7)–(9) exhibit
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both quadratic and cubic nonlinear effects due to cable

stretching, the former occurring even in the absence

of initial sag or curvature (taut string case). Thus, the

dynamic strain in Equation (5) turns out to be spatially

nonuniform.

2.3 General closed-form static solution

Based on Fig. 1, wherein y = x tan θ + z, and

Equation (6), with z̃ = z/X H , the approximate nonlin-

ear equation governing the vertical static equilibrium of

the inclined cable, with the omitted (∼), is given by [14]

H z′′

X H
= −wC(1 + (tan θ + z′)2)1/2. (10)

Following [13], in which z′ is considered sufficiently

small for its square to be neglected according to the

small sag assumption, the approximate static solution

can be expressed, up to cubic order of x , as

Z ≈ 1

2
x (1 − x)

(
1 + ε∗

6
(1 − 2x)

)
+ O(ε∗2), (11)

with Z = z/(wC X H sec θ/H ) and ε∗ = wC X H sin θ/H
being non-dimensional parameters. Equation (11) is

valid as ε∗ is small when the inclined cable has a

small sag-to-span ratio. It is also valid for horizontal

cables, where ε ∗ = 0 as θ = 0. Because one may as-

sume ds ≈ dx for shallow cables, being ρ ≈ 1 in the

static analysis entails H ≈ wC X H/8d , in which d is

the cable sag-to-span ratio (being 1:8 or less [13]). Ac-

cordingly, Equation (11) renders y = z ≈ 4dx(1 − x),

which is the parabolic configuration. In contrast, by

accounting for the asymmetry effect to the first order

of ε∗, the inclined profile is no longer parabolic (sym-

metric) [35] as typically considered in the literature on

nonlinear dynamics of inclined cables, e.g. [16–18, 34].

2.4 Natural frequencies and mode shapes

The in-plane and out-of-plane displacements are pos-

tulated in the form:

U J (x, t) =
N∑

n=1

D J
n (t) �n (x) , (12)

where, for J = 1 to 3, U 1 = u, U 2 = v and U 3 = w,

�n (x) = sin (nπx), N being the number of retained

terms in the sine series. Substituting Equation (12) into

Equations (7)–(9), neglecting nonlinear terms and ap-

plying the Galerkin method with b.c., a set of 3N cou-

pled ODEs for the generalized time co-ordinates D J
n is

obtained in the following general matrix form:

[M̄]{ ¨̄D} + [K̄ ]{D̄} = 0,

{D̄} =

⎧⎪⎨⎪⎩
⌊

D1
1, D1

2, . . . , D1
N

⌋T⌊
D2

1, D2
2, . . . , D2

N

⌋T⌊
D3

1, D3
2, . . . , D3

N

⌋T

⎫⎪⎬⎪⎭ ,

[M̄] =
⎡⎣ [M̄uu] 0 0

0 [M̄vv] 0

0 0 [M̄ww]

⎤⎦ ,

[K̄ ] =
⎡⎣ [K̄uu] [K̄uv] 0

[K̄uv] [K̄vv] 0

0 0 [K̄ww]

⎤⎦ . (13)

The components in the N × N sub-mass and sub-

stiffness matrices of [M̄] and [K̄ ] which depend on the

static solution variables are:

muu(n, m) = mvv (n, m) = mww (n, m)

=
∫ 1

0

ρ�n�mdx,

kuu(n, m) =
∫ 1

0

�′
n

(
1 + α

ρ3

)
�′

mdx,

kuv(n, m) =
∫ 1

0

�′
n

(
αy′

ρ3

)
�′

mdx = kvu(n, m),

kvv (n, m) =
∫ 1

0

�′
n

(
1 + αy′2

ρ3

)
�′

mdx,

kww(n, m) =
∫ 1

0

�′
n�

′
mdx, (14)

for n, m = 1, 2, . . . , N . For horizontal cables, con-

sistent with the static parabolic assumption, ρ

≈ 1 in Equation (14); otherwise, ρ �= 1 for in-

clined cables. The dimensionless frequency is ω =
ω̄X H

√
wC/gH , and the corresponding modal shapes

are obtained through Equation (12), upon numeri-

cal integration of (13). In turn, linear dynamic solu-

tions of vertical and out-of-plane motion of the con-

densed horizontal cable are known in closed form

(see Appendix A).
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3 Multi-mode discretization for nonlinear
dynamics

To deal with the nonlinear dynamic problem, Equations

(7)–(9) are first cast in state-space (first-order) form.

Accounting for the orthonormality properties of lin-

ear eigenmodes, these equations are projected onto the

system full eigenbasis by letting

U J (x, t) =
∞∑

m=1

fm (t)ζ J
m (x) ,

V J (x, t) =
∞∑

m=1

pm (t)ζ J
m (x) , (15)

w (x, t) =
∞∑

n=1

hn (t)ξn (x) ,

ẇ (x, t) =
∞∑

n=1

qn (t)ξn (x) , (16)

where now J = 1–2, U 1 = u, U 2 = v, V 1 = u̇, V 2 =
v̇, ζ 1

m = φm , ζ 2
m = ϕm , fm and pm (hn and qn) being

the displacement and velocity modal coordinates asso-

ciated with both the longitudinal φm and vertical ϕm

(out-of-plane ξn) shape functions of the m in-plane (n
out-of-plane) mode. Then, the Galerkin method is ap-

plied to the first-order equations, using (15), (16) and

the b.c., thereby yielding the infinite set of coupled

ODEs of in-plane and out-of-plane co-ordinates

as:

ḟm − pm = 0, (17a)

ṗm + ω2
m fm =

∞∑
i=1

∞∑
j=1

mi j fi f j

+
∞∑

i=1

∞∑
j=1

ϑmi j hi h j

+
∞∑

i=1

∞∑
j=1

∞∑
k=1

�mi jk fi f j fk

+
∞∑

i=1

∞∑
j=1

∞∑
k=1

ϒmi jk fi h j hk, (17b)

ḣn − qn = 0, (18a)

q̇n + ω2
nhn =

∞∑
i=1

∞∑
j=1

�ni j hi f j

+
∞∑

i=1

∞∑
j=1

∞∑
k=1

�ni jkhi h j hk

+
∞∑

i=1

∞∑
j=1

∞∑
k=1

�ni jkhi f j fk, (18b)

for ∀m, n = 1, . . . ,+∞, where ωm (ωn) are the in-

plane (out-of-plane) natural frequencies. This general

system describes the nonlinear temporal problem for

a non-condensed or condensed cable model. Depend-

ing on the element kinematic modeling, the pertinent

quadratic and cubic nonlinear coefficients are different,

as comparatively given as follows.

