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Abstract In this paper a general technique for the

analysis of nonlinear dynamical systems with periodic-

quasiperiodic coefficients is developed. For such sys-

tems the coefficients of the linear terms are periodic

with frequency ω while the coefficients of the nonlin-

ear terms contain frequencies that are incommensurate

with ω. No restrictions are placed on the size of the pe-

riodic terms appearing in the linear part of system equa-

tion. Application of Lyapunov-Floquet transformation

produces a dynamically equivalent system in which

the linear part is time-invariant and the time varying

coefficients of the nonlinear terms are quasiperiodic.

Then a series of quasiperiodic near-identity transfor-

mations are applied to reduce the system equation to a

normal form. In the process a quasiperiodic homolog-

ical equation and the corresponding ‘solvability con-

dition’ are obtained. Various resonance conditions are

discussed and examples are included to show practi-

cal significance of the method. Results obtained from

the quasiperiodic time-dependent normal form theory
are compared with the numerical solutions. A close

agreement is found.
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1. Introduction

An important class of dynamical systems may be repre-

sented by a set of linear/nonlinear differential equations

with periodic/quasiperiodic coefficients. Bogoljubov et

al. [1], Jorba and Simó [2], and Jorba et al. [3], among

others, have all considered the reducibility of such sys-

tems to approximate time-invariant forms using a small

parameter approach. Normal forms of quasiperiodic

nonlinear systems with time-invariant linear part have

been studied by E. G. Belaga as reported by Arnold

[4]. The more recent techniques have, in general, been

limited to systems with constant nonlinear coefficients,

and are restricted by small parameters multiplying the

nonlinear and/or time-varying terms. Belhaq et al. [5]

and Guennoun et al. [6] consider a homogeneous Math-

ieu equation with quasiperiodic linear coefficients and

a constant nonlinear coefficient. The small parameter

technique of multiple scales is applied twice to the sys-

tem to obtain an approximate time-invariant system. In

another study (see Belhaq and Houssni, [7]) the system

under investigation contains quadratic and cubic non-

linearities as well as parametric (linear terms) and ex-

ternal excitations of incommensurate frequencies. The

small parameter techniques of generalized averaging

and multiple-scale perturbation are employed to obtain

a solutions. Rand and his associates (see Mason and

Rand [8], Zounes and Rand [9], Zounes and Rand [10])

analyze a linear homogeneous quasiperiodic Mathieu

equation via several methods, viz., numerical integra-

tion, Lyapunov exponents, regular perturbation, Lie
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transform perturbation and harmonic balance. Most of

these methods require small parameter restrictions.

In this paper, we propose a technique for solving

much wider class of problems where the nonlinear

terms contain quasiperiodically time-varying coeffi-

cients and the linear terms have periodic coefficients.

This type of systems generally arises in the analysis

of parametrically excited coupled systems where un-

der certain conditions one of the equations decouples

and an explicit solution can be expressed as a periodic

function of time. To illustrate this point consider the

following coupled system.

m1 ẍ1 + c1 ẋ1 + k1x1 + ε x1x2
2 = f0 sin ω1t

(a)

m2 ẍ2 + c2 ẋ2 + k2x2 + ε x2
1 x2 + (δ sin ω2t)x3

2 = 0

where ε and δ are positive constants. Under the as-

sumptions that m1 � m2 and m1 � ε, the solution to

the first equation of (a) is

x1 = A sin(ω1t + φ) (b)

Substituting this solution into the second equation of

(a), we obtain

m2 ẍ2 + c2 ẋ2 + (k2 + ε(A sin(ω1t + φ))2)x2

+ δ(sin ω2t + φ)x3
2 = 0 (c)

where, of course, the linear term in x2 has both con-

stant and periodically time-varying coefficients (with

frequency ω1) and the cubic term has a periodic coef-

ficient of an incommensurate frequency, ω2.

