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Abstract The paper deals with the subharmonic re-
sponse of a shallow cable due to time variations of the
chord length of the equilibrium suspension, caused by
time varying support point motions. Initially, the ca-
pability of a simple nonlinear two-degree-of-freedom
model for the prediction of chaotic and stochastic sub-
harmonic response is demonstrated upon comparison
with a more involved model based on a spatial finite
difference discretization of the full nonlinear partial
differential equations of the cable. Since the stochas-
tic response quantities are obtained by Monte Carlo
simulation, which is extremely time-consuming for the
finite difference model, most of the results are next
based on the reduced model. Under harmonical vary-
ing support point motions the stable subharmonic mo-
tion consists of a harmonically varying component in
the equilibrium plane and a large subharmonic out-of-
plane component, producing a trajectory at the mid-
point of shape as an infinity sign. However, when the
harmonical variation of the chordwise elongation is re-
placed by a narrow-banded Gaussian excitation with
the same standard deviation and a centre frequency
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equal to the circular frequency of the harmonic excita-
tion, the slowly varying phase of the excitation implies
that the phase difference between the in-plane and out-
of-plane displacement components is not locked at a
fixed value. In turn this implies that the trajectory of the
displacement components is slowly rotating around the
chord line. Hence, a large subharmonic response com-
ponent is also present in the static equilibrium plane.
Further, the time variation of the envelope process of
the narrow-banded chordwise elongation process tends
to enhance chaotic behaviour of the subharmonic re-
sponse, which is detectable via extreme sensitivity on
the initial conditions, or via the sign of a numerical cal-
culated Lyapunov exponent. These effects have been
further investigated based on periodic varying chord
elongations with the same frequency and standard de-
viation as the harmonic excitation, for which the am-
plitude varies in a well-defined way between two levels
within each period. Depending on the relative magni-
tude of the high and low amplitude phase and their rel-
ative duration the onset of chaotic vibrations has been
verified.

Keywords Shallow cables . Subharmonic response .

Stochastic vibrations . Chaotic vibrations . Monte
Carlo simulation

1 Introduction

Cable systems are of great interest in a wide range of
applications in civil engineering to supply both support
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and stability to large structures. Typically, cables used
as support of cable-stayed bridges, masts and TV-
towers are characterized by a sag-to-chord-length ratio
below say 0.01, which means that the natural frequen-
cies for the in-plane and the out-of-plane eigenmodes
are pairwise close. The primarily external excitation
of such cables is caused by the motion of the support
points of the cable rather than by external distributed
dynamic wind or aeroelastic loads. Especially, the com-
ponent of the support point motion along the chord
of the equilibrium suspension introduces both additive
and parametric excitation terms in the nonlinear modal
equations of motion due to the elongation and shorten-
ing of the chord length.

Dangerous situations arise when the chord elonga-
tion is harmonically varying with a circular frequency
ω0 in certain disjoint intervals. Especially, when ω0

is about twice the first out-of-plane circular eigenfre-
quency ω1 of the cable, large subharmonic vibrations
with the circular frequency ω0/2 may take place, also
known as 2:1 internal resonances. It turns out that the
single mode in-plane subharmonic of the order 2 is
unstable for arbitrarily small excitation amplitudes. In-
stead a coupled vibration occurs, in which large sub-
harmonic vibrations out of the static equilibrium plane
take place with the circular ω0/2 frequency, whereas
the in-plane vibrations are harmonically varying with
the circular frequency ω0, and with a relatively small
amplitude. The out-of-plane component is brought for-
ward by nonlinear couplings, and has a well-defined
phase lead to the in-plane harmonic component. The in-
dicated phase locking between the two vibration com-
ponents produces a trajectory of shape like an infinity
sign as shown in Fig. 1a. When ω0 ≈ 1

2ω1 or ω0 ≈ 2
3ω1,

similar coupled in-plane and out-of-plane resonances
may occur. These cases, which are known as super-
harmonic responses of the orders 1:2 and 2:3, were
investigated by Nielsen and Kirkegaard [1]. The ef-
fect of harmonic forced support motions has also been
considered by Perkins [2], who obtained analytical so-
lutions based on a first-order perturbation analysis of
a two degree-of-freedom (DOF) model for coupled in-
plane and out-of-plane responses. The emphasis was
placed on cables with relatively large sag-to-chord-
length ratios to analyze 2:1 internal resonances. Pinto
da Costa et al. [3] studied oscillations in the static equi-
librium plane of bridge stay cables subjected to peri-
odic motions of the deck and/or towers using a Galerkin
method. El-Attar et al. [4] evaluated the nonlinear cable
response to multiple periodic support excitations with
different phase using a reduced 2DOF model. Rega
and co-workers [5] had an in-depth investigation about
nonlinear multimodal interaction and chaotic motion of
the cable under the forced excitation using multimode
models theoretically and experimentally.