(i) For non-condensed model of horizontal/inclined ca-

bles,

mi j = −
∫ 1

0

α

ρ3

{
φ′

m

(
3

2
φ′

iφ
′
j + y′φ′

iϕ
′
j + 1

2
ϕ′

iϕ
′
j

)
+ϕ′

m

(
y′

2
φ′

iφ
′
j + φ′

iϕ
′
j + 3

2
y′ϕ′

iϕ
′
j

)}
dx,

(19a)

ϑmi j = −
∫ 1

0

α

2ρ3
(φ′

mξ ′
i ξ

′
j + y′ϕ′

mξ ′
i ξ

′
j )dx, (19b)

�ni j = −
∫ 1

0

α

ρ3
ξ ′

n(ξ ′
i φ

′
j + y′ξ ′

i ϕ
′
j )dx, (19c)

�mi jk = −
∫ 1

0

α

2ρ3

{
φ′

m(φ′
iφ

′
jφ

′
k + φ′

iϕ
′
jϕ

′
k)

+ϕ′
m(φ′

iφ
′
jϕ

′
k + ϕ′

iϕ
′
jϕ

′
k)

}
dx, (19d)

ϒmi jk = −
∫ 1

0

α

2ρ3
(φ′

mφ′
iξ

′
jξ

′
k + ϕ′

mϕ′
iξ

′
jξ

′
k)dx, (19e)

�ni jk = −
∫ 1

0

α

2ρ3
ξ ′

nξ
′
i ξ

′
jξ

′
k dx, (19f)

�ni jk = −
∫ 1

0

α

2ρ3
ξ ′

n(ξ ′
i φ

′
jφ

′
k + ξ ′

i ϕ
′
jϕ

′
k)dx . (19g)

(ii) For condensed model of horizontal cables,

mi j = α

{ ∫ 1

0

ϕmϕ′′
i dx

∫ 1

0

y′ϕ′
j dx

+1

2

∫ 1

0

ϕm y′′dx
∫ 1

0

ϕ′
iϕ

′
j dx

}
, (20a)
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ϑmi j = α

2

{∫ 1

0

ϕm y′′dx
∫ 1

0

ξ ′
i ξ

′
j dx

}
, (20b)

�ni j = α

{∫ 1

0

ξnξ
′′
i dx

∫ 1

0

y′ϕ′
j dx

}
, (20c)

�mi jk = α

2

{∫ 1

0

ϕmϕ′′
i dx

∫ 1

0

ϕ′
jϕ

′
kdx

}
, (20d)

ϒmi jk = α

2

{∫ 1

0

ϕmϕ′′
i dx

∫ 1

0

ξ ′
jξ

′
kdx

}
, (20e)

�ni jk = α

2

{∫ 1

0

ξnξ
′′
i dx

∫ 1

0

ξ ′
jξ

′
kdx

}
, (20f)

�ni jk = α

2

{∫ 1

0

ξnξ
′′
i dx

∫ 1

0

ϕ′
jϕ

′
kdx

}
. (20g)

Contrary to Equation (20), where the longitudi-

nal displacement effects are solely accounted for

through the independent vertical eigenfunctions ϕ

(for horizontal cables), they are explicitly captured in

Equation (19), which, in addition, accounts for also the

geometrical effects of the ρ3-term. Generally speak-

ing, the kinematic condensation entails approximate

products of integrals of the shape functions, in lieu of

the exact integrals of their products provided by the

non-condensed model. Depending on cable static so-

lutions and eigenfunctions, the effects of disregard-

ing the ρ3-term (i.e., by setting ρ ≈ 1) on nonlin-

ear dynamics and the contributions of longitudinal

displacement to the non-condensed coefficients will

be discussed in Sections 5.3 and 5.4, respectively,

along with some points on kinematic condensation

effects.

4 Multiple scales analysis

Emphasis is placed on the theoretical treatment of a

planar 2:1 resonance. The motivation is twofold. (i)

The main differences between the nonlinear dynam-

ics of horizontal/inclined cables are concerned with

planar dynamics [20]. (ii) The 2:1 resonance is the

only one which allows for highlighting higher-order

effects of the quadratic nonlinearities on system dy-

namics, to be captured within a MMS analysis through

a second-order uniform expansion [23] of the asymp-

totic solution of Equation (17), with no out-of-plane

terms.

4.1 Second-order asymptotic solution

With ε denoting a small, non-dimensional, bookkeep-

ing parameter of the order of amplitude of the solution,

the generalized co-ordinates of displacement and ve-

locity are sought as

fm (t ; ε) ≈
3∑

k=1

εk fmk (T0, T1, T2),

pm (t ; ε) ≈
3∑

k=1

εk pmk (T0, T1, T2) (21)

where T0 = t , T1 = εt and T2 = ε2t , the latter two

time scales characterizing the slow modulation in am-

plitudes and phases due to nonlinearity and modal

coupling effects. The first derivative with respect to

t is given by ∂/∂t = D0 + εD1 + ε2 D2 + · · ·, where

Dn = ∂/∂Tn . Substituting Equation (21) into (17), us-

ing the independence property of the time scales and

equating coefficients of like powers of ε leads to

ε: D0 fm1 − pm1 = 0, D0 pm1 + ω2
m fm1 = 0. (22)

ε2: D0 fm2 − pm2 = −D1 fm1,

D0 pm2 + ω2
m fm2 = −D1 pm1+

∞∑
i=1

∞∑
j=1

mi j fi1 f j1.

(23)

ε3: D0 fm3 − pm3 = −D1 fm2 − D2 fm1,

D0 pm3 + ω2
m fm3 = −D1 pm2 − D2 pm1

+
∞∑

i=1

∞∑
j=1

mi j ( fi1 f j2 + fi2 f j1)

+
∞∑

i=1

∞∑
j=1

∞∑
k=1

�mi jk fi1 f j1 fk1.

(24)

for ∀m = 1, 2, . . . ,+∞. The nearness of the two (r, s)

in-plane frequencies involved in a 2:1 internal reso-

nance is described by introducing an internal detun-

ing parameter σ such that ωs = 2ωr + εσ . Because the

governing equations at orders ε, ε2, and ε3 are identical

to those given in [23], with the differences being only

in the condensed/non-condensed coefficients, the same

line of MMS analysis is herein pursued and summa-

rized. By accounting for the interaction of two coupled
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modes, the ε-order solutions of Equation (22) are taken

as

fm1 = Am (T1, T2) eiωm T0 (δmr + δms) + cc, (25a)

pm1 = iωm Am (T1, T2) eiωm T0 (δmr + δms) + cc, (25b)

where Am are complex amplitudes, i = √−1, cc de-

notes the complex conjugate of the preceding terms and

δms , δns are Kronecker deltas. Substituting Equation

(25) into (23) leads to

D0 fm2−pm2 = − (D1 Am) eiωm T0 (δmr+δms) + cc,

(26)

D0 pm2 + ω2
m fm2 = −iωm (D1 Am) eiωm T0 (δmr + δms)

+mrr
(

A2
r e2iωr T0 + Ar Ār

)
+mss

(
A2

s e2iωs T0 + As Ās
)