The periodic coefficient of the linear term is not re-

quired to be small. In fact, other than numerical inte-

gration methods, no known techniques for analyzing a

system of this type exist. By applying the (L–F) trans-

formation to the system, the linear terms in the trans-

formed domain have constant coefficients. Next, we

develop a technique of quasiperiodic time-dependent
normal forms (TDNF) as a generalization of the pe-

riodic TDNF [4, 17] where successive near-identity

transformations are made in attempts to reduce the non-

linear terms, beginning with the lowest order. Without

any loss of generality, we assume that the quasiperi-

odic terms contain only two incommensurate frequen-

cies and thus the coefficients of nonlinear terms are

expressed as a double Fourier series. Following a pro-

cedure similar to the periodic case, a quasiperiodic ho-

mological equation is obtained which yields the ‘solv-

ability condition’. If the ‘solvability condition’ is not

satisfied, then the so called ‘resonant terms’ can not be

removed and remain in the simplified equation. Both

time-independent and time-dependent resonances are

discussed. If there are no resonance terms, the equation

is reduced to a linear from with constant coefficients

and the solution is readily obtained in the transformed

domain. If the system dynamics in the original coordi-

nates are desired, one must simply reverse the sequence

of transformations that have been applied.

2. Problem formulation

Consider the nonlinear systems represented by

ẋ(t) = A(t)x(t) + ε f2(x(t), t) + ε2f3(x(t), t) + · · ·
+ εk−1fk(x(t), t) + εk O(|x(t)|k+1, t) (1)

where ε is a book keeping (and generally small pos-

itive) parameter, and A(t) is an n × n, T1 periodic

matrix such that A(t) = A(t + T1). The n × 1 vectors

fi (x(t), t), i = 2, 3, . . . k are T2 periodic homogeneous

monomials in x of order i such that T1 and T2 are in-

commensurate (i.e., T1 �= kT2, where k is any integer).

Following Sinha et al. [14], the state transition matrix

(STM) for the linear part of the system can be factored

as

�(t) = Q(t)eRt (2)

where Q(t) is typically 2T1 periodic such that Q(t) =
Q(t + 2T1) and R is a real-valued n × n constant ma-

trix. Applying the Lyapunov-Floquet (L–F) transfor-

mation x(t) = Q(t)y(t) to Equation (1) yields

ẏ(t) = Ry(t) + εQ−1(t) f2(Q(t) y(t), t) + · · ·
+ εk−1Q−1(t) fk(Q(t) y(t), t)

+ εk O(|Q(t) y(t)|k+1, t)

(3)

Notice that the linear terms in y(t) now have constant

coefficients, and the nonlinear terms are quasiperiodic.

Further, application of the modal transformation

y(t) = Mz(t) puts the linear part of the system in the
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Jordan canonical form and Equation (3) takes the form

ż(t) = Jz(t) + εM−1Q−1(t)f2(MQ(t)z(t), t) + · · ·
+ εk−1M−1Q−1(t)fk(MQ(t)z(t), t)

+ εk O(|MQ(t)z(t)|k+1, t) (4)

where J is the Jordan canonical form of R. Rewriting

M−1Q−1(t)fr (·) = wr(·), Equation (4) becomes

ż(t) = Jz(t) + εw2(z(t), t) + ε2 w3(z(t), t) + · · ·
+ εk−1wk(z(t), t) + εk O(|z(t)|k+1, t) (5)

It is important to point out that the linear terms in z
have constant complex coefficients and are in Jordan

form, and that the nonlinear terms have quasiperiodic

coefficients. In the following, a quasiperiodic time-
dependent normal form (TDNF) theory is developed

for systems represented by Equation (5).

2.1. Quasiperiodic time dependent normal form

(TDNF) theory

As in the periodic case, we construct a sequence

of transformations, beginning with the lowest order

of nonlinearity, to successively remove the nonlinear

terms of Equation (5). In order to remove the nonlinear

terms of order r, wr (z, t), the following near-identity

transformation is applied:

z = v + εhr(v, t) (6)

where the unknown nonlinear function hr(v, t) contains

terms of similar forms as wr (v, t) and is quasiperiodic.

We propose to choose the coefficients of hr(v, t) such

that when transformation (6) is applied to system (5)

all rth order nonlinearities are canceled out, if possible.