In reality the supported structure is performing
narrow-banded stochastic vibrations with a centre fre-
quency ω0 close to the fundamental eigenfrequency.
Hence, the chord elongation will also be narrow-
banded stochastic varying. Larsen and Nielsen [6] stud-
ied the harmonic stochastic response of a shallow cable,
i.e. the case where the centre frequency ω0 of the
chord elongation process is close to ω1. Under these
frequency conditions up to three stable motions may
coexist, and the triggering mechanism for transition
between these three attractors under narrow-banded
Gaussian excitation was investigated. The subject of
the present paper is to perform a similar investigation

Fig. 1 Trajectory at the mid-span of the cable. (a) Harmonic chord elongation. (b) Stochastic chord elongation
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in case of stochastic subharmonic excitation, where the
centre frequency fulfils ω0 ≈ 2ω1.

The subharmonic responses under condition of com-
parable stochastic and harmonic varying chord elon-
gations are qualitatively very different as shown in
Fig. 1, where typical trajectories at the mid-span of
the cable have been depicted. The slowly time varia-
tion of the amplitude of the chord elongation process
implies a slowly variation of the amplitudes of the in-
plane and out-of-plane components. Most important,
the phase between the two components is no longer
locked at a certain value but becomes slowly varying
with time. This variation causes the trajectory of the
response to rotate slowly around the chord line, intro-
ducing a large subharmonic response component also
in the static equilibrium plane. In the paper this ef-
fect has been demonstrated by replacing the harmoni-
cal excitation with a periodic chord elongation signal,
which may vary between two levels within each period
in a controlled manner, so the standard deviation and
centre frequency of the signal is identical to those of
the stochastic signal. Further, it is demonstrated that
the time variation of the envelope of the chord elonga-
tion process may enhance the tendency to chaotic be-
haviour of the response. Again, this is analyzed by the
use of the equivalent periodic excitation. The referential
mechanical model is based on a spatial finite difference
deviation of the governing nonlinear partial differential
equation. The stochastic analysis is carried out based
on Monte Carlo simulation, which makes such a model
rather time consuming. For this reason, the suitability
of a simple two DOF model is demonstrated for predic-
tion of both stochastic subharmonic response and the
onset of chaotic behaviour of the cable.

2 Theory

2.1 Equations of motion

The dynamic behaviour of the cable is described in the
Cartesian (x, y, z) coordinate system shown in Fig. 2.
The x-axis is placed along the chord, and the static equi-
librium state is placed in the x-y plane. The equilibrium
state is caused by the component gcosθ of the acceler-
ation of gravity g in the y direction, where θ denotes
the angle of the chord line with the horizontal plane.
The cable is subjected to support excitations u(0, t) and
u(l, t) along the chord line, so the elongation of the

Fig. 2 Cable in static equilibrium configuration

chord line becomes u(l, t) – u(0, t). Because the profile
is shallow, the longitudinal displacement component of
the cable can be considered ignorable. Neglecting the
flexural rigidity of the cable and assuming a parabolic
static equilibrium of the cable, the nonlinear equations
of motion of the cable can be expressed as [7]

(H + h)
∂2v

∂x2
− mg cos θ

H
h − m

∂2v

∂t2
= 0 (1)

(H + h)
∂2w

∂x2
− m

∂2w

∂t2
= 0 (2)

where H and h are the components of the static and
dynamic tension in the x direction, v and w are the
dynamic displacement components in the y and z di-
rections measured from the static equilibrium position.
l is the initial cable chord length, m denotes the mass
per unit length, and t is the time.

Retaining up to cubic geometric nonlinear terms, h
is given by

h = E A
Le

(
u(l) − u(0) + 8

f
l2

∫ l

0
vdx

+1

2

∫ l

0

(
∂v

∂x

)2

dx+1
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∫ l

0

(
∂w

∂x

)2

dx
)

(3)

where E and A indicate the elastic modulus and cross
sectional area of the cable, Le denotes the so-called
effective cable length, and f is the sag at the mid-span,
given as

Le ≈ l
[

1 + 8

(
f
l

)2]
, f = mgl2 cos θ

8H
(4)

In what follows emphasize will be on the case
where the chord wise elongation causes simultane-
ous resonance in the lowest in-plane and out-of-plane
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modes. Under subharmonic excitation the second in-
plane mode will be at resonance. However, this mode
will not contribute to the linear displacement response
at the cable mid-point because the modal load is zero.
All other modes may be considered small, and may be
disregarded approximately [6]. Therefore, the dynamic
displacements of the cable in the vertical and transverse
directions are modeled in the form

v(x, t) = �2(x)q2(t), w(x, t) = �1(x)q1(t) (5)

where �2(x) and �1(x) are the first in-plane and out-of-
plane linear undamped eigen-modes of the cable based
on the parabolic equilibrium suspension, and q1(t) and
q2(t) are the corresponding modal coordinates. The
eigenmodes are normalized to unit at the mid-point, so
q1(t) and q2(t) are measures of the dynamic response at
this position.

Inserting (5) into (1)–(3), and using the relevant or-
thogonality properties, the coupled ordinary differen-
tial equations for the pertinent modal coordinates q1(t)
and q2(t) can be expressed as (more details see [6])

q̈1 + 2ζ1ω1q̇1 + ω2
1(1 + e(t))q1

+ β1q1q2 + q1
(
γ1q2

1 + γ2q2
2

) = 0 (6)

q̈2 + 2ζ2ω2q̇2 + ω2
2(1 + αe(t))q2 + β2q2

1

+ β3q2
2 + q2

(
γ3q2

1 + γ4q2
2

) = −ηe(t) (7)

where ω1 and ω2 are the first out-of-plane and in-plane
circular eigenfrequencies of the cable, and ζ 1 and ζ 2

denote appropriate modal damping ratios, respectively.
e(t) is a nondimensional representation of the chord
length elongation given by

e(t) = E A
H

u(l, t) − u(0, t)
Le

= E A
H

�u
Le

(8)

The eigenmodes, as well as the introduced coeffi-
cients in (6) and (7), are listed in Appendix A. The rel-
evance of the reduced models (6) and (7) under subhar-
monic excitation will be investigated by comparison to
a nonlinear spatial finite difference (FD) discretization
of the partial differential equations of motion (1) and
(2) under both deterministic and stochastic chordwise
elongations. A detailed description of the FD model
has been given in [8].

Assume that e(t) is harmonically varying with the
circular frequency ω0 ≈ 2ω1, the amplitude e0 and the
phase a

e(t) = e0 cos(ω0t + a) (9)

Possible periodic solutions to (6) and (7) either take
place in the static equilibrium plane, in which case
q1(t) ≡ 0, or are coupled in-plane and out-of-plane mo-
tions. Retaining only the dominating harmonic com-
ponents, the in-plane subharmonic response has the
Fourier expansion

q2(t) = A2 + B2 cos

(
ω0

2
t + b2

)
(10)

where A2 represents a small static drift. The corre-
sponding truncated Fourier expansion of the coupled
subharmonic motion reads

q1(t) = B1 cos

(
ω0

2
t + b1

)
(11a)

q2(t) = A2 + C2 cos (ω0t + c2) (11b)

As seen the in-plane component of the coupled mo-
tion is harmonically varying with a non-zero mean
value, and only the out-of-plane motion is subhar-
monic. The amplitudes and phases of the anticipated
solutions (10) and (11) may be obtained by the method
of harmonic balance [9]. The results have been indi-
cated in Appendix B.

Two solutions exist to (10) of which only one is
stable. The stable solution is related with the following
phase locking, see (B4)

a − 2b2 ≈ π (12)

However, the indicated subharmonic response only
exists as long as the out-of-plane component is fixed.
Else, the stable attractor is given by the coupled motion
(11) with the phase locking, see (B10)

c2 − 2b1 ≈ π, a − 2b1 ≈ π, (13)
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The trajectory at the mid-point obtained by (11) with
the analytical determined amplitudes and phase (B10)
has been shown with a dashed signature in Fig. 5.

2.2 Models for the chord elongation

The stochastic model for the nondimensional chord
elongation e(t) is obtained from a second-order filtra-
tion of Gaussian white noise [6]

ë + 2μω0ė + ω2
0e =

√
2μω3

0e0W (t) (14)

where μ is a band width parameter, ω0 is the cir-
cular centre frequency of the filter, and e0 is a non-
dimensional scaling parameter for the output. W(t) is a
zero-mean unit intensity Gaussian white noise process
defined by the auto-covariance function

κW W (τ ) = E [W (t)W (t + τ )] = δ(τ ) (15)

where δ(τ ) signifies the Dirac impulse function. The
normalization (14) insures that the standard deviation
σ e of e(t) becomes

σe =
√

2

2
e0 (16)

Hence, the narrow-banded stochastic excitation is
comparable to the harmonic excitation (9) with the am-
plitude e0 and the circular frequency ω0.

The following so-called Van der Pol transformation
between ( e(t) ė(t) ) and ( r (t) a(t) ) applies to any zero
mean random process, [10]

e(t) = r (t) cos (ω0t + a(t)),

ė(t) = −ω0r (t) sin (ω0t + a(t)) (17)

For a narrow-banded Gaussian process, the envelope
process r(t) and the phase process a(t) are slowly vary-
ing with time. At a given instant of time r(t) and a(t)
are independent stochastic variables, r(t) is Rayleigh

distributed with the parameter σ 2 = e2
0
2 , and a(t) is uni-

formly distributed in the instant [0, 2π ]. The essential
difference between (9) and the first Equation (17) is
that the phase now is varying with time. For this reason
the phase difference c2 − 2b1 in the truncated Fourier
expansion (11) will also be slowly varying with time

with the implication that the trajectory of the displace-
ment component is slowly rotating around the chord
line.

The state vector of the combined dynamic sys-
tem of the reduced mechanical model (6), (7) and
the filter Equation (14), has the dimension 6. In
principle the stochastic analysis of the problem can
be achieved via numerical integration of the related
Fokker-Planck equation. Although the stationary solu-
tion to the Fokker-Planck equation with a state vec-
tor of dimension 6 is within reach, see Wagner and
Wedig [11], the present problem is non-stationary due
to the parametric terms. This increases the calcula-
tion time significantly, since the solution effort at each
time step is equivalent to that of the stationary prob-
lem. In any case this approach is out of the question
for the multidimensional FD-model. Further, because
the probability density function (PDF) of q1(t) has a
narrow significant peak at q1 = 0, and hence differs sig-
nificantly from Gaussian distribution, moment meth-
ods (stochastic linearization, cumulant-neglect closure
etc.) will not converge sufficiently fast either. There-
fore, the stochastic analysis is performed by Monte
Carlo simulation. The samples of the stochastic sup-
port motion are generated using a broad-banded broken
line process as an equivalent white noise input process
[12]. Response statistics will be obtained based on er-
godic sampling using a single sufficiently long sam-
ple curve of the elongation process to ensure reliable
estimates.

Typical realizations of the chord elongation process
have been shown in Fig. 3 for the band width param-
eter μ = 0.001 and μ = 0.01, and with the circular
centre frequency chosen as ω0 = 2ω1. The realizations
have been indicated with time normalized to the cen-
tre period T0 = 2π /ω0. Further, the sample curves of
the corresponding energy envelope process have been
shown in the figures with a dashed signature. The sig-
nificantly faster time variation of the envelope process
r(t) for μ = 0.01 than for μ = 0.001 as shown in Fig. 3
turns out to be important for an enhanced tendency of
chaotic behaviour. In order to investigate this effect in a
controlled way a periodic chord elongation function as
shown in Fig. 4 is introduced. The amplitude variation
of the chord elongation within a period is divided be-
tween a high amplitude phase with the amplitude emax

and duration αT0, followed by a low amplitude phase
with the amplitude emin and duration βT0. Hence, the
period of the excitation becomes T = (α + β)T0. The
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Fig. 3 Realizations of
stochastic chord elongation
process, e0 = 0.30, ω0 =
2ω1. (a) μ = 0.001. (b) μ =
0.01

Fig. 4 Periodic chord
elongation function

band width parameter μ specifies the clump size of high
amplitude oscillations in the stochastic signal. Keeping
β at a fixed value, the corresponding parameter in the
periodic signal is given by the fraction α/.β. The stan-
dard deviation (RMS value) of the chord elongation
becomes

σe =
√

2

2
e0

√√√√α
( emax

e0

)2 + β
( emin

e0

)2

α + β
(18)

Upon comparison with the equivalent harmonical
and stochastic excitations, α, β, and the fractions
emax/e0 and emin/e0 should be chosen so the square root
is equal to one.

3 Verification of the reduced 2DOF model for

subharmonic response analysis

The nonlinear FD model applies a nonlinear New-
mark scheme as time integration, involving iterations
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towards dynamical equilibrium at each time step, which
makes this model very time consuming in Monte Carlo
simulations. Hence, it is favourable to use the reduced
mechanical models (6) and (7) for the stochastic sub-
harmonic analysis. However, the adequacy of the re-
duced model for this purpose needs to be verified at
first.

The considered cable in this verification phase and
the following investigations are the longest stay in the
cable-stayed bridge across the Oresund between Den-
mark and Sweden, for which the following data applies:
EA = 2.17 × 109 N, H = 5.5 × 106 N, l = 260.0 m, m
= 81.05 kg/m, and θ = 30.4◦. The circular frequencies
of the fundamental in-plane and out-of-plane modes
become ω2 = 3.20 rad/s and ω1 = 3.148 rad/s, respec-
tively. The modal damping ratios of modes are set to
ζ 1 = ζ 2 = 1.0%.

At first, the chord elongation is assumed to be har-
monically varying with the circular frequencyω0 =2ω1

and the nondimensional amplitude e0 = 0.30. Fig. 5
shows the trajectories at the mid-point of the cable ob-
tained by the FD model, numerical integration of the
reduced systems (6) (7), and the truncated Fourier ex-
pansion (11) of the solutions of (6) (7). It can be seen
that the out-of-plane component is accurately predicted
by all these models. Moreover, the numerical solutions
of (6) (7) and the analytic solution based on the trun-
cated Fourier series (11) are in good agreement. How-
ever, the peak-to-peak value of the in-plane motion
predicted by the reduced model is about 0.14 m, while
the FD model predicts about 0.16 m. The difference is
primarily caused by the linear response of the second

Fig. 5 Harmonic varying chord elongation. Trajectory at the
mid-point. e0 = 0.30, ω0/ω1 = 2

symmetric in-plane mode with the circular eigenfre-
quency ω6 ≈ 3ω1. This is because the corresponding
modal coordinate q6(t) is far from resonance during
the subharmonic excitation with ω0 ≈ 2ω1. Hence, the
said contribution to the subharmonic response at the
mid-point becomes almost linear. In principle the first
antisymmetric mode with the circular eigenfrequency
ω4 = 2ω1 will be at resonance. However, the modal
load corresponding to the right-hand side of Equation
(7) will be zero, so this mode will only be excited via
nonlinear coupling terms. Moreover, the correspond-
ing eigenmode �4(x) has a node at the mid-point, so
this mode is not affecting the subharmonic response at
the mid-point at all. Several periods of oscillation have
been depicted in the figure, and the thin lined trajecto-
ries suggest that the response is not chaotic.