+ (mrs + msr ) Ar Asei(ωr +ωs )T0

+ (mrs + msr ) As Ār ei(ωs−ωr )T0

+cc, (27)

where Ām denotes the complex conjugate of Am . When

m = r or m = s, the particular solutions of Equations

(26) and (27) contain secular effects generated by the

first term on the relevant right-hand sides and by the

internally resonant small-divisor terms. These effects

are eliminated by enforcing the solvability conditions

2iωr (D1 Ar ) = (rrs + rsr ) As Ār eiσ T1 , (28a)

2iωs (D1 As) = srr A2
r e−iσ T1 . (28b)

Solving these equations – which are the normal forms

of a 2:1 internal resonance between the two interacting

modes – for D1 Ar and D1 As , substituting the results

into Equations (26) and (27) and determining the par-

ticular solutions of the latter, the ε2-order solutions are

given by [23]

fm2 =
(

rrs + rsr

4ω2
r

)
As Ār ei(ωs−ωr )T0δmr

+
(

srr

4ω2
s

)
A2

r e2iωr T0δms

+
(

mrs + msr

ω2
m − (ωs − ωr )2

)

As Ār ei(ωs−ωr )T0 (1 − δmr )

+
(

mrr

ω2
m − 4ω2

r

)
A2

r e2iωr T0 (1 − δms)

+
(

mrr

ω2
m

)
Ar Ār +

(
mss

ω2
m − 4ω2

s

)
A2

s e2iωs T0

+
(

mss

ω2
m

)
As Ās

+
(

mrs + msr

ω2
m − (ωr + ωs)2

)
Ar Asei(ωr +ωs )T0 + cc,

(29)

pm2 = −i

(
rrs + rsr

4ωr

)
As Ār ei(ωs−ωr )T0δmr

− i

(
srr

4ωs

)
A2

r e2iωr T0δms

+ i (ωs − ωr )

(
mrs + msr

ω2
m − (ωs − ωr )2

)
As Ār ei(ωs−ωr )T0 (1 − δmr )

+ 2iωr

(
mrr

ω2
m − 4ω2

r

)
A2

r e2iωr T0 (1 − δms)

+ 2iωs

(
mss

ω2
m − 4ω2

s

)
A2

s e2iωs T0

+ i (ωr + ωs)

(
mrs + msr

ω2
m − (ωr + ωs)2

)
Ar Asei(ωr +ωs )T0 + cc. (30)

Substituting Equations (25), (29), and (30) into

the ε3-order problem, Equation (24), imposing the

solvability conditions, and using the reconstitution

method, Ȧm = εD1 Am + ε2 D2 Am + · · ·, m = r, s, the

complex-valued modulation equations when m = r
and s are expressed, respectively, as

2iωr Ȧr = �r As Ār eiσ t + Krr A2
r Ār + Krs Ar As Ās,

(31)

2iωs Ȧs = �s A2
r e−iσ t + Kss A2

s Ās + Ksr As Ar Ār , (32)

where the first-order interaction coefficients �r =
rrs + rsr and �s = srr . Because of the state-space

form of the PDEs of motion, the Euler–Lagrange

formula of system kinetic and elastic potential en-

ergies, preserving the conservative character through
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Equations (31) and (32) [23], entails � = �r =
2�s,which governs the actual activation (non-

activation) of 2:1 internal resonance when it is dif-

ferent from (equal to) zero [3]. Besides, it provides

the intrinsic symmetry Krs = Ksr . In turn, the second-

order interaction coefficients governing the infinite-

dimensional modal series read:

Krr =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
resonant modes︷ ︸︸ ︷

10

3ω2
r
2

rrr + 9

4ω2
s
srr (rrs + rsr ) + 3�rrrr

⎫⎪⎪⎪⎬⎪⎪⎪⎭

+

nonresonant modes︷ ︸︸ ︷
∞∑

m=1,
m �=r �=s

[
mrr (rrm + rmr )

(
2

ω2
m

+ 1

ω2
m − 4ω2

r

)]
,

(33)

Kss =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
resonant modes︷ ︸︸ ︷

10

3ω2
s
2

sss + 29

15ω2
r
rss (ssr + srs ) + 3�ssss

⎫⎪⎪⎪⎬⎪⎪⎪⎭

+

nonresonant modes︷ ︸︸ ︷
∞∑

m=1,
m �=r �=s

[
mss (ssm + sms )

(
2

ω2
m

+ 1

ω2
m − 4ω2

s

)]
,

(34)

Krs =

resonant modes︷ ︸︸ ︷{
4rss
15ω2

r
(srs + ssr ) + sss

2ω2
r

(rrs + rsr ) + (rrs+rsr )2

8ω2
r

+
4rssrrr

ω2
r

+ 2 (�rssr + �rsrs + �rrss)

}

+

nonresonant modes︷ ︸︸ ︷
∞∑

m=1,
m �=r �=s

[
(rms + rsm) (mrs + msr )

(
1

ω2
m − 9ω2

r

+ 1

ω2
m − ω2

r

)
+ 2mss

ω2
m

(rrm + rmr )

]
, (35)

where Krs = Ksr . Evidently, each of these equa-

tions consists of two major parts, highlighting the

dependence of cable response on different modal par-

ticipating capacity. The first part accounts for solely the

two resonant modes, consisting of both the quadratic

and cubic nonlinear effects and characterizing the min-

imal reduced-order model. The second part, associated

with quadratic nonlinearities only, corresponds sub-

stantially to the contributions from all of the nonres-

onant modes. The two parts are distinguished with the

aim of investigating the convergence of second-order

solutions, namely whether one may sufficiently account

for only the two resonant (i.e., modeled) modes, or one

has to consider also nonresonant (i.e., non-modeled)

modes. Accordingly, in Part II [25], the first part will be

kept constant for a given cable, whereas the second part

will be varied according to the finite number of non-

resonant modes retained up to achieving convergence.

4.2 Steady-state resonantly coupled motions

Inserting the polar form Am(t) = (1/2)am(t)eiβm (t),

where m = r and s, into Equations (31) and (32),

and then separating real and imaginary parts, the real-

valued modulation equations are

ȧr = �
4ωr

ar as sin γ, (36)

ar β̇r = − �
4ωr

ar as cos γ − Krr

8ωr
a3

r − Krs

8ωr
ar a2

s , (37)

ȧs = − �
8ωs

a2
r sin γ, (38)

as β̇s = − �
8ωs

a2
r cos γ − Kss

8ωs
a3

s − Krs

8ωs
asa2

r , (39)

and describe the slow variation of amplitudes (ar ,

as) and phases (βr , βs). The relative phase is given

by γ = σ t − 2βr + βs . By accounting for the non-

trivial contributions from the two resonant modes in

Equations (37) and (39), the evolution of γ reads

γ̇ = σ + 1

16ωr

(
� cos γ

(
8 − a2

r

a2
s

)
as

+ (4Krs − Kss) a2
s + (4Krr − Krs) a2

r

)
. (40)

Because the periodic motion of the original system

is of primary interest, the fixed points are determined

Springer



240 Nonlinear Dyn (2007) 48:231–252

by setting ȧr = ȧs = γ̇ = 0. As a result, γ = nπ , n =
0, ±1, ±2, . . .. On accounting for second-order effects,

the relationship between the amplitudes ar and as reads

ar = ±
(

16asωrσ + 8a2
s (� cos γ ) + (4Krs − Kss) a3

s

� cos γ − (4Krr − Krs) as

) 1
2

,

(41)

in which �, Krr , Kss , and Krs are known, whereas

γ and σ are specified, for a resonant cable. For a

given value of as , there are two real positive and

negative solutions for ar only when the argument

in the bracket is positive. Thus, depending on the

system parameters and quadratic/cubic coefficients,

Equation (41) may have real solutions only in a

certain amplitude range. The stability of the resonant

nonlinear modes is evaluated by calculating the

eigenvalues of the Jacobian matrix of the right-hand

side of Equations (36), (38), and (40) at the fixed point.

For any value of σ , the condition of marginal stability

is

�2
(
16a2

s + a2
r

)
+2� cos γ a3

s (8Krs − 16Krr − Kss) > 0. (42)

When keeping in Equation (42) only the first nonlinear

order terms, it is found that the coupled modes

are always stable [23], whereas this has to be as-

sessed when accounting for also the second-order

effects. Subsequently, based on Equations (15),

(21) with k = 2, (25a) and (29), the polar form

for Am , the relationship ωs = 2ωr + εσ and the

solutions of βr and βs from Equations (37) and (39),

the second-order coupled longitudinal and vertical

(J = 1 and 2) dynamic displacements of an inter-

nally resonant horizontal/inclined cable are expressed

as

U J (x, t) ≈ ar cos
(
ω(N )

r t + βr0

)
ζ J

r (x)

+ as cos
(
2ω(N )

r t + 2βr0 + γ
)
ζ J

s (x)

+1

2

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a2
s

[
cos

(
4ω(N )

r t + 4βr0 + 2γ
)
ψ J

ss(x) + κ J
ss(x)

]
+ a2

r

[
cos

(
2ω(N )

r t + 2βr0

)
ψ J

rr (x) + κ J
rr (x)

]
+asar

[
cos

(
3ω(N )

r t + 3βr0 + γ
)
ψ J

rs(x)

+ cos
(
ω(N )

r t + βr0 + γ
)
κ J

rs(x)
]

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

(43)

whereas the corresponding velocity fields, based on

Equations (25b) and (30), are given by

V J (x, t) ≈ −arωr sin
(
ω(N )

r t + βr0

)
ζ J

r (x)

−asωs sin
(
2ω(N )

r t + 2βr0 + γ
)
ζ J

s (x)

+1

2

⎧⎪⎪⎨⎪⎪⎩
a2

s

[
sin

(
4ω(N )

r t + 4βr0 + 2γ
)
ψ̂ J

ss(x)
]

+a2
r

[
sin

(
2ω(N )

r t + 2βr0

)
ψ̂ J

rr (x)
]

+asar
[
sin

(
3ω(N )

r t + 3βr0 + γ
)
ψ̂ J

rs(x)

+ sin
(
ω(N )

r t + βr0 + γ
)
κ̂ J

rs(x)
]

(44)

The parameter ε was reabsorbed in the amplitude ex-

pressions, βr 0 is a constant depending on the initial

conditions, and κ J
ss and κ J

rr , which appear only in Equa-

tion (43), are static drift effects due to quadratic non-

linearities. The second-order shape functions of dis-

placement (ψ J
i j , κ

J
i j ) and velocity (ψ̂ J

i j , κ̂
J
i j ) are given

in Appendix B, showing how the longitudinal/vertical

displacements (velocities) are spatially influenced by

the quadratic contributions from all of the eigenmodes.

Likewise in Equations (33)–(35), the higher-order

nonresonant modal contributions become progres-

sively less significant because, in the denominators of

Equations (51)–(52), either the associated frequencies

appear squared or their differences with respect to the

resonant frequencies in square do appear. Equations

(43) and (44) are written in terms of the nonlinear fre-

quency of the low-frequency r mode, which is given by

ω(N )
r = ωr −

{( �
4ωr

as cos γ

)
+ Krr

8ωr
a2

r + Krs

8ωr
a2

s

}
.

(45)

It is seen that the cable response may exhibit soft-

ening or hardening nonlinearity, depending on the

specified γ and the contributions from first- and

second-order nonlinear coefficients multiplying the

amplitudes (ar ,as) in the bracket. On the other hand,

when expressing the nonlinear frequency in terms

of the high-frequency s mode, it can be proved

that the nonlinear resonance tunes the phases of

the resonant modes so that ω(N )
s = 2ω(N )

r (see, e.g.

[36]). Equations (43) and (44) show the ar − as

amplitudes dependence of the dynamic configura-

tion and velocity fields, and their second-order spa-

tial corrections, whereas Equation (45) highlights
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the ar − as amplitudes dependence of the nonlin-

ear frequencies and their second-order corrections.

4.3 Some remarks

4.3.1 Multiple internal resonances

Depending on cable parameters, Equations (33)–(35)

reveal how the solutions may break down when other

internal resonances come into play, corresponding to

the involvement of other non-modeled, usually higher-

frequency m planar modes, and a multiple resonance

activation. Indeed, the latter occurs in horizontal ca-

bles, typically at crossovers, when considering also

out-of-plane modes [8–12]. However, depending on

the frequency tuning, a multiple planar resonance is

more likely to occur in inclined cables because of

the vanishing of nonlinear orthogonality of coupled

modes ensuing from the incompletely symmetric or

anti-symmetric spatial character of inclined configu-

rations, as will be discussed in Part II [25]. For in-

stance, a further 2:1 resonance may occur near second

(ωm ≈ 2ωr ) or third (ωm ≈ 2ωs) avoidance in the rel-

evant frequency spectrum, leading to a multiple 2:2:1

or 4:2:1 resonance, respectively. A further 1:1 reso-

nance (ωm ≈ ωr ) may occur near avoidance, involv-

ing the two coexisting hybrid modes [20] and giving

rise to a multiple 2:1:1 resonance. Moreover, a fur-

ther 3:1 resonance (ωm ≈ 3ωr ) may occur and entail

a multiple 3:2:1 resonance. The activation of multiple

planar resonances has numerically been observed in

Srinil et al. [20] and [37] for the 4:2:1 or 3:2:1 reso-

nance occurring in a low-extensible inclined or high-

extensible horizontal cable, respectively. Yet, such con-

ditions are beyond the scope of the present study.

4.3.2 Nonlinear coefficients

Though being not explicit, in Equations (19) or (20), the

single quadratic or cubic coefficients may have either

positive or negative values, depending on the relative

contributions from the static equilibrium (parabolic or

cubic-order) solutions, the modal eigenfunctions and

their relative phases. Accordingly, for a different num-

ber of retained modes, there is a possibility of sign dif-

ference in the resulting second-order quadratic coeffi-

cients in Equations (33)–(35) or (51)–(52), depending

on the outcome of each component quadratic coeffi-

cient, on their combination, and on the system fre-

quency commensurability. In evaluating the latter, we

disregard the higher-order effects of the 2:1 reso-

nance detuning in Equations (33)–(35) and (51)–(52).

4.3.3 Dynamic displacement solutions

With M being the order of modal truncation, the

second-order dynamic displacements, Equation (43),

account for the second-order effects of quadratic non-

linearities in both the amplitudes, Equation (41), and

frequencies, Equation (45). When truncating Equation

(43) after the first-order terms, the associated solu-

tions may be considered as first-order (improved first-

order) displacements when accounting for the first-

order (first- and second-order) amplitudes/frequencies

[1]. Thus, it is remarked that the improved first-order

displacements account for solely the shapes of res-

onant modes, whose time-dependence is, however,

governed by the second-order frequencies/amplitudes,

whereas the second-order displacements account for

also the spatial corrections from all retained modes.

4.3.4 Nonplanar 2:1 resonance

The same line of MMS analysis as in the planar

2:1 resonance can be pursued to address a nonpla-

nar 2:1 resonance involving in-plane/out-of-plane (s, r )

modes by considering the complete set of Equations

(17)–(18) with the relevant coefficients in (19)–(20).

To this end, the structure of modulation Equations

(31)–(32), the resonant amplitudes (41) and frequency-

amplitudes (45) relationships, and even the stability

criterion (42) are the same for planar and nonpla-

nar interactions. Though being the first- and second-

order interaction coefficients different [14], activation

of a nonplanar 2:1 resonance is still governed by

the condition � = �r = 2�s �= 0, in which, however,

�r = �rrs and �s = ϑsrr for the nonplanar interaction.

5 Approximate model validation

Prior to parametrically studying the nonlinear dynam-

ics of the approximate model through the MMS solu-

tion in Part II [25], the analytical solutions obtained for

cable statics and linear dynamics, as well as the non-

linear dynamic solutions of the approximate PDEs, are

validated through various numerical solutions of the

exact model. To gain insight into the significance of
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system longitudinal dynamics and their effects on the

nonlinear response, the 2:1 resonant interaction coef-

ficients of the approximate non-condensed/condensed

horizontal cable models are also examined. A low-

extensible cable with a fixed non-dimensional pa-

rameter E A/wC X H ≈ 2580.35 is analyzed, which

has X H = 850 m, A = 0.1159 m2, wC ≈ 9.48 kN/m

and E = 1.794 × 108 kN/m2 [20]. Reference is also

made to the parameter λ/π that governs the hori-

zontal/inclined cable dynamics and the correspond-

ing crossover/avoidance phenomena, see Part II [25].

5.1 Horizontal/inclined static configurations

The equation governing the static configuration of

the exact model is the same as Equation (10), when

multiplying the denominator in its right-hand side by

(1 + e) [21]. To obtain numerical solutions of arbi-

trarily sagged and inclined cables, both the hybrid

fourth-order Runge-Kutta/Shooting method (RKS) and

the finite element method (FEM, 50 elements) with

a cubic polynomial function in x are considered,

for a specified end tension problem [14]. In each

considered case, the associated tension H is evalu-

ated and used in Equation (11) to obtain the closed-

form Irvine’s solution (IRV) for the vertical con-

figuration. Results of small and quite large values

of the sag-to-span ratio d for horizontal (HC1 and

HC2) and inclined (θ = 60◦, IC1 and IC2) cables,

and the associated parameters α, are comparatively

reported in Table 1a and b, the latter also report-

ing the parameter ε∗ of inclined cables. The corre-

sponding configurations are displayed in Figs. 2 and 3.

The numerical and analytical results in Table 1

are in good agreement for the shallow (d < 1:8)

horizontal cable (HC1, Fig. 2a) and even for the

Table 1 Comparison of d with numerical and analyti-
cal solutions: (a) horizontal cables, (b) inclined cables

d

Cable α ε∗ RKS FEM IRV

(a)

HC1 2286.6 0.112 0.112 0.111

HC2 4482.1 0.231 0.231 0.217

(b)

IC1 2286.9 0.768 0.220 0.220 0.222

IC2 4431.5 1.487 0.423 0.423 0.436

intermediate-sagged (d > 1:8, ε∗ < 1) inclined cable

(IC1, Fig. 3a). For larger-sagged cables, the RKS and

FEM results remain in excellent agreement, but they

differ from the IRV ones owing to the invalidity of the

latter in describing the large-sagged cable (d  1:8,

ε∗ > 1). The IRV solution predicts underestimated

(overestimated) d values for HC2 (IC2). However, its

deviation from numerical solutions is clearly seen in

Fig. 2b for HC2, as expected due to the completely

invalid parabolic approximation, whereas a smaller

difference occurs regarding the inclined configurations

in Fig. 3b. Depending on the cable parameter, Fig.

3b highlights that, even if the inclination angle is

high (θ = 60◦) and the associated d (ε∗) value is

large, the results given by Equation (11) accounting

for also the asymmetry effects remain satisfac-

torily valid when compared with RKS and FEM

results. This allows the parametric studies in [25] to

include not only small-sagged horizontal/inclined ca-

bles but also possibly moderately large-sagged inclined

cables.

5.2 Linear planar/nonplanar dynamics

The equations of motion governing the cable linear

vibration of the exact and approximate models are the

same [14], apart from the term (1 + e) also appearing

in the former, see Equations (2)–(4). The natural fre-

quencies and mode shapes of the approximate model

obtained by the Galerkin method with a sine-based

series (GMS) are validated by the FEM results of the

exact model. By properly varying the number N of

retained terms in the series, the convergence of the

GMS solution must be first fulfilled. Then, with a

guaranteed N , the agreement between GMS and FEM

out-of-plane/in-plane frequencies must be achieved

for various small-sagged horizontal and inclined

cables in the first three crossover/avoidance regions

[14].

Here, a comparison of the normalized first two

out-of-plane (O1–O2) and first four in-plane (I1–I4)

mode shapes (τ ) of the two solutions is exemplified

in Fig. 4 for the second avoidance (λ/π ≈ 4) inclined

cable (α ≈ 1436.9) with θ = 45◦. Apart from justify-

ing both the parabolic static profile and ρ ≈ 1 assump-

tions in the linear dynamics of the approximate horizon-

tal cables [14], the excellent agreement between GMS

and FEM mode shapes of the inclined cable is high-

lighted. Essentially, the properly truncated sine-based

Springer



Nonlinear Dyn (2007) 48:231–252 243

0.00 0.25 0.50 0.75 1.00
0.00

0.05

0.10

0.15

0.20

0.25

RKS

FEM

IRV

0.00 0.25 0.50 0.75 1.00

y

0.00

0.05

0.10

0.15

0.20

0.25

RKS

FEM

IRV

(a) (b)

x x

Fig. 2 Comparison of horizontal static configurations with numerical and analytical solutions: (a) α ≈ 2286.6; (b) α ≈ 4482.1
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Fig. 3 Comparison of inclined (θ = 60◦) static configurations with numerical and analytical solutions: (a) α ≈ 2286.9; (b) α ≈ 4431.5

series (N = 15) is seen capable of describing – besides

the symmetric/anti-symmetric nonplanar w (O1/O2)

modes, and the nearly anti-symmetric (I1) and sym-

metric (I2) u/v planar modes – also the hybrid u/v

planar modes coexisting at second avoidance (I3, I4).

5.3 Nonlinear planar/nonplanar dynamics

Numerical time histories of the exact, (2)–(4), and ap-

proximate, (7)–(9), PDEs of cable motion are now an-

alyzed and compared by the finite difference method

with central approximation of both spatial (50 ele-

ments) and temporal (time step = 0.0001 s) deriva-

tives [14]. The differentiated PDEs of the approximate

model are given, in dimensional form, in Appendix C,

whereas those of the exact model have been reported

in [21]. It is worth remarking that, for the approxi-

mate horizontal cable, two cases are considered for

a better model selection, namely (i) ρ ≈ 1 which is

consistent with the parabolic assumption employed in

both statics and linear dynamics, and (ii) the spatially

varying ρ terms as they actually appear in Equations

(7)–(9). Accordingly, the terms divided by ρ6 are ab-

sent in Equations (53)–(55) for the (i) case, whereas

the full system equations hold for the (ii) case and

for inclined cables. In the following, nonplanar (pla-

nar) nonlinear free responses initiated by a single-mode

out-of-plane (in-plane) spatial displacement with pre-

scribed vibration amplitude (ap) and zero velocity are

displayed for some resonant horizontal/inclined cables.

Springer



244 Nonlinear Dyn (2007) 48:231–252

x
0.0 .5 1.0

-1.0

-.5

0.0

.5

1.0

w: FEM

w: GMS O1

x
0.0 .5 1.0

-1.0

-.5

0.0

.5

1.0

w: FEM

w: GMS O2

x
0.0 .5 1.0

-1.0

-.5

0.0

.5

1.0 u: FEM

v: FEM

u: GMS

v: GMS

I1

x
0.0 .5 1.0

-1.0

-.5

0.0

.5

1.0 u: FEM

v: FEM

u: GMS

v: GMS

I2

x
0.0 .5 1.0

-1.0

-.5

0.0

.5

1.0 u: FEM

v: FEM

u: GMS

v: GMS

I3

x
0.0 .5 1.0

-1.0

-.5

0.0

.5

1.0 u: FEM

v: FEM

u: GMS

v: GMS

I4

τ
τ

τ

τ
τ

τ

Fig. 4 Comparison of two out-of-plane (O1, O2) and four in-plane (I1–I4) FEM and GMS modes for second-avoidance inclined (θ =
45◦) cable with α ≈ 1436.9

The v and w responses at mid-span, initiated by the

first symmetric out-of-plane mode with ap = 2.5 m,

are shown in Fig. 5, for the first-crossover horizontal

cable (α ≈ 639.4). The responses of the exact model

(solid lines) and of the approximate model with vary-

ing ρ-terms (circles) are seen to be in close agreement,

whereas those of the approximate model with ρ ≈ 1

(dotted lines) exhibit meaningful differences. Such

discrepancies are more evident in the planar (v) than

in the nonplanar (w) responses because the neglected

ρ-terms are associated with planar statics, and occur

even though overall qualitative agreement is found,

i.e., a beating-type phenomenon due to activation of

the nonplanar 2:1 resonance involving the driven (v)

and exciting (w) first-symmetric modes [21]. Thus,

accounting for the varying ρ-terms in the approx-

imate nonplanar model of horizontal cables looks

preferable.

When considering the second-avoidance inclined

(θ = 60◦) cable (α ≈ 2016.5) initiated by the first

anti-symmetric out-of-plane mode with ap = 2.5 m,

a small difference occurs between the results ob-

tained with the exact and approximate (varying ρ-

terms) models, as shown in Fig. 6, which plots the

relevant u, v, and w responses at quarter span from

left support. Again, all nonlinear responses high-

light a modal interaction due to the nonplanar 2:1

resonance involving the driven high-frequency (third
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Fig. 5 Comparison of v and w nonlinear responses initiated by first symmetric out-of-plane mode for first-crossover horizontal cable
with α ≈ 639.4: solid lines (dotted lines or circles) denote exact model (approximate model with ρ ≈ 1 or varying ρ-terms)

or fourth) planar mode and the initiated nonplanar

mode [20]. Therefore, the results also justify using

the approximate nonplanar model for inclined cables.

As regards planar vibrations, a remarkable quantita-

tive difference in the responses obtained with the three

models occurs for the considered non-crossover hori-

zontal cable with λ
/
π ≈ 2.95, as visualized in Fig. 7,

which plots the u/v responses at 1/8 span initiated by

the second in-plane mode with ap = 1 m. It can be

seen that, with respect to the exact model responses,

those of the approximate model with ρ ≈ 1 exhibit

greater errors (see also the more hardening nonlinear-

ity) than those of the approximate model with varying

ρ-terms, as clearly shown by the enlarged view of v

response in the resonant interaction t-range. This oc-

curs because of the definitely major influence of the ρ-

terms in the purely planar dynamics. Thus, depending

on also the vibration amplitudes, there are clear hints

about the need to consider the actual varying ρ-terms

in the approximate planar model of horizontal cables

and in the subsequent MMS-based parametric study

[25], contrary to what is currently done in the relevant

literature [1]. With the same λ
/
π and ap values, the

difference between approximate and exact model re-

sponses decreases for the inclined cable with θ = 45◦

shown in Fig. 8. This thoroughly validates using the

approximate planar model also for inclined cables.

Overall, the amplitude-modulated features of all

models in Figs. 7 and 8 exhibit qualitative agreement,

as confirmed by the associated Fourier amplitude

densities in Fig. 9 (v) and 10 (u), respectively. In partic-

ular, they substantially highlight two major frequencies

corresponding to the fifth and second planar modes,

the formers being periodically dragged in the response

due to their involvement in the nearly tuned 2:1 res-

onance for the λ/π ≈2.95 horizontal (non-crossover)

or inclined (non-avoidance) cable (see [25]). The ap-

proximate horizontal cable model with ρ ≈ 1 still ex-

hibits a major discrepancy versus the others as regards

the amplitudes of the two resonant peaks in Fig. 9.

5.4 Longitudinal displacement contributions and

kinematic condensation effects

Depending on the cable sag and/or extensibility,

the contributions of longitudinal displacement are

now examined in a horizontal cable through the 2:1

resonant coefficients of the MMS solution. Attention

is first focused on the cubic coefficients which,

based on the outcomes in Section 5.3, are evaluated

for the non-crossover (λ/π ≈ 2.95, r = 2, s = 5,

N = 20) and second-crossover (λ/π ≈ 4.03, r = 1,

s = 4, N = 40) cables – both having low extensi-

bility (E = O(108) or E = O(107)) – by using the
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Fig. 6 Comparison of u, v, and w nonlinear responses initiated by first anti-symmetric out-of-plane mode for second-avoidance inclined
(θ = 60◦) cable with α ≈ 2016.5: solid lines (circles) denote exact (approximate) model

Table 2 Percent
contributions to cubic
coefficients governing 2:1
internal resonance due to
longitudinal/vertical
displacements of different
sagged (λ/π ) and extensible
(E) cables

E = O(108) E = O(107)

λ/π K � U-V (%) V (%) U-V (%) V (%)

2.95 Krr �rrrr 0.651 99.349 2.489 97.511

Kss �ssss 1.742 98.258 7.046 92.954

Krs �rssr 1.362 98.638 5.373 94.627

�rsrs 1.278 98.722 4.923 95.077

�rrss 1.290 98.710 4.916 95.084

4.03 Krr �rrrr 3.025 96.975 11.845 88.155

Kss �ssss 2.014 97.986 9.138 90.862

Krs �rssr 2.101 97.899 9.595 90.405

�rsrs 2.141 97.859 9.709 90.291

�rrss 2.379 97.621 10.737 89.263

approximate non-condensed model which accounts

for the ρ-term effects. Remark also that the cable

with λ/π ≈ 2.95 (4.03) involves anti-symmetric/anti-

symmetric (symmetric/anti-symmetric) longitudinal
resonant r/s components. As given by Equation

(19d), the generic cubic coefficient �mi jk , solely

depending on the two resonant modes in Equations

(33)–(35), consists of four additive terms: the first

three terms (labeled U-V) account for both longi-

tudinal (φ) and coupled longitudinal–vertical (φ–ϕ)

displacement contributions, whereas the last term

(labeled V) exhibits the solely vertical ϕ displacement

dependence. The separate percent contributions

of U-V and V terms to each of the coefficients

�rrrr , �ssss, �rssr , �rsrs, �rrss, entering Krr , Kss , and

Krs (Equations (33)–(35)), are reported in Table 2.

For the smaller-sagged cable with λ/π ≈ 2.95,

contributions from U-V are seen to be very small

with respect to those from V, as expected from a

physical standpoint. This validates, for low-sagged

(and low-extensible) cables, the common use of in-

directly accounting for the longitudinal contribution

to cubic coefficients, as well as to quadratic ones,

through its solely condensed effect in the unique
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Fig. 7 Comparison of u and v nonlinear responses initiated by second in-plane mode for horizontal cable with λ/π ≈ 2.95: solid lines
(dotted lines or circles) denote exact model (approximate model with ρ ≈ 1 or varying ρ-terms)

vertical ϕ displacement term in Equation (20d). How-

ever, the effect of U-V terms somehow increases as

the cable sag is increased to λ/π ≈ 4.03 (with the

fixed EA parameter), and it becomes as more appar-

ent as cable extensibility is higher (lower E), for a

given λ/π . Of course, the overall discrepancy be-

tween different models has to be evaluated in the

second-order interaction coefficients, which are influ-

enced – depending on the modal (longitudinal/vertical)

shape character and magnitude – by their additive

cubic-based, as well as multiple quadratic-based,

expressions having variable resonant/nonresonant

modal participating capacity, see Equations (33)–(35).

Thus, it is worth examining and comparing

the second-order quadratic/cubic coefficients ob-

tained with the non-condensed/condensed modeling.

A larger-sagged horizontal cable (λ/π ≈ 5.48,

E = O(108)) exhibiting symmetric/symmetric modal

interaction (r = 2, s = 5) is considered (Table 3),

by accounting for the first 15 modes. Their percent

differences (P) with respect to the non-condensed

(N = 30) coefficients are also given. The superscript

‘q’ (‘c’) denotes the quadratic (cubic) contribution

to Kii . Overall, the two models provide quali-

tative agreement as regards the sign (softening-

or hardening-type nonlinearity) of quadratic and

cubic coefficients. Nonetheless, there are remark-

able quantitative differences in all coefficients, the

percent values being outstandingly greater for the

cubic coefficients, especially for Krs (P ≈ 62.38%).

From a computational point of view, such meaning-

ful differences seem to be reasonable because only the

non-condensed coefficients are influenced by also the

U-V terms, which are significant (Table 2) for the con-

sidered larger-sagged cable. Recall also that the non-

condensed (condensed) cubic coefficients are (are not)

influenced by the ρ3-dependent terms. As regards the

differences between the quadratic/cubic contributions
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Fig. 9 Fourier amplitude densities of v responses in Fig. 7: (a) exact model, approximate model with (b) varying ρ-terms and (c) ρ ≈ 1
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Fig. 10 Fourier amplitude densities of u responses in Fig. 8: (a) exact model, (b) approximate model

Table 3 Comparison of second-order quadratic/cubic coeffi-
cients governing 2:1 resonance with two physical models and
their percent differences for horizontal cable with λ/π ≈ 5.48

K Non-condensed model Condensed model P (%)

K q
rr 6305837.166 6783535.666 7.58

K c
rr −15419441.480 − 10229946.306 33.66

K q
ss 102345334.304 111981072.099 9.41

K c
ss −41994120.481 −31180837.908 25.75

K q
rs 13095299.468 13821561.521 5.55

K c
rs −36143334.648 −13598798.289 62.38

or the pure (Khh , h = r or s)/mixed (Krs) coefficients,

consider (i) that each term in the cubic (quadratic) co-

efficients ensues from a multiplication of four (three)

modal shapes, see Equations (19d) (19a) and (20d)

(20a), and (ii) that there are totally six additive compo-

nents in the cubic component of Krs (2�rssr + 2�rsrs +
2�rrss) instead of three additive components in that of

Khh (3�hhhh). As a result, the condensed model exhibits

smaller (larger) absolute values of cubic (quadratic)

coefficients. The underlying mechanical meaning is

that the condensed model reduces (strengthens) the de-

gree of hardening (softening) nonlinearities through

Equation (45), since the higher-order effects of lon-

gitudinal dynamic deformation due to cable nonlinear

stretching are neglected through the kinematic conden-

sation. Consequently, there is a possibility of differ-

ent contributions, simply evaluated by the summation

of quadratic and cubic coefficients, to the overall re-

sponse nonlinearities. In Table 3, the summation of

Krs provides a negative value (−23,048,035.180) for

the non-condensed model against a positive value (222,

763.233) for the condensed model. Such considerable

differences in the values and/or in the sign of some

effective coefficients are capable of influencing the re-

sulting coupled dynamics of the two distinctive models.