Applying transformation (6) to Equation (5) and fol-

lowing a procedure similar to that of periodic case (c.f.,
reference [11, 17]), we obtain

v̇ = Jv + ε

(
Jhr − ∂hr

∂t
− ∂hr

∂v
Jv + wr(v + εhr, t)

)
− ε2 ∂hr

∂v

(
Jhr − ∂hr

∂t
− ∂hr

∂v
Jv + wr(v + εhr, t)

)
+ · · · + ε2wr+1(v + εhr, t) + · · ·
+εk−1wk(v + εhr, t) (7)

By setting the coefficient of ε to zero, we obtain the

well known homological equation

Jhr − ∂hr

∂t
− ∂hr

∂v
Jv + wr (v, t) = 0 (8)

However, in this case the coefficients of wr (v, t) are

quasiperiodic.
In order to find the solution of the homological equa-

tion given (8), we expand hr (v, t) and wr (v, t) in double
finite Fourier series as

w r (v, t) =
∑

∑
ml=r

n∑
j=1

q1∑
p1=−q1

q2∑
p2=−q2

ar,p1,p2,ml e
i(p·ω)t vme j

(9)

hr (v, t) =
∑

∑
ml=r

n∑
j=1

q1∑
p1=−q1

q2∑
p2=−q2

hr,p1,p2,ml e
i(p·ω)t vme j

(10)

assuming two principal frequenciesω = {
ω1 ω2

}
, for

simplicity. For a more general situation, we can as-

sume fr () in Equation (1) will have frequency con-

tents of ω2, ω3, . . . ωp and then wr () and hr () have

to be expanded in p-tuple Fourier series. ar,p1,p2,ml

are the known Fourier coefficients of the quasiperi-

odic functions from Equation (5); hr,p1,p2,ml are the

unknown Fourier coefficients of the rth order normal

form relation; e j is the jth member of the natural basis;

vm = v
m1

1 . . . vmn
n .

Upon substitution of these expressions into the ho-

mological Equation (8) we obtain a set of linear alge-

braic equations to be solved for the unknown Fourier

coefficients of the near-identity transformation coef-

ficients. A term-by-term comparison of the double

Fourier coefficients provides the solution for the co-

efficients of the near-identity transformation as

hr,p1,p2,ml = ar,p1,p2,ml

i (p · ω) + m · λ − λ j
; i = √−1

(11)

where λ = {λ1 λ2 . . . λn} are the eigenvalues of the

Jordan matrix J and p = {p1 p2}. The difference

between Equation (11) for the quasiperiodic case and

the periodic case is the addition of multiple frequen-

cies in the denominator. It is obvious that when the
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solvability condition

i(p · ω) + m · λ − λ j �= 0 (12)

is satisfied, the corresponding nonlinear term can

be eliminated. Otherwise, the corresponding resonant

terms will remain in the reduced equation so that Equa-

tion (7) takes the form

v̇ = Jv + εw∗
r (v, t) + ε2wr+1(v, t) + · · ·

+εk−1wk(v, t) + O(ε2) (13)

where w∗
r contains only the “resonating” terms. Next,

the (r + 1)th order terms are removed, and so on, to

obtain

˙̄v = Jv̄ + εw∗
r (v̄, t) + ε2w∗

r+1(v̄, t) + · · ·
+εk−1w∗

k (v̄, t) (14)

where the (·)∗ denotes the resonant terms that could not

be removed.

Because of the quasiperiodicity of the functions,

the time-independent resonance may occur only if

the double Fourier series expansion in Equation (12)

contains constant terms, i.e., terms corresponding to

p1 = p2 = 0. Time-dependent resonances may also oc-

cur in certain cases. Such possibilities are discussed as

in the following.

2.2. The resonant cases

2.2.1. Time-independent resonance

Resonance may occur in quasiperiodic systems when

the double Fourier series contains a constant term in

the expansion. A close examination of Equation (11) re-

veals that resonance may only occur when the eigenval-

ues are purely imaginary, i.e., if there is no dissipation

in the system. For example, in the case of cubic nonlin-

earity, Equation (14) takes the form (see Pandiyan and

Sinha [12]){
v̇1

v̇2

}
=

[
λ1 0

0 λ2

] {
v1

v2

}
+ ε

{
α1v

2
1v2

α2v1v
2
2

}
(15)

where α1 and α2 are the coefficients of the reso-

nant terms, resulting from the double Fourier series

expansion. We multiply the first equation of system

(15) by v2, the second equation by v1, and add to ob-

tain

d

dt
(v1v2) = ε(α1 + α2)v2

1v
2
2 (16)

which can be integrated to yield v1v2 as an explicit

function of t , say c(t). Then from Equation (15), v1

and v2 may be obtained as

v1 = e(λ1+ε α1c(t)) t v10

v2 = e(λ2+ε α2c(t)) t v20 (17)

It is to be noted that such resonances always occur if

the eigenvalues λ1&λ2 are purely imaginary, and the

stability of the system entirely depends on α1 and α2.

2.2.2. Time-dependent resonance

It is clear that terms of the form

wr,l,m,nei(p1ω1+p2ω2)tv
m1

1 v
m2

2 el remain when the

corresponding resonance condition

i(p1ω1 + p2ω2) + m1λ1 + m2λ2 − λ1 = 0 (18)

is satisfied, where m1 + m2 = r , ω1 = 2π/T1
, and el is

the lth member of the natural basis. Butcher and Sinha

[13] showed that time-dependent resonances (p �= 0)

occur for the periodic case (where there is only one

frequency ω1) for purely imaginary eigenvalues with

specific absolute values. For the quasiperiodic case the

results can be extended as follows.

It is obvious that Equation (18) has no p �= 0 solu-

tions for real or complex λ1,2. Therefore, the two eigen-

values are restricted to be purely imaginary pairs of the

form λ1,2 = ±iβ so that only the stable Hamiltonian

case with no damping is relevant. Furthermore, the

case of purely imaginary characteristic exponents at

the fold stability boundary (multipliers, μ1,2 = +1) is

discounted since the corresponding zero eigenvalues

of R imply that only time-independent resonances are

present. Equation (18) thus becomes

p · ω = βs; where s = m2 − m1 ± 1 (19)

where (+1) corresponds to l = 1 and (−1) corresponds

to l = 2. The values of s for all m and l were tabu-

lated in Butcher and Sinha [13] (Table 1). It was shown
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that there are exactly eight different combinations of

l, m1, and m2 which yield five different values of s
from −4 to 4. The two combinations which result in

s = 0 correspond to the time-independent resonances

(p1 = p2 = 0) which occur in the entire stable part of

the parameter plane. For the quasiperiodic case there

are no time-dependent resonances when s = 0; how-

ever, if the two frequencies were rationally related,

then time-dependent resonances would occur when

p1ω1 + p2ω2 = 0. The following shows when time-

dependent resonances occur for s �= 0.

It was shown in Butcher and Sinha [13] that the

parametric period T1 satisfies T1β < π which can also

be expressed as β > ω1/2. Multiplying this inequality

by |s| and using Equation (19) results in

|p · ω| <
|s|ω1

2
; sgn(p · ω) = sgn(s);

p1,2 = ±1, ±2, . . . (20)

Equation (20) may be solved for combinations of p1

and p2 which result in time-dependent resonances and

the corresponding value of s (which determines m1,

m2, and l). Equation (19) may then be solved for β =
(p · ω)/s which yields a valid set of time-dependent

resonant eigenvalues as λ1,2 = ±iβ. It is important to

note that, although there may be many values of p1

and p2 which solve Equation (20), the corresponding

resonances will not occur simultaneously since each

individual resonance requires the above values of the

eigenvalues of the constant matrix R (which in turn

require the Floquet multipliers to be μ = e(±i2πβ/ω1)).

However, for a particular given imaginary eigenvalue

pair, some resonance may be found which corresponds

to a pair that is arbitrarily close to the given pair. Hence,

the stable region of the parameter plane is foliated

with such resonances. Also, unlike the periodic case

in which time-dependent resonances occur when the

linear solution has a component that is MT-periodic

(M = 1, 2, 3, . . .), the resonances in the quasiperiodic

case require solution components with periods irra-

tionally related to the period T1. Hence, the symbolic

computational technique used in (Reference [13]) to

compute the parameter regions where MT-periodic so-

lutions occur cannot be applied here.

For example, suppose that a 2-dimensional

quasiperiodic system with cubic nonlinearities has fre-

quencies �
 = 2π (the linear parametric frequency)

and ω2 = 1 (for time-dependent coefficients of non-

linear terms) and suppose that the Floquet multipliers

are complex and lie on the unit circle. Thus, the eigen-

values of R (after performing the L-F transformation)

are purely imaginary. Equation (20) gives the possible

time-dependent resonances as∣∣∣∣ p1 + p2

2π

∣∣∣∣ <
|s|
2

(21)

where s = ±2or ± 4 as shown in Table 1 in Reference

[13]. A few of the lowest order solutions are given as

(0, p2) p2 = −12, . . . , 12

(1, p2) p2 = −18, . . . , 6

(−1, p2) p2 = −6, . . . , 18

(2, p2) p2 = −25, . . . ,−1

(−2, p2) p2 = 1, . . . , 25 (22)

etc.

Each pair requires separate values of the eigenvalues.

For instance, the pair (1, −18), which corresponds

to s = −4, m1 = 3, m2 = 0, and l = 2, requires the

eigenvalues to be ±0.4661972i and the Floquet mul-

tipliers to be μ = e±0.4661972i . This would result in the

resonance term e−1.864790i tv3
1e2. However, because the

pair (−1,18) (which corresponds to s = 4, m1 = 0,

m2 = 3, and l = 1) also requires the same eigenval-

ues, the resonance term e1.864790i tv3
2e1 is also present.

Hence the normal form would be

v̇1 = 0.4661972iv1 + w3,1,(2,1),(0,0)v
2
1v2

+w3,1,(0,3),(−1,18)e
1.864790i tv3

2

v̇2 = −0.4661972iv2 + w3,2,(1,2),(0,0)v1v
2
2

+w3,2,(3,0),(1,−18)e
−1.864790i tv3

1 (23)

in which the time-independent resonances shown ear-

lier are also present.

3. Applications

In this section, application of the quasiperiodic normal
form theory is demonstrated through two examples. In

the first example, a nonlinear commutative system is
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analyzed. In this case, the L–F transformation is ob-

tained in a closed form and various solutions are com-

puted using the techniques described earlier. For this

problem it is possible to obtain closed-form solutions

in terms of the parameters of the system. The second

example is a Mathieu-Duffing equation with cubic non-

linearities. In this case the L−F transformation matri-

ces cannot be obtained in a closed form, so we resort to

a computational algorithm that has been proven to be

accurate and efficient (see Sinha, Pandiyan, and Bibb

[14]).

3.1. A commutative system with quadratic

nonlinerities

Consider the following system with quadratic nonlin-

earities:

{
ẋ1

ẋ2

}
=

[
−1 + α cos2 t 1 − α sin t cos t

−1 − α sin t cos t −1 + α sin2 t

] {
x1

x2

}

+ε cos(π t)

{
x2

1

x1x2

}
(24)

where α is a real-valued bifurcation parameter and ε is

a positive (generally small) number. Notice the period

of A(t) is T1 = π and the period of both the nonlinear

term and the forcing term is T2 = 2. The state transition

matrix (STM) for this system and its factorization [15]

are

Φ(t) =
[

e(α−1)t cos t e−t sin t

−e(α−1)t sin t e−t cos t

]

=
[

cos t sin t

− sin t cos t

] [
e(α−1)t 0

0 e−t

]
(25)

From this equation, it is obvious that

Q(t) =
[

cos t sin t

− sin t cos t

]
Q−1(t) =

[
cos t − sin t

sin t cos t

]

R =
[

α − 1 0

0 −1

]
(26)

Applying the L–F transformation x(t) = Q(t)z(t), sys-

tem (24) becomes{
ż1

ż2

}
=

[
α − 1 0

0 −1

] {
z1

z2

}

+ε cos(π t)

{
z2

1 cos t + z1z2 sin t

z1z2 cos t + z2
2 sin t

}
(27)

Notice that the matrix multiplying the linear terms is

constant and in the diagonal form and the nonlinear

terms are quasiperiodic. Also, the eigenvalues of the

system are (α − 1) and (−1), so the critical value of α

is 1, when one of the eigenvalues becomes zero.