Next, the time variation of the chord elongation is
assumed to be periodic. In this case the cable response
may be predictable or chaotic depending on the excita-
tion parameters. Fig. 6 shows the results for the parame-
ter values e0 = 0.30, emax/e0 = 1.225, emin/e0 = 0.5, α/β
= 1.5, β = 10 and ω0/ω1 = 2. The indicated parameters
imply that the square root in (12) is equal to one. Hence,
the specified excitation is comparable to the harmonic
case considered in Fig. 5 with respect to variance and
frequency contents. As seen in Fig. 6a the displacement
response predicted by the FD model and the reduced
model are quite similar. In both cases the response be-
comes periodic and predictable with the period Tr =
50T0, which is the twice of the period of the excita-
tion. The corresponding trajectories at the mid-span as
shown in Fig. 6b are also in good agreement. Obviously,
these trajectories are qualitatively and quantitatively
completely different from the corresponding trajecto-
ries of the harmonic case shown in Fig. 5. First of all
a significant in-plane response component of the same
magnitude as the out-of-plane component is present.
Due to the indicated calibration of the chord elongation
model, this variation can only be attributed to the am-
plitude variation of the periodic model. Fig. 7 shows
the phase difference between the in-plane and out-of-
plane displacement components at the mid-point with
the FD model. In Fig. 7, the time series of q1(t) and q2(t)
have been shown in the same plot. First, it is noticed
that both modal coordinates are dominated by the sub-
harmonic component with the circular frequency ω0

2 ,
and that the amplitude of q2(t) is comparable to that
of q1(t). Further, the phase difference between q1(t)
and q2(t) is slowly and monotonously increasing with
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Fig. 6 Periodic varying chord elongation. e0 = 0.30, emax/e0 = 1.225, emin/e0 = 0.5, α/β = 1.5, β = 10, ω 0/ω 1 = 2. (a) Displacements
at the mid-point. (b) Trajectories at the mid-point

Fig. 7 Periodic varying
chord elongation, FD
model. Variation phase
difference between in-plane
and out-of-plane
displacement component. e0

= 0.30, emax/e0 = 1.225,
emin/e0 = 0.5, α/β = 1.5, β

= 10, ω 0/ω 1 = 2

time, without locking at a specific value, as is the case
for harmonically varying chord elongation. When the
phase difference is close to ±π

2 the trajectory of the ca-
ble at the mid-point has the shape of an ellipse, whereas
a phase difference of ±π produces straight lines. Both
of these trajectories are visible in Fig. 6b.

Next, in Fig. 8 the same system is analyzed with
the slightly changed excitation parameters e0 = 0.30,
emax/e0 = 1.392, emin/e0 = 0.5, α/β = 0.8, β = 10 and

ω0/ω1 = 2. The variance and the frequency ω0 of the
excitation are unchanged. However, the period has been
reduced from T = 25T0 to T = 18T0, indicating a some-
what more rapid variation between high and low ampli-
tude excitations. The response time series as predicted
by the two mechanical models are shown in Fig. 8a. As
seen these deviate substantially, suggesting that either
the FD model or the reduced model produces chaotic
response in this case. This has been verified in Fig. 8b,
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Fig. 8 Periodic varying chord elongation. e0 = 0.30, emax/e0 = 1.392, emin/e0 = 0.5, α/β = 0.8, β = 10, α 0/α 1 = 2. (a) In-plane
displacement at the mid-point. (b) Poincaré maps of in-plane response

which shows quite similar Poincaré maps based on the
excitation period T = 18T0 for the in-plane response.
Based on this and similar investigations it is concluded
that the FD model and the reduced model either both
produce a chaotic (non-predictable) response, or an or-
dered (predicable) response at the mid-point.

Finally, the suitability of the 2DOF system for pre-
dicting the stochastic subharmonic displacement re-
sponse of the cable has been demonstrated in Fig. 9
by comparison of the predictions of the FD model and
the reduced model for the same chord elongation time
series. The centre frequency of the excitation process
is kept constant at ω0 = 2ω1, whereas e0 and μ are var-
ied. Only the in-plane displacement has been shown.
Fig. 9a displays the results for e0 = 0.15, μ = 0.005,
corresponding to a narrow-banded excitation with rel-
atively small variance. As seen the response is com-
pletely predictable, and both models give almost the
same quantitative result. Next, in Figs. 9b and c the pa-
rameters have been changed to e0 = 0.45, μ = 0.005
and e0 = 0.15, μ = 0.02, respectively. In both cases
the predictions of the two models are completely dif-

ferent, suggesting that the response to the given chord
elongation realization is chaotic. Hence, the chaotic be-
haviour may occur either at large variance levels, or at
large band width values. The latter effect is related to
the rapid change of the envelope process as explained
in relation to Fig. 3. The chaotic behaviour in Fig. 9c
has been further investigated in Fig. 10 by imposing
slightly different initial value, q1(0) = 1.00 m and q1(0)
= 1.01 m, on the considered mechanical models. In
both cases all other initial values are set to zero. Further,
the same sample curve of the chord elongation process
has been used as in Fig. 9c. As seen from the figures,
both models show extreme sensibility on the initial
values.

From the indicated analysis it is concluded that the
reduced model performs qualitatively and quantita-
tively like the more involved FD model as long as the
response is predictable. Further, both models produce
a chaotic subharmonic stochastic response, whenever
the predictions are no longer qualitatively and quan-
titatively in agreement. In addition, the difference be-
tween the reduced model and the FD scheme when the
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Fig. 9 Stochastic chord elongation. In-plane displacement response at the mid-point. ω 0/ω 1 = 2. (a) e0 = 0.15, μ = 0.005. (b) e0 =
0.45, μ = 0.005. (c) e0 = 0.15, μ = 0.02

responses are chaotic suggests that other modes may
be activated within the more relaxed FD procedure.

The response under stochastic subharmonic excita-
tion will be characterized by variances, power spec-
tral densities (PSD), and probability density functions
of the modal coordinates q1(t) and q2(t). In order to
use the reduced model for stochastic analysis, it is
necessary to compare these quantities predicted by
the two models. In Fig. 11 the predicted variances

have been compared for the case e0 = 0.30 as a
function of μ. Despite the models behave chaotic for
some values of μ, the variances are in good agree-
ment. Similar observations have been made for the
estimates of the PSDs and PDFs. Hence, it may be
concluded that the reduced model is sufficiently ac-
curate for stochastic subharmonic analysis of shallow
cables, and the following analysis will be based on this
model.
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Fig. 10 Stochastic chord elongation. Dependence of in-plane displacement at the mid-point on initial value. e0 = 0.15, μ = 0.02, ω0/ω1

= 2. (a) FD model. (b) Reduced model

Fig. 11 Stochastic chord elongation. Variance response at the mid-point. e0 = 0.30, ω 0/ω1 = 2

4 Chaotic response

In order to further analyze chaotic subharmonic cable
vibration, the largest Lyapunov exponent is calculated
by the algorithm by Wolf et al. [13]. A positive

Lyapunov exponent indicates exponential growth of
a normed perturbation of the state vector zT (t) =
[q1(t) q2(t) q̇1(t) q̇2(t)], revealing chaotic be-
haviour. Fig. 12 shows the largest Lyapunov exponent
as a function of the amplitude e0 under harmonically
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Fig. 12 Harmonic varying chord elongation. Variation of Lya-
punov exponent with e0· ω0/ω1 = 2

varying chord elongations with the circular frequency
ω0 = 2ω1. Since the Lyapunov exponents are negative
in all cases, it is concluded that subharmonic vibrations
under harmonic excitation are non-chaotic for any re-
alistic value of the amplitude e0.

Next, the chord elongation is assumed to be
narrow-banded stochastic. Fig. 13 shows the calculated
Lyapunov exponents as a function of the band width pa-
rameter μ for the characteristic amplitudes e0 = 0.15
and e0 = 0.30. At very small values of μ the excita-
tion has very slowly varying amplitudes, and resem-
bles a harmonic excitation. Under these conditions the
Lyapunov exponent is negative in both cases in agree-
ment with the findings in Fig. 12. As μ is increased the
Lyapunov exponent becomes positive corresponding to
chaotic response. As mentioned this can be attributed to
the increased variability of the envelope process of the
excitation. It is also seen from the figure that larger val-
ues of the characteristic amplitude e0 enhances the ten-
dency to chaotic behaviour of the response. As seen for
e0 = 0.15, non-chaotic behaviour occur at both small
and large values of μ. Although the complete variation
is not shown in the figure, a similar behaviour takes
place for e0 = 0.30.

5 Stochastic subharmonic analysis

Figure 14 shows the time series of the displacement
response at the mid-point under stochastic chord elon-
gation with the center frequency ω0 = 2ω1 for various
values of the band width parameter. Fig. 14a shows
the results for μ=0.001 corresponding to the excita-

Fig. 13 Stochastic chord elongation. Variation of Lyapunov ex-
ponent with μ· ω0/ω1 = 2

tion time series shown in Fig. 3a. As seen the in-plane
response is significantly smaller than the out-of-plane
response, indicating that the trajectory of the stochastic
subharmonic response is randomly varying, but quali-
tatively in agreement with the one shown in Fig. 5 for
the case of harmonic excitation. Fig. 14b shows the
corresponding results in the moderate narrow-banded
case μ = 0.01 corresponding to the excitation time
series in Fig. 3b. In this case significant in-plane sub-
harmonic vibrations are persistently present, which are
caused by the faster variability of the envelope process
of the chord elongation. Finally, Fig. 14c shows the
results, where the band width parameter is further in-
creased to μ = 0.1. Then, the out-of-plane component
has disappeared, and only the in-plane subharmonic
response remains. This suggests that the out-of-plane
stochastic subharmonic component will only be sta-
ble for band width parameter below a critical value
μ = μc(e0), which may depend on the characteristic
excitation amplitude e0. Further, that the in-plane sub-
harmonic response, which is unstable under harmoni-
cal varying excitation, exists under stochastic excitation
with band width parameter μ > μc(e0).

This issue has been further investigated in Fig. 15,
where the variance of the mid-point displacement re-
sponse is shown as a function of μ for specified values
of e0. It is seen that the variance E[q2

1 ] of the sub-
harmonic response of the out-of-plane component de-
creases monotonously with μ for a given value of e0,
until the critical value μ = μc(e0) is reached. Beyond
this point only the in-plane subharmonic component ex-
ists. As seen, μc(e0) is an increasing function of e0. Si-
multaneously with the decrease of E[q2

1 ], the variance
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Fig. 14 Stochastic chord elongation. Displacement response at the mid-point. e0 = 0.30, ω0/ω1 = 2. (a) μ = 0.001. (b) μ = 0.01. (c)
μ = 0.1

of the in-plane component increases in magnitude, and
a maximum value is reached at the bifurcation point
μ = μc of the out-of-plane variance response.

Figures 16 and 17 show the variation of the power
spectral density (PSD) for discrete values of e0 and
μ. Fig. 16 shows the results, when the characteristic
amplitude is fixed at the value e0 = 0.30, and the band
width parameter is varied. The indicated spectral den-
sity for μ = 0.1 for the out-of-plane component should
merely be considered as numerical noise, since this

component is unstable in this case. As seen the peak
frequency and half-band width of the spectra of both
the in-plane and the out-of-plane displacements in-
crease with μ. Further, a secondary spectral peak in
the PSD of q2(t) at ω ≈ 2ω1 = ω0 is noticed. This
peak is completely dominating, corresponding to the
harmonic amplitude C2 in the truncated Fourier expan-
sion (11b), under purely harmonically varying chord
elongations. Figure 17 shows the corresponding spec-
tral densities for the band width parameter μ = 0.01,
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Fig. 15 Stochastic chord elongation. Variance response at the mid-point. ω0/ω1 = 2

Fig. 16 Stochastic chord elongation. PSD of displacement response at the mid-point. e0 = 0.30, ω0/ω1 = 2

Fig. 17 Stochastic chord elongation. PSD of displacement response at the mid-point. μ = 0.01, ω0/ω1 = 2

and variable values of the characteristic amplitude of
the excitation. As seen both the peak frequency and
the half-band width of the spectra are increasing with
e0.

Finally, the probability density functions (PDF) of
q1(t) and q2(t) have been shown in Fig. 18 for e0 =
0.30. As μ approaches the bifurcation value μc(e0), the
PDF of q1(t) converge towards a Dirac’s delta function.
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Fig. 18 Stochastic chord elongation. PDF of displacement response at the mid-point. e0 = 0.30, ω0/ω1 = 2

Further it is noticed that q1(t) and q2(t) are far from
being normally distributed for any of the considered
values of μ. This suggests that the variance response
of the system may be difficult to be obtained by mo-
ment methods, such as equivalent linearization (Gaus-
sian closure), cumulant neglect closure, etc. [14]. Such
methods are based on an implicit assumed joint prob-
ability density function, which may be considered as
an asymptotic expansion from the joint Gaussian dis-
tribution obtained exactly in the linear case. At least,
the authors tried unsuccessfully to obtain satisfactory
results for the variance response, using a fourth order
cumulant neglect closure scheme.

6 Conclusions

The subharmonic response of a shallow cable sub-
jected to support point motions changed qualitatively
and quantitatively, when a harmonically varying chord
elongation is replaced by a comparable narrow-banded
Gaussian elongation process with the same centre fre-
quency as the circular frequency of the harmonic exci-
tation, and the same variance. Under harmonic excita-
tion the stable motion consists of a harmonically vary-
ing in-plane component with a static drift, and a large
subharmonic out-of-plane component with a locked
phase difference to the in-plane harmonic component.
It is demonstrated that the slowly varying phase of the
stochastic excitation implies that the said phase differ-
ence varies slowly with time, causing the trajectory of
the displacement component to rotate slowly around
the chord line. Hence, a large subharmonic response
component will also be present in the in-plane displace-
ment. However, as the excitation becomes more broad-

banded, the out-of-plane component ceases to exist, and
the stochastic subharmonic becomes entirely in-plane.
The bifurcation point of the out-of-plane component
from the in-plane response depends on the variance of
the excitation process.

Under harmonically varying chord elongations the
subharmonic response is non-chaotic for all realistic
amplitudes and frequencies of the excitation. However,
for stochastic excitation there is a tendency of chaotic
response, which has been demonstrated via extreme
sensitively on the initial values using the same real-
ization of the chord elongation process in the numer-
ical time integration, and via the sign of a numerical
calculated Lyapunov exponent. This effect is further
analyzed, when replacing the harmonically excitation
with an equivalent periodic signal with same standard
deviation and frequency, which changes between two
levels of amplitudes. Chaotic vibrations, here verified
via Poincaré maps, occur when the high and low am-
plitude phases are changing sufficiently rapidly. From
this it is concluded that the corresponding chaotic be-
haviour under stochastic excitation is related to the rate
of change of the envelope process of the excitation.
During stochastic excitation it is shown that the re-
sponse is predictable at very small and large values
of the band width parameter, and that the tendency of
chaotic behaviour is enhanced, as the variance of the
excitation process is increased.

Finally, it is demonstrated that the analysis of the
subharmonic response of a shallow cable may be inves-
tigated by a reduced 2DOF model, retaining only the
lowest out-of-plane and in-plane modes in the modal
expansion of the response. It is also demonstrated that
the reduced model and the more involved FD model
predict almost identical results for stochastic response
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quantities such as displacement variance, probability
density functions and auto-spectral density functions.
Moreover, both models produce chaotic response si-
multaneously, and the Poincaré maps in case of peri-
odic excitation display the same fractal pattern.

Appendix A: Eigenmodes and coefficients entering

the reduced model

The eigenmodes �1(x) and �2(x) are given by, [1, 7]

�1(x) = sin

(
π

x
l

)
,

�2(x) = cos
[(

�
2

) (
1 − 2 x

l

)] − cos
(

�
2

)
1 − cos

(
�
2

) (A.1)

Then, the following results can be evaluated for the
Equations (6) and (7)
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where λ2 denotes the Irvine stiffness parameter, which
controls the linear as well as the nonlinear parts of the
dynamics [7], and ω̄ denotes the fundamental frequency

for the taut cable.
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l

√
H
m

(A.3)

The coefficients in Equation (A.2) are function of the
nondimensional frequency � as follows:
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� is obtained as the lowest positive solution to the
transcendental equation
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2
− 4

λ2

(
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2
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(A.5)

Appendix B: Algebraic equations for amplitudes

and phases in subharmonic responses

Insertion of (10) into (7) with q1(t) ≡ 0, collecting
constant terms, and terms with the common factors
cos(ω0

2 t + b2) and sin(ω0
2 t + b2), provides the follow-

ing algebraic equations for A2, B2, and b2

ω2
2 A2 + β3

(
A2

2 + 1

2
B2

2

)
+ γ4

(
A3

2 + 3

2
A2 B2

2

)
= 0

(B.1)

ω 2
2 − ω2

0

4
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2 + 1
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2
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= −1

2
ω2

2αe0 cos �2 (B.2)
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Fig. B1 Subharmonic in-plane response

ζ2ω0ω2 = −1

2
αω2

2e0 sin �2 (B.3)

where �2 = a − 2b2. (B.3) provides

a − 2b2 =

⎧⎪⎨⎪⎩
−Arcsin

2ζ2ω0

αe0ω2

π − Arcsin
2ζ2ω0

αe0ω2

(B.4)

Hence, two solutions exist, of which the first indi-
cated turns out to be unstable. Since ζ2 << 1, the fol-
lowing phase locking prevails for the stable solution,
a − 2b2 ≈ π . The results have been shown in Fig. B1
along with the result obtained via numerical time inte-
gration of (7), followed by an FFT.

In the same way insertion of the truncated Fourier
expansion (11) into (6) and (7), and collecting
constant terms, and terms with the common fac-
tors cos(ω0

2 t + b1), sin(ω0
2 t + b1), cos(ω0t + c2) and

sin(ω0t + c2), provides the following algebraic equa-
tions for A2, B1, C2, b1, and c2.
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2ζ2ω2ω0C2 − 1

2
sin �1(β2 + γ3 A2)B2

1

= −(
ω2

2αA2 + η
)
e0 sin �3 (B.9)

where �1 = c2 − 2b1, �2 = a − 2b1, �3 = a − c2 =
�2 − �1.

Equations (B.5)–(B.9) must be solved by cyclic it-
eration. At first (B.6), (B.7) are solved for B1 and �2.
Next, (B.8), (B.9) are solved for C2 and �3. Finally,
A2 is obtained from (B.5). For the problem shown in
Fig. 5, the following solutions are obtained

A2 = −0.105232 m,

B1 = 3.784372 m,

C2 = 0.068925 m (B.10)

�1 = c2 − 2b1 = 3.353320,

�2 = a − 2b1 = 3.272428
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