6 Concluding remarks

Based on a general kinematically non-condensed model

valid for horizontal/inclined cables, the approximate

equations of geometrically nonlinear undamped un-

forced 3-D coupled motion accounting for dynamic ex-

tensibility (i.e., space–time dynamic strain variation)

and system asymmetry due to inclined sagged con-

figurations have been presented. With the aim of an-

alytically investigating the planar 2:1 resonant, multi-

modal, free dynamics of horizontal/inclined cables, ap-

proximate closed-form solutions for small sagged ca-

bles have been accomplished by means of a multi-

dimensional Galerkin discretization and a second-

order multiple scales approach. The analytical out-

comes highlight the higher-order effects due to sys-

tem quadratic nonlinearities on the resonantly coupled

amplitudes, frequencies, dynamic configurations and

velocities associated with the resonant nonlinear nor-
mal modes. The dependence of cable response on dif-

ferent resonant/nonresonant (modeled/non-modeled)

modal contributions has been emphasized. Accuracy

of approximate horizontal/inclined cable models has

thoroughly been validated by numerically evaluating

the associated static as well as nonplanar/planar lin-

ear and nonlinear dynamic results against those of

the exact model. Overall qualitative agreement of ap-
proximate and exact model results has been found,

apart from some quantitative differences, depending on

the element kinematics description, system parameters

and consideration of planar or nonplanar dynamics.
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Finally, significant insights into the modal coupling

role played by system longitudinal dynamics and the

effects of disregarding their higher contributions on

nonlinear coefficients through kinematic condensation

have been obtained for horizontal cables, by also high-

lighting the influence of cable sag and/or extensibility.

The overall model verifications and the exhib-

ited strain condensation effects entitle us to use

the accomplished MMS solution of the approxi-
mate non-condensed horizontal/inclined cable model

to ascertain the main spatio-temporal features of

the nonlinear dynamics due to planar 2:1 reso-

nances. This will be conducted in Part II [25].

Appendix A

For the condensed model of shallow horizontal cables,

the integro-partial differential equations of motion

describing the vertical and out-of-plane displacements

read [9]

v̈ = v′′+α(y′′ + v′′)
∫ 1

0

(
y′v′+1

2
(v′2 + w′2)

)
dx,

(46)

ẅ = w′′ + αw′′
∫ 1

0

{
y′v′ + 1

2
(v′2 + w′2)

}
dx .

(47)

where y ≈ 4dx(1 − x). For vertical anti-symmetric

(out-of-plane) modes, the frequencies are

ωn = nπ, n = 2, 4, . . . (1, 2, 3, . . .), where the

associated mode shapes read

ϕn (x) = ξn (x) =
√

2 sin (nπx) . (48)

For vertical symmetric modes (n = 1, 3, . . .), the

frequencies are the roots of

1

2
ωn − tan

(
1

2
ωn

)
− 1

2λ2
C

(ωn)3 = 0, (49)

where λ2
C = 64d2α [13], with d ≈ wC X H

/
8H and

α = E A
/

H . The relevant symmetric vertical mode

shapes are given by

ϕn (x) = Cn

[
1 − tan

(
1

2
ωn

)
sin (ωn x) − cos (ωn x)

]
,

(50)

where Cn is arbitrary. Equations (48) and (50) are

determined such that

∫ 1

0

ϕ2
ndx =

∫ 1

0

ξ 2
n dx = 1.

Appendix B

The pertinent second-order shape functions showing

the contributions from resonant and nonresonant modes

to the displacements in Equation (43) are given by

ψ J
rr (x) = −rrr

3ω2
r

ζ J
r (x) + srr

4ω2
s

ζ J
s (x)

+
∞∑

m=1,
m �=r �=s

(
mrr

ω2
m − 4ω2

r

ζ J
m (x)

)
, (51a)

ψ J
ss (x) = − rss

15ω2
r

ζ J
r (x) − sss

3ω2
s

ζ J
s (x)

+
∞∑

m=1,
m �=r �=s

(
mss

ω2
m − 4ω2

s

ζ J
m (x)

)
, (51b)

ψ J
rs (x) = −rrs + rsr

8ω2
r

ζ J
r (x) − srs + ssr

5ω2
r

ζ J
s (x)

+
∞∑

m=1,
m �=r �=s

(
mrs + msr

ω2
m − 9ω2

r

ζ J
m (x)

)
, (51c)

κ J
rs (x) = rrs + rsr

4ω2
r

ζ J
r (x) + srs + ssr

3ω2
r

ζ J
s (x)

+
∞∑

m=1,
m �=r �=s

(
mrs + msr

ω2
m − ω2

r

ζ J
m (x)

)
, (51d)

κ J
rr (x) = rrr

ω2
r

ζ J
r (x) + srr

ω2
s

ζ J
s (x)
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+
∞∑

m=1,
m �=r �=s

mrr

ω2
m

ζ J
m (x) , (51e)

κ J
ss (x) = rss

ω2
r

ζ J
r (x) + sss

ω2
s

ζ J
s (x)

+
∞∑

m=1,
m �=r �=s

mss

ω2
m

ζ J
m (x) , (51f)

whereas those to the associated velocities

in Equation (44) are given by

ψ̂ J
rr (x) = 2rrr

3ωr
ζ J

r (x) + srr

4ωs
ζ J

s (x)

+
∞∑

m=1,
m �=r �=s

[−2ωrmrr

ω2
m − 4ω2

r

ζ J
m (x)

]
, (52a)

ψ̂ J
ss (x) = 4rss

15ωr
ζ J

r (x) + 2sss

3ωs
ζ J

s (x)

+
∞∑

m=1,
m �=r �=s

[−2ωsmss

ω2
m − 4ω2

s

ζ J
m (x)

]
, (52b)

ψ̂ J
rs (x) = 3 (rrs + rsr )

8ωr
ζ J

r (x)

+3 (srs + ssr )

5ωr
ζ J

s (x)

+
∞∑

m=1,
m �=r �=s

[−3ωr (mrs + msr )

ω2
m − 9ω2

r

ζ J
m (x)

]
,

(52c)

κ̂ J
rs (x) = rrs + rsr

4ωr
ζ J

r (x) − srs + ssr

3ωr
ζ J

s (x)

+
∞∑

m=1,
m �=r �=s

[−ωr (mrs + msr )

ω2
m − ω2

r

ζ J
m (x)

]
.

(52d)

Appendix C

The differentiated dimensional equations of mo-

tion for the approximate horizontal/inclined cable

model with varying ρ-terms are rewritten as

ü = (gH/wCρ)u′′

+(E Ag/wC)

{
(1 + u′)N1 + u′′N2

ρ4

−3(1 + u′)y′y′′N2

ρ6

}
, (53)

v̈ = (gH/wCρ)v′′

+(E Ag/wC)

{
(y′ + v′)N1 + (y′′ + v′′)N2

ρ4

−3(y′ + v′)y′y′′N2

ρ6

}
, (54)

ẅ = (gH/wCρ)w′′

+(E Ag/wC)

{
w′N1 + w′′N2

ρ4
− 3w′y′y′′N2

ρ6

}
,

(55)

where

N1 = u′′ + y′v′′ + y′′v′ + u′u′′ + v′v′′ + w′w′′,

N2 = u′ + y′v′ + 1

2
(u′2 + v′2 + w′2). (56)
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