We now apply the near-identity transformation{
z1

z2

}
=

{
v1

v2

}

+ ε

{
h21(2,0)v

2
1 + h21(1,1)v1v2 + h21(0,2)v

2
2

h22(2,0)v
2
1 + h22(1,1)v1v2 + h22(0,2)v

2
2

}
(28)

in order to eliminate the quadratic terms.

Solving for the quadratic coefficients of the trans-

formation yields

h21(2,0) = ae−(2.14159i)t + a∗e(2.14159i)t

+ be−(4.14159i)t + b∗e(4.14159i)t

h21(1,1) = ce−(2.14159i)t + c∗e(2.14159i)t

+de−(4.14159i)t + d∗e(4.14159i)t

h21(0,2) = 0

h22(2,0) = 0

h22(1,1) = ae−(2.14159i)t + a∗e(2.14159i)t

+ be−(4.14159i)t + b∗e(4.14159i)t

h22(0,2) = ce−(2.14159i)t + c∗e(2.14159i)t

+ de−(4.14159i)t + d∗e(4.14159i)t (29)

where

a = −0.0258456 + 0.110701i

b = −0.00718276 + 0.0594961i
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c = 0.0958392 + 0.0447514i

d = −0.057038 − 0.013772i (30)

and (·)∗ denotes the complex conjugate of (·). Using

this transformation reduces system (27) to

{
v̇1

v̇2

}
=

[
α − 1 0

0 −1

] {
v1

v2

}
(31)

which immediately yields

v1 = e(α−1)tv1(0)

v2 = e−tv2(0) (32)

where v1(0) and v2(0) are the initial values. Since

v1(t) and v2(t) are known, z1(t) and z2(t) can be ob-

tained from Equation (28) and x(t) is immediately de-

termined from x(t) = Q(t)z(t).
The solutions of this system in the stable, center,

and unstable manifolds are computed using the pro-

posed quasiperiodic TDNF method. These results are

compared with the corresponding numerical solutions

in Figs. 1–3 for various values of ε. For all real values

of α, Equation (27) has real eigenvalues. Therefore,

the solvability condition (12) is completely satisfied

and hence the quasiperiodic TDNF method reduces this

system to a linear form for all values of α. The solutions

in the stable manifold possess uniform convergence. It

is interesting to note that in Figs. 1 and 3, the value of

ε is 1.0, meaning that the nonlinearities are not small,

and the accuracy is still good. Fig. 2 indicates that the

solution in the unstable manifold is correctly predicted.

3.2. A Mathieu-Duffing equation

Modeling of many engineering systems with paramet-

ric excitation may be reduced to a Mathieu-Duffing type

equation. For example, the forced Mathieu-Duffing

equation with cubic nonlinearities has the general form

θ̈ + d θ̇ + (a + b cos ωt) θ + ε g (θ, t) = 0 (33)

where a, b, d, and ω are the parameters of the system;

ε is a real-valued positive (generally small) multiplying

factor and g (θ, t) is a time-varying nonlinear func-

tion of θ . With {θ̇ θ̈}T = {ẋ1 ẋ2}T and assuming cubic

nonlinearity, Equation (33) may be rewritten as{
ẋ1

ẋ2

}
=

[
0 +1

−(a + b cos(2π t)) −d

] {
x1

x2

}

+ε cos t

{
0

−x3
1

}
(34)

This system is non-commutative; therefore we must

resort to approximating the L−F transformation matrix

Q(t) as suggested in reference [14]. A Fortran program

written by Butcher [16] is utilized to compute the L–F

transformation matrices for given parameter sets.

After applying the L–F and modal transformations,

the system becomes

ż = Jz

+ε(cos t)M−1Q−1(t)

⎧⎪⎪⎨⎪⎪⎩
0

(Q11(M11z1 + M12z2)

+Q12(M21z1 + M22z2))3

⎫⎪⎪⎬⎪⎪⎭
(35)

Again, the coefficients of the nonlinear terms of

Equation (35) may be expressed as a double Fourier

series, due to the quasiperiodic nature of the terms. To

this system, we apply the near-identity transformation

of the form

{
z1

z2

}
=

{
v1

v2

}
+ε

{
h31(3,0)v

3
1+h31(2,1)v

2
1v2+h31(1,2)v1v

2
2+h31(0,3)v

3
2

h32(3,0)v
3
1+h32(2,1)v

2
1v2+h32(1,2)v1v

2
2+h32(0,3)v

3
2

}
(36)

where the coefficients h3i (v, t) are unknown but

quasiperiodic (with ω1 = 2π and ω2 = 1), i = 1, 2.

For the non-resonant cases, the system reduces to{
v̇1

v̇2

}
=

[
λ1 0

0 λ2

] {
v1

v2

}
(37)

where λ1 and λ2 are the eigenvalues of the trans-

formed time-invariant linear system. The solution of

this equation has been discussed earlier.
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Fig. 1 Comparison of
solution of commutative
system in stable manifold
(α = 0.5, ε = 1.0)

Fig. 2 Comparison of
solution of commutative
system in unstable manifold
(α = 1.3, ε = 0.1)

Fig. 3 Comparison of
solution of commutative
system in center manifold
(α = 1.0, ε = 1.0)
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Fig. 4 Comparison of
solution of Mathieu-Duffing
equation in stable manifold
(a = 3, b = 1,
d = 00.31623, ε = 1.0)

Fig. 5 Comparison of
solution of Mathieu-Duffing
equation in stable manifold
(a = 0, b = 4, d = 0.4243,
ε = 1.0)

Fig. 6 Comparison of
solution of Mathieu-Duffing
equation in center manifold
(a = 3, b = 1, d = 0,
ε = 1.0)
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Fig. 7 Comparison of
solution of Mathieu-Duffing
equation in unstable
manifold (a = 1, b = 20,
d = 0.5, ε = 0.1)

3.2.1. Case studies

In the following, some case studies of various values

of a, b, d, and ε are presented for the Mathieu-Duffing

Equation (34). For the Parameter Set 1: a = 3, b = 1,

d = 0.31623, ε = 1.0, the solutions are in the stable

manifold. Fig. 4 shows an excellent comparison with

the numerical solution. If a = 0, then we note that the

traditional averaging (or perturbation) method has no

generating solution in this situation. For this case, the

TDNF and numerical solutions are shown in Fig. 5. The

agreement is very close.

The dynamics in the center manifold is shown in

Fig. 6. For this case a = 3, b = 1, d = 0, ε = 1.0.

Since the system is underdamped the eigenvalues λ1 &

λ2 in Equation (37) are purely imaginary. The approxi-

mate result compares well with the numerical solution.

For the parameter set: a = 1, b = 20, d = 0.5, ε =
0.1, the system is unstable and this behavior is correctly

predicted as shown in Fig. 7.

4. Conclusions

In conclusion, for the first time, a time dependent
normal form technique is developed for a class of

parametrically excited dynamical systems where the

linear terms have periodic coefficients while the non-

linear terms are quasiperiodic in time. For simplicity,

quasiperiodicity of two frequencies is investigated in

detail. The periodic coefficient of the linear term does

not require a small parameter assumption, which is nor-

mally the case when one attempts to apply averaging

or perturbation techniques. In addition, the question of

existence of the so called ‘generating solution’ does not

arise in this approach.

The usefulness of the method is demonstrated by

applications to a commutative system and a Mathieu-

Duffing type equation. Results obtained from the

quasiperiodic time dependent normal form theory are

compared with the numerical results. It is shown that

the proposed analysis techniques provide accurate re-

sults for all three cases (viz., stable, unstable and neu-

trally stable) even if the magnitude of the parameters

multiplying the nonlinear terms is moderately large.

There is no limitation placed on the size of the peri-

odic terms appearing in the linear part of the system

equation. This implies that the stability and bifurca-

tion characteristics are preserved in the entire param-

eter space. An extension to forced problems will be

reported in the near future.
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