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Abstract The present work investigates the perfor-

mance of two systematic methodologies leading to hy-

brid modeling of complex mechanical systems. This is

done by applying numerical methods in determining

the equations of motion of some of the substructures

of large order mechanical systems, while the dynamic

characteristics of the remaining components are deter-

mined through the application of appropriate experi-

mental procedures. In their simplest version, the models

examined are assumed to possess linear characteristics.

For such systems, it is possible to apply several hybrid

methodologies. Here, the first of the methods selected

is performed in the frequency domain, while the sec-

ond method has its roots and foundation in time domain

analysis. Originally, the accuracy and effectiveness of

these methodologies is illustrated by numerical results

obtained for two complex mechanical models, where

the equations of motion of each substructure are first

set up by applying the finite element method. Then,

the equations of motion of the complete system are de-

rived and their dimension is reduced substantially, so

that the new model is sufficiently accurate up to a pre-

specified level of forcing frequencies. The formulation

is developed in a general way, so that application of

other methods, including experimental techniques, is

equally valid. This is actually performed in the final
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part of this study, where experimental results are em-

ployed in conjunction with numerical results in order

to predict the dynamic response of a mechanical struc-

ture possessing a linear substructure with high modal

density, supported on four substructures with strongly

nonlinear characteristics.
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1. Introduction

The rapid advances taking place over the last three

decades in the area of producing more effective elec-

tronic devices caused significant and ever increasing

advantages in terms of computation speed and mem-

ory capacity of current electronic computers. This in

turn has resulted in an equally great progress in many

areas of engineering and technological interest. Specif-

ically, the developments in the areas of computer hard-

ware and software caused a flourishing in the fields of

improving or even inventing new, more accurate and

more effective experimental and numerical method-

ologies, with large engineering importance. As a con-

sequence, substantial advances have been achieved in

attacking and solving challenging problems in many

scientific areas, including the general area of experi-

mental and computational dynamics of systems with

nonlinear characteristics (e.g., [1–4]).
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The main objective of the present work is to demon-

strate the advantages of applying appropriate hybrid

methodologies in order to study the dynamics of com-

plex mechanical structures in an accurate and effective

way. Development and application of such methodolo-

gies is based on a drastic reduction in the dimensions

of the systems examined and is a necessary step in or-

der to explain and improve the dynamic behavior of

contemporary mechanical systems. More specifically,

apart from increasing the computational and experi-

mental efficiency and speed, the reduction of the sys-

tem order makes amenable the application of several

numerical or experimental techniques for determining

the dynamic response of complex systems, which are

applicable and efficient for linear or low order nonlin-

ear dynamical systems [3–8].

In particular, two substructuring methods are ap-

plied, both of which start by splitting the original sys-

tem into a number of components. Then, depending on

the nature of the system, some of its components are

modeled numerically, while the remaining components

are modeled experimentally. The first methodology ap-

plied has its roots in a frequency domain formulation.

Such approaches are particularly suitable for systems

possessing linear characteristics, which are measured

experimentally, or for systems involving components

with frequency dependent properties [8–13]. However,

these methods are usually limited by the fact that they

are applicable to systems with linear and time invariant

characteristics only. Therefore, when the system non-

linearities are activated and affect the response beyond

a certain level, their predictions become inaccurate. For

this reason, a second hybrid method is applied here,

which is based on a classical component mode synthe-

sis method and is founded on theoretical developments

in the time domain [12–15].

The effectiveness and accuracy of the methods ap-

plied is first demonstrated by presenting numerical re-

sults obtained for two complex mechanical structures.

They both result in a drastic reduction of the dimensions

and help the efforts towards a systematic and compre-

hensive study of the dynamics exhibited by large or-

der linear mechanical models [4, 12]. Then, the same

methodologies are applied in an actual hybrid context.

Specifically, the dynamic response of a frame structure,

designed to exhibit a relatively large modal density and

to involve nonlinear elements, is investigated. The com-

posite structure is split into a frame substructure, which

possesses linear properties determined through appli-

cation of a finite element analysis, plus four supporting

substructures, whose characteristics are strongly non-

linear and are measured experimentally.

The organization of this paper is as follows. First, the

basic theoretical ingredients of the two hybrid method-

ologies applied are briefly presented in the following

section. In the third section, these methodologies are

applied to involved finite element mechanical models

of a geared rotor-bearing system and a ground vehi-

cle. The numerical results presented establish the accu-

racy and effectiveness of both methodologies for linear

systems by comparison of results obtained for the re-

duced and the corresponding complete dynamical mod-

els. Moreover, emphasis is placed on examining the

residual flexibility effects. In the fourth section, these

methods are applied in order to experimentally study

the dynamics of a frame structure, whose frame sub-

structure is linear but exhibits high modal density, while

its four supporting substructures are characterized by

nonlinear behavior. A summary of the highlights is pre-

sented in the final section.

2. Methods of analysis

Current industrial design requirements lead frequently

to the examination of large scale mechanical models

[4, 12]. Typically, the equations of motion of these

models are first set up by applying classical finite

element techniques. As the order of these models

increases, the existing numerical and experimental

methodologies for a systematic determination of their

dynamic response become inefficient to apply. The situ-

ation becomes worse when the system includes compo-

nents with nonlinear action. Therefore, there is a need

for the development, improvement and application of

new suitable methodologies for investigating dynamics

of large scale mechanical models in a systematic and

efficient way. Traditionally, in the area of structural dy-

namics this is done by first employing methodologies

that reduce the dimensions of the original system, by

applying methods either in the frequency domain [8–

11] or in the time domain [12–15]. Next, the basic phi-

losophy of two such representative reduction methods

is presented briefly in the following two subsections.

2.1. A frequency domain reduction method

The class of reduction methods with analytical foun-

dation lying on a frequency domain approach is based
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on an accurate (analytical or experimental) evaluation

of the matrix with the Frequency Response Functions

(FRFs) of the system. For a system with linear prop-

erties and general damping, this matrix appears in the

form

H (ω) = ( − ω2 M + iωC + K
)−1

.

However, when evaluation of elements of this ma-

trix is required at several frequency values, the above

definition demands extensive computations, which for

large order systems are prohibitive. These calculations

can be performed in an alternative and equivalent way,

by first solving the complex eigenvalue problem

(λ2
r M + λr C + K )x̂ r = 0,

which is also associated with extensive computations

[12]. On the other hand, the assumption that the struc-

tural component examined is classically damped is in

most cases satisfactory and appealing. In such cases,

the FRF matrix can be obtained in the form

H (ω) =
N∑

r=1

ϕ
r
ϕT

r

ω2
r − ω2 + 2iωωrζr

,

where the quantities ωr and ϕ
r

represent the solution

of the much easier to solve real eigenproblem

(
K − ω2

r M
)
ϕ

r
= 0,

while ζr is the damping ratio of the r - th mode. More-

over, for cases with frequency content ω � ωk+1, this

matrix can be represented by the simpler form

H (ω) =
k∑

r=1

ϕ
r
ϕT

r

ω2
r − ω2 + 2iωωrζr

+ HR(ω), (1)

where the high frequency residue appears in the form

HR(ω) =
N∑

r=k+1

ϕ
r
ϕT

r

ω2
r − ω2 + 2iωωrζr

≈ HR1 + iωHR2 + ω2 HR3 (2)

and can be computed conveniently [12, 16].

Once the FRF matrix of a linear system is known, its

response can be determined in the frequency domain

by the well-known formula

x(ω) = H (ω) f (ω). (3)

In particular, if a system is composed of component

A and component B, the response of component A is

first expressed in the form(
x A

i

x A
b

)
=

[
H A

ii H A
ib

H A
bi H A

bb

] (
f A

i

f A
b

)
,

where the vectors x A
i and x A

b include the internal and the

boundary degrees of freedom of component A, respec-

tively. In addition, the components f A
i

and f A
b

of the

forcing vector have an analogous meaning. If a similar

partitioning is also employed for the degrees of free-

dom of component B, after imposing the appropriate

compatibility conditions for the displacements and the

forces at the common nodes, the response of the com-

posite system is determined from Equation (3), with

x =

⎛⎜⎝ x A
i

x B
i

xb

⎞⎟⎠ , xb = x A
b = x B

b , f =

⎛⎜⎝ f A
i

f B
i

f A
b

+ f B
b

⎞⎟⎠ ,

and composite FRF matrix

H =

⎡⎢⎣ H A
ii H A

ib 0

H A
bi H A

bb 0

0 0 H B
ii

⎤⎥⎦ −

⎡⎢⎣ H A
ib

H A
bb

−H B
ib

⎤⎥⎦

× [
H A

bb + H B
bb

]−1

⎡⎢⎣ H A
ib

H A
bb

−H B
ib

⎤⎥⎦
T

. (4)

When the system examined possesses more than two

components, the above process needs to be repeated

until all components are successively included in the

formulation. Alternatively, it can be generalized so that

the synthesis is performed at one step. Moreover, this

technique is especially useful in hybrid formulations.

For instance, in problems involving fluid-structure in-

teraction (e.g., in acoustics of structures) for some of

the components of the system, Equation (3) may re-

late pressure loads to pressure coordinates [8]. Finally,
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the FRFs for some of the system components may be

determined experimentally. In such cases, special atten-

tion should be devoted to overcoming numerical diffi-

culties associated with the part of Equation (4) that

needs inversion. However, the most important draw-

back of the methodology is that its applicability is lim-

ited to linear systems, possessing equations of motion

with constant coefficients only.

2.2. A time domain reduction method

For simplicity, consider again a mechanical model con-

sisting of subsystems A and B. Moreover, let the equa-

tions of motion for subsystem A be derived by any

appropriate method and put in the following classical

form

M̂Aẍ A + ĈA ẋ A + K̂ Ax A = f̂
A
(t), (5)

where M̂A, ĈA and K̂ A are the mass, damping and stiff-

ness matrix of the subsystem, respectively, while the

vector f
A
(t) represents the external forcing. For a typ-

ical model, the order of these equations may be quite

large. However, for a given level of forcing frequencies

it is possible to reduce significantly the number of de-

grees of freedom, without sacrificing the accuracy in

the numerical results, by applying standard component

mode synthesis methods [4–6, 12]. In particular, this

can be achieved through a coordinate transformation

with form

x A = �Aq
A
. (6)

The transformation matrix �A includes an appro-

priately chosen set of normal modes, depending on the

accuracy required in the response frequency range ex-

amined, plus the static correction modes of component

A. For large order systems, even the calculation of the

columns of this matrix is quite challenging and special

methods need to be applied. However, by employing

this transformation the original set of Equations (5) can

be replaced by a considerably smaller set of equations,

expressed in terms of the new generalized coordinates

q
A
. More specifically, application of the Ritz transfor-

mation (6) into the original set of Equations (5) yields

the smaller set

MAq̈
A

+ CAq̇
A

+ K Aq
A

= f
A
(t), (7)

where

MA = �T
A M̂A�A, CA = �T

A ĈA�A,

K A = �T
A K̂ A�A and f

A
= �T

A f̂
A
.

In addition, the vector of unknowns can be split in

the form

q
A

= (
pT

A
xT

b

)T
,

where the vector p
A

includes coordinates related to the

response of internal degrees of freedom of component

A, while the vector xb includes the boundary points of

component A.

Next, similar sets of equations of motion are ob-

tained for substructure B. Namely, following the same

steps as those for component A, the equations of motion

are first set up in the form

MBq̈
B

+ CBq̇
B

+ K Bq
B

= f
B

(t), (8)

with

q
B

= (
pT

B
xT

b )T .

Then, a proper combination of Equations (7) and

(8) leads to the equations of motion of the composite

system in the classical form

Mq̈ + Cq̇ + K q = f (t), (9)

with

q = (
pT

A
pT

B
xT

b

)T
.

For instance, the stiffness matrix of the composite

system can be obtained by considering the potential

energy of the system and its components in the form

V = VA+VB ⇒ 1

2
qT K q = 1

2
qT

A
K Aq

A
+1

2
qT

B
K Bq

B
.

Likewise, the mass matrix of the composite system

is obtained by considering the corresponding kinetic

energies, while the forcing vector is determined by con-

sidering the virtual work [4, 12]. Finally, the contribu-

tion of more components is added in a similar manner.
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In closing this subsection, it is worth pointing out

that this method presents certain advantages over the al-

ternative frequency domain method outlined in the pre-

vious subsection. Specifically, the time domain method

is applicable even when the system examined in-

volves general damping properties or nonlinear com-

ponents. In such cases, the corresponding degrees of

freedom are included in the set of boundary degrees

of freedom and the equations of motion are put in the

form

Mq̈ + Cq̇ + K q + p(xb, ẋ b) = f (t). (10)

Typically, the number of equations of motion of the

reduced system is substantially smaller than the dimen-

sion of the original system. Therefore, the reduction

of the model order makes possible the application of

methodologies, which are suitable for low order dy-

namical systems [3].

3. Numerical results

In order to assess their accuracy and effectiveness for

large order systems, the methodologies presented in

the previous section were first applied to two example

mechanical models. The results obtained are included

in the following two subsections.

3.1. Application to a gear-pair system

The first example mechanical system is shown in Fig. 1.

This model represents a gear-pair system supported

on deformable bearings. Component A consists of the

driving gear and its bearing subsystem, while compo-

nent B consists of the driven gear and its bearing subsys-

tem. In both cases, the gear is geometrically discretized

by solid (hexahedral) finite elements, while the bearing

is represented by an equivalent spring-damper system

with linear characteristics. Finally, the engagement ac-

tion of the two gears is modeled through the use of

appropriate rigid body elements [17]. As a result, the

equations of motion of the dynamical system examined

are linear and can eventually be put in the matrix form

(9). The final model possesses 143,103 degrees of free-

dom (32,616 associated with the driving and 110,487

with the driven gear subsystem). Then, a reduced model

was selected, so that the system response is accurate for

Fig. 1 Finite element model of a gear-pair system

frequencies up to about 10,000 Hz. This led to a new

model with only 40 degrees of freedom. In particular,

besides the normal modes of the two gears (6 for the

small and 30 for the large gear), the set of boundary

degrees of freedom includes two degrees of freedom at

the support of the bearings and two degrees of freedom

at the gear engagement position.

The first set of numerical results is shown in Fig 2.

In particular, Fig. 2a presents the drive point inertance,

obtained for an applied load and a measured accel-

eration component at a point along the line of action

of the two gears. First, the FRF-based substructuring

method described in subsection 2.1 was applied. Each

of the two substructures was assumed to possess classi-

cal damping. In particular, a typical value of 0.01 was

selected as the damping ratio for each linear mode.

The continuous line corresponds to the exact values,

obtained by running the complete model. Likewise,

the dashed line was obtained by applying Equation

(4) without including the static correction. Finally, the

dotted line corresponds to results obtained by apply-

ing Equation (4) after including the static correction.

Direct comparison indicates that the results obtained

after including the static correction terms virtually co-

incide with the results of the original model for fre-

quencies up to 3,500 Hz. Similar conclusions can also

be drawn by inspecting Fig. 2b, which presents simi-

lar results for the transfer inertance function obtained

for a load applied at a location along the line of ac-

tion of the two gears and an acceleration component
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Fig. 2 Results obtained for the geared system by applying the
FRF-based substructuring method and classical damping: (a)
drive point inertance function; (b) transfer inertance function

measured at the bearing of the driven gear. More-

over, here it is more obvious that outside the prespeci-

fied frequency range the deviation between the predic-

tions of the reduced and the complete model becomes

more noticeable. These results demonstrate the accu-

racy of the method applied. The method becomes even

more attractive when taking into account the consid-

erable reduction in the amount of time required in the

computations.

Next, Table 1 shows the four lowest natural frequen-

cies obtained for the system examined, which are the

frequencies appearing in the diagrams of Fig. 2. Specif-

ically, the second column includes the natural frequen-

cies of the complete model, the third column indicates

the natural frequencies obtained for the model result-

ing by applying the FRF-based substructuring (FBS)

method, while the last column includes similar results

obtained by the component mode synthesis (CMS)

method. Obviously, the results confirm the accuracy

in computing the values of the natural frequencies of

Table 1 Natural frequencies of the gear-pair
model examined.

ωr (Hz) Complete Model FBS CMS

1 662 662 662

2 754 754 754

3 1356 1358 1357

4 1873 1873 1873

the composite system within the frequency range of

interest.

In the sequel, the calculations were repeated for the

same model and the same points by applying the com-

ponent mode synthesis method described in subsection

2.2, instead. Moreover, in this case, each substruc-

ture was assumed to possess Rayleigh damping, with

a damping ratio of 0.01 in the first and the fifth lin-

ear mode [12]. The results obtained are presented in

Figs. 3a and 3b and the conclusions are quite simi-

lar to those drawn by inspecting Figs. 2a and 2b, re-

spectively. In addition, the response amplitudes are

different close to resonances, especially at the higher

frequency modes, where the Rayleigh method assigns

higher damping ratios.

3.2. Application to a ground vehicle

The same methodologies were subsequently applied

to an involved mechanical model of a ground vehicle.

This model is shown in Fig. 4 and includes the body-

in-white structural component, together with the front

and the rear suspension subsystems plus the wheels.

The equations of motion were first set up and put in

matrix form (9) by applying the finite element method

[17]. Here, the attention is focused on ride vehicle be-

havior and the external excitation is assumed to result

from road irregularities. The geometry of the vehicle

structure is discretized by (rectangular and triangular)

shell elements mainly and the total number of degrees

of freedom of the resulting model is about 524,000.

The main objective here is to perform a direct com-

parison in the accuracy of the two reduction method-

ologies considered. For this reason, the equations of

motion of the vehicle model were first linearized around

its static equilibrium position. At the beginning, the cal-

culations were performed by applying the frequency

domain method described in subsection 2.1. The same

calculations were then repeated by applying the time

domain method outlined in Section 2.2. In both cases,
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Fig. 3 Results obtained for
the geared system by
applying the component
mode synthesis method and
Rayleigh damping: (a) drive
point inertance function; (b)
transfer inertance function

Fig. 4 Finite element
model of a ground vehicle:
body plus front and rear
suspensions
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each of the three substructures shown in Fig. 4 was

assumed to possess classical damping, with a damp-

ing ratio of 0.01 in each linear mode. Moreover, the

reduced model was selected so that the system re-

sponse is sufficiently accurate for frequencies up to

at least 100 Hz. This necessitated the inclusion of 274

degrees of freedom associated with the correspond-

ing normal modes of the structural components. These

were added to the set of boundary degrees of free-

dom, including 26 degrees of freedom at the front

suspension and 16 degrees of freedom at the rear

suspension.

First, a comparison of results obtained from the

complete and the reduced models was performed once

again, just like for the gear-pair system examined be-

fore. Then, a direct comparison was performed between

results obtained by the frequency domain and the time

domain method for the same mechanical model. For

instance, Figs. 5a and 5b include results obtained by

determining the drive point and the transfer inertance

function for an excitation point at the front left wheel

and measurement point at the same position or at a point

near the driver’s position, respectively. The continuous

lines in these figures were determined by applying the

CMS method, while the dashed lines were obtained by

applying the FBS method. Both cases were run with the

reduced model and after including the contribution of

the static correction. Direct comparison indicates that

the results obtained by the two reduction methodolo-

gies virtually coincide within the specified frequency

range of interest. Some small deviations are justified

partly by the different way of including the residual

flexibility effects and partly by the loss of accuracy as-

sociated with the matrix inversion required in Equation

(4), when applying the FBS method.

4. Experimental results

The numerical results presented in the previous sec-

tion provided sufficient confidence for the accuracy

and performance of the dimension reduction method-

ologies presented in the second section, at least when

they are applied to complex mechanical models with

linear properties. In the sequel, results obtained by the

same methodologies are presented, determined within

a hybrid formulation framework, where some compo-

nents of a composite system are modeled numerically

while the important properties of the others are mea-

sured experimentally. For this purpose, these method-

ologies were initially applied to simple beam structures,

since a direct comparison with analytical results was

possible in that case [18]. Then, a more involved ex-

perimental device was selected and set up, simulating

the response of a ground vehicle. More specifically,

the selected frame structure comprises a frame sub-

structure with predominantly linear response and high

modal density plus four supporting substructures with

strongly nonlinear action. Here, results referring to the

second experimental device only will be presented. At

the beginning, a description of the experimental set up

and the way of measuring its parameters is presented in

the following subsection. Finally, experimental results

are presented for the response of the model tested, by

first employing the dimension reduction methodologies

of Section 2.

4.1. Experimental set up and parameter

identification

First, Fig. 6 shows a picture with an overview of the

experimental set up. In particular, the mechanical sys-

tem tested consists of a frame substructure, simulating

the frame of a vehicle, supported on four identical sub-

structures. These supporting substructures consist of

a lower set of discrete spring and damper units con-

nected to a concentrated (lighter color) mass, simulat-

ing the wheel subsystems, as well as of an upper set

of a discrete spring and damper units connected to the

frame and simulating the action of the vehicle suspen-

sion. In the last figure, the most important instruments

used for performing the experimental measurements

are also shown. In brief, the main experimental instru-

ments used include the following:

� accelerometers Piezobeam 8632C10, 8690C10,

8634B5 and K-beam 8312A2 from Kistler Instru-

mente AG,� load cell type 9712B250 from Kistler Instrumente

AG,� impulse force hammer type 9724A5000 from Kistler

Instrumente AG,� electromagnetic shaker ET-140 and amplifier PA-141

from Labworks Instrument,� analog to digital converter cards, PCI-4551, PCI-

4552 Dynamic signal acquisition and PCI-6552 E-

series from National Instruments and
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Fig. 5 Comparison of
results obtained for the
vehicle model by the
FRF-based and the CMS
substructuring method: (a)
drive point inertance
function; (b) transfer
inertance function

� data acquisition and signal processing software Lab-

view 7.0.

Next, Fig. 7 presents more details and the geomet-

rical dimensions of the frame subsystem alone. The

frame substructure is made of steel with Young’s mod-

ulus E = 2.1 × 1011 N/m2, Poisson’s ratio v = 0.3

and density ρ = 7850 kg/m3. Moreover, the measure-

ment points indicated by 1–4 correspond to connection

points between the frame and its supporting structures,

while the other measurement points shown coincide

with characteristic points of the frame. Finally, point E

denotes the point where the electromagnetic shaker is

applied.

First, all the necessary elements of the FRF matrix

required for determining the response of the frame sub-

structure were determined by imposing impulsive load-

ing. The characteristics of this loading were selected

appropriately, so that it causes sufficient excitation to

all the linear modes of the frame with natural frequen-

cies up to about 300 Hz. On the other hand, the sampling

frequency was chosen as 512 Hz, so that harmonic com-

ponents of the signals measured with frequencies below

250 Hz are picked up accurately. Moreover, the dura-

tion of each measurement was longer than about 30 sec,

so that the system comes to a complete stop practically

after imposing the excitation. The experimental data
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Fig. 6 Experimental set up
and instrumentation of the
structure tested

Fig. 7 Dimensions and measurement points of the frame substructure
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Table 2 Natural
frequencies of the frame
substructure

ωr [Hz] Peak-Amplitude MODE-ID RFPM FEM Error (%)

1 23.81 23.72 23.71 23.25 2.00

2 41.97 41.64 41.57 41.35 0.53

3 42.37 42.14 42.15 42.11 0.10

4 47.81 47.89 47.88 48.90 2.08

5 58.11 58.17 58.16 59.01 1.43

6 68.70 68.69 68.69 67.53 1.71

7 69.18 69.14 69.14 69.95 1.15

8 79.14 79.04 79.39 81.78 2.91

9 85.65 86.25 86.25 86.18 0.08

10 100.02 100.37 100.36 102.38 1.96

11 102.58 102.42 102.40 106.28 3.65

12 110.37 110.29 110.28 109.81 0.44

13 115.07 114.90 114.89 114.81 0.07

14 123.83 123.54 123.50 124.11 0.48

15 127.57 127.40 127.40 129.54 1.65

16 131.80 132.28 132.28 134.67 1.78

17 134.51 134.79 134.76 136.52 1.29

18 138.11 138.82 138.77 142.39 2.54

19 147.82 148.27 148.27 149.63 0.90

20 164.51 164.15 164.15 162.37 1.10

collected were then passed through an antialising filter

in order to avoid frequency overlapping and cut para-

sitic frequencies in the measured signal due to mechan-

ical or electronic noise. For instance, Fig. 8 shows the

magnitude of two typical elements of the FRF matrix

before (continuous line) and after (dashed line) appli-

Table 3 Damping ratios of the frame substructure

ζr Peak-Amplitude MODE-ID RFPM

1 0.003512 0.003523 0.003147

2 0.006445 0.003871 0.004161

3 0.003132 0.002949 0.002813

4 0.002612 0.002635 0.002315

5 0.003755 0.002878 0.002604

6 0.003459 0.003364 0.003008

7 0.003989 0.003061 0.002712

8 0.006488 0.006851 0.006790

9 0.005522 0.008198 0.006817

10 0.002859 0.002033 0.001807

11 0.002492 0.001869 0.001834

12 0.002408 0.001617 0.001446

13 0.002225 0.001692 0.001460

14 0.002011 0.001403 0.001289

15 0.001185 0.001243 0.001108

16 0.002407 0.001711 0.001526

17 0.003618 0.002906 0.002575

18 0.002460 0.001535 0.001328

19 0.002388 0.001622 0.001430

20 0.002098 0.001407 0.001278

cation of the Welsh’s smoothing method in conjunction

with an appropriate Hanning’s window [18]. In partic-

ular, Fig. 8a depicts the diagonal element of the FRF

matrix corresponding to measuring the vertical accel-

eration at point 5 (as shown in Fig. 7) due to a vertical

excitation applied at the same point. Likewise, Fig. 8b

shows the non-diagonal element corresponding to ver-

tical excitation applied at the same point but measuring

the vertical acceleration at point 3 of the frame.

Based on the measured FRF functions, the natural

frequencies and the damping ratios of the frame sub-

structure were first estimated, by applying the classical

method of peak amplitude [9, 12]. As an outcome of

this, the second column of Table 2 presents the val-

ues of the lowest 20 natural frequencies determined,

while the corresponding damping ratios are included

in the second column of Table 3. Among other things,

the results verify the high modal density of the frame

substructure.

Using the results obtained by the approximate

method of maximum magnitude of the transfer func-

tions as a basis, more involved and accurate methods

were applied subsequently. First, a method developed

by Beck was applied [19]. As a result, the third col-

umn of Table 2 presents the lowest 20 natural frequen-

cies, while the third column of Table 3 includes the

corresponding damping ratios, evaluated after appli-

cation of Beck’s method. On the other hand, another
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Fig. 8 Results from an
experimental determination
of typical elements of the
FRF matrix for the frame
substructure before
(continuous line) and after
(dashed line) smoothing: (a)
point inertance function; (b)
transfer inertance function

commonly applied method, the “Rational Fraction

Polynomial Method” (RFPM) does not require ini-

tial estimation of the modal parameters. This method

has certain attractive merits, especially for systems

with high modal density, like the system under con-

sideration. Briefly, in order to achieve better numeri-

cal accuracy, the whole frequency range is first split

into smaller intervals and the modal parameters are

then determined over these smaller frequency ranges

[20]. In particular, application of RFPM to the sys-

tem examined led to values of the lowest 20 natu-

ral frequencies and the corresponding damping ratios,

which are put in the fourth columns of Tables 2 and 3,

respectively.

Next, the experimental results obtained for the frame

substructure were also compared with results obtained

by modeling the same structure with finite elements.

Specifically, the frame was divided into a number of

shell (quadrilateral) and solid (mostly hexahedral and

a few pentahedral) finite elements. The resulting model

possesses about 45 thousand degrees of freedom. First,

the values of the lowest 20 natural frequencies obtained

by the finite element analysis are included in the fifth

column of Table 2 presents. Moreover, the last col-

umn of the same table compares these frequencies with

the corresponding frequencies obtained from the ex-

perimental data after application of RFPM. Obviously,

the errors determined are sufiiciently low. Finally, the
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results of Fig. 9 are presented in an effort to further ver-

ify and illustrate the accuracy of the methods applied.

For instance, the dashed line of Fig. 9a represents the

magnitude of the same element of the FRF matrix as

that shown in Fig. 8a, obtained from the finite element

model as a function of the forcing frequency. On the

other hand, the continuous line represents the magni-

tude of the same quantity, as was determined experi-

mentally. Likewise, Fig. 9b compares the time history

of the vertical acceleration signals measured at point

3, due to an impulsive excitation imposed vertically at

point 5. In particular, the continuous line represents the

signal that was determined experimentally, while the

dashed line represents the corresponding signal that

was reconstructed analytically, after improving the ex-

perimental predictions through application of Beck’s

method.

From the experimental data collected, it was con-

firmed that the action of the frame substructure is pre-

dominantly linear. On the other hand, tests performed

on trying to identify the parameters of the four sup-

porting subsystems revealed that they exhibit strongly

nonlinear characteristics. To investigate this further, the

elements of the supporting units were disassembled and

tested separately. First, Fig. 10a presents graphically

the necessary details of the experimental device that

was set up for measuring the stiffness and damping

properties of the supports, while Fig. 10b shows the

equivalent mechanical model.

The experimental process was applied separately for

both the lower and the upper spring and damper units

of the supporting substructures and can be briefly de-

scribed as follows. First, the system shown in Fig. 10 is

excited by harmonic forcing through the electromag-

netic shaker up until it reaches a periodic steady state

response. When this happens, both the history of the ac-

celeration and the forcing signals are recorded at each

forcing frequency. Some characteristic results obtained

in this manner are presented in the following figures.

Next, Fig. 11a presents the transmissibility func-

tion of the system tested, obtained experimentally for

three different forcing levels. Specifically, this function

is defined as the ratio of the root mean square value

of the acceleration to the root mean square value of

the forcing signal measured at each forcing frequency.

The continuous, dashed and dotted lines correspond

to the smallest, intermediate and largest forcing am-

plitude, respectively. Clearly, the deviations observed

between the forcing levels indicate that the system

examined possesses nonlinear properties. Moreover,

neither the applied forcing is harmonic, especially

within the frequency range below ω = 10 Hz. To illus-

trate this, Fig. 11b shows two periods of the actual exci-

tation force applied for the same three excitation levels

in obtaining the results of Fig. 11a, which were recorder

at a fundamental forcing frequency of ω = 4 Hz.

In particular, several forms of the restoring and

damping forces, say fr and fd , respectively, were tried

for modeling the action of the supports and compared

with the experimental results. First, the classic linear

dependence of the restoring force on the displacement

and of the damping forces on the velocity of the support

unit was assumed. However, critical comparison with

the experimental results demonstrated that the outcome

was unacceptable in terms of accuracy. After several

tries, it was eventually found that the best form of the

restoring forces is the one were they remain virtually

in a linear relation with the extension of the spring,

namely

fr (x) = kx, (11)

while the damping force was best approximated by the

following formula

fd (ẋ) = c1 ẋ + c2 ẋ

c3 + |ẋ | . (12)

As usual, the linear term in the last expression is re-

lated to internal friction at the support, while the non-

linear part is related to the existence and activation of

dry friction. More specifically, in the limit c3 → 0, the

second term in the right hand side of Equation (12)

represents energy dissipation action corresponding to

dry friction. On the other side, in the limit c3 → ∞,

this term represents classical viscous action and can

actually be absorbed in the first term.

The value of the constants appearing in the as-

sumed forms of the restoring and damping forces of

the supports, like the coefficients k, c1, c2 and c3 in

Equations (11) and (12), was determined by applying

appropriate identification methodologies [21, 22]. For

instance, Fig. 12 presents optimum values obtained

for the coefficients k and c1 of the linear terms in

the restoring and damping forces. In all cases, two

sets of results are presented, obtained for two dif-

ferent forcing levels, corresponding to the intermedi-

ate and higher forcing used in obtaining the results
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Fig. 9 Comparison of
experimentally measured
(continuous line) and
numerically determined
(dashed line) results: (a) for
the magnitude of a typical
element of the FRF matrix
and (b) for the acceleration
signal recorded at point 5 of
the frame substructure

Fig. 10 (a) Experimental
set up for measuring the
support stiffness and
damping parameters. (b)
Equivalent mechanical
model
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Fig. 11 (a) Transmissibility
function of the support
system, for three different
forcing levels. (b) History of
the external force applied
with a fundamental
harmonic frequency
ω = 4 Hz

shown in Fig. 11. In particular, Fig. 12a presents the

results obtained for k, while Fig. 12b presents the cor-

responding values for c1, by assuming linear action of

both the spring and the damper. On the other hand,

Fig. 12c presents similar results for the damping co-

efficient c1, assuming that the restoring and damping

forces of the support are expressed by Equations (11)

and (12), instead. Obviously, in addition to the nonlin-

earity already included in the damping force expressed

by relation (12), the value of the constant coeffi-

cients determined depend to a smaller or larger ex-

tend on both the forcing frequency and the forcing

amplitude.

The experimental results presented in the last two

figures were obtained for the restoring and damping

forces of the upper supports. However, similar behav-

ior was also encountered when examining the response

as well as the stiffness and damping properties of the

lower part of the supports. Based on the optimum val-

ues determined for the constant coefficients and the

assumed forms of the restoring and damping forces, it

was possible to obtain the results shown in Figs. 13a
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Fig. 12 Stiffness and
damping parameters of the
upper support units versus
forcing frequency, at two
forcing levels: (a) stiffness
coefficient k1 and (b)
damping coefficient c1, for
linear restoring and
damping forces; (c)
damping coefficient c1 for
linear restoring force and
nonlinear damping force
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Fig. 13 (a) Restoring force
versus displacement and (b)
damping force versus
velocity, at the upper
support units

and 13b, respectively. First, the dashed lines in these

figures correspond to results obtained by assuming the

classic linear dependence of the restoring force on the

displacement and of the damping forces on the velocity

of the support unit before integrating the equation of

motion corresponding to the single degree of freedom

oscillator shown in Fig. 10b. On the other hand, the dot-

ted lines represent similar results, obtained by employ-

ing a mechanical model with restoring and damping

forces expressed by Equations (11) and (12). Finally,

the continuous line represents results obtained by mea-

suring experimentally the signals of x, ẋ and employing

expressions (11) and (12), again, in order to evaluate

the forces fr and fd . The comparison of the last two sets

of results indicates that sufficient accuracy levels have

been achieved by the combined experimental and iden-

tification process applied in determining the restoring

and damping forces of the supports.

In order to assess in a better way the accuracy of

the experimental measurements and the identification

process applied in the response predicted, Fig. 14a com-

pares the transmissibility function obtained for one (the

intermediate) of the forcing amplitudes employed in

obtaining results presented in Fig. 11. First, the results
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Fig. 14 Comparison of: (a)
the acceleration
transmissibility function and
(b) the acceleration histories
obtained experimentally
(continuous lines) and
numerically (dotted lines for
nonlinear and dashed lines
for the linear supports), at a
fundamental forcing
frequency of ω = 4 Hz

were obtained by employing the mechanical model

shown in Fig. 10b and properties determined exper-

imentally. In particular, numerical results obtained by

considering the corresponding linearized support mod-

els are represented by the dashed line, while the re-

sults obtained by employing relations (11) and (12)

are indicated by the dotted line. Finally, the continu-

ous line represents results obtained by direct exper-

imental measurement. On the other hand, Fig. 14b

compares the acceleration histories obtained experi-

mentally and numerically at a forcing frequency of

ω = 4 Hz. The meaning of these lines is the same

as in Fig. 14a. Direct comparison demonstrates that

the results obtained experimentally (continuous lines)

are sufficiently close to those obtained from the nu-

merical model, when using relations (11) and (12)

in modeling the restoring and damping forces of the

supports and experimentally selected optimum val-

ues for the corresponding parameter values (dotted

lines). On the other hand, there is a significant devi-

ation between these results and those predicted by the

corresponding model where the support units are as-

sumed to exhibit linear restoring and damping forces

(dashed lines).
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In closing this subsection it is noted that similar

levels of agreement were also observed when using

other types of excitation, like forcing with periodic or

stochastic time dependence. In addition, from all the

information presented so far it becomes clear that the

complete mechanical system examined in the present

section consists of a frame substructure, which can con-

veniently be modeled by linear characteristics, plus the

four supporting substructures, which are characterized

by strongly nonlinear action.

4.2. Hybrid modeling with experimental and

numerical results

This subsection presents results obtained from hybrid

formulations, involving a combination of the dimen-

sion reduction methodologies presented in section 2

with experimental results determined for the compo-

nents of the structural system tested, as explained in

the previous subsection. More specifically, the frame

substructure of the composite system tested (shown in

Fig. 6) was modeled numerically by discretizing it geo-

metrically with the finite element method. In addition,

the resulting finite element model was complemented

by the damping ratios measured experimentally for the

frame substructure. On the other hand, the four support-

ing substructures were modeled by using the optimum

stiffness and damping parameters determined exper-

imentally. In all cases examined, the emphasis was

placed on investigating the accuracy of the method-

ologies applied and in exploring ways to circumvent

their shortcomings. Moreover, the dimension of the re-

duced hybrid models was selected so that their dynamic

response is sufficiently accurate for frequencies up to

at least 100 Hz.

In many respects, the frequency domain approaches

are more convenient to apply than the corresponding

time domain methodologies, when adequate experi-

mental information on modal parameters is available

[7–11]. For this reason, composite hybrid models of

the structure tested were first developed by combining

the frequency domain method presented in Section 2.1

with experimental procedures and data, as explained in

the previous subsection. First, Fig. 15 presents results

obtained by utilizing experimental data, which were

determined for both the frame and the supporting sub-

structures, in conjunction with the methodology pre-

sented in Section 2.1. Application of this methodology

requires the utilization of linear models for both the

frame and the supporting substructures. Therefore, the

corresponding linearized versions of the restoring and

damping forces of all the supporting elements were

selected. Moreover, the values of the constant stiffness

and damping coefficients were selected to coincide with

the corresponding average values determined during

the experimental measurements. On the other hand, the

transfer functions of the frame substructure were ob-

tained either directly from experimental measurements

or numerically, through appropriate manipulation of

the equations of motion resulting for the correspond-

ing finite element model.

More specifically, Fig. 15 presents typical results

obtained for a diagonal and a non-diagonal element of

the FRF function matrix of the composite structure.

The FRFs shown are the same with those presented

in Fig. 8, which were determined for the frame sub-

structure only. First, an effort was made to perform

a comparison between the accuracy obtained by the

numerically and the experimentally obtained FRFs for

the frame substructure. For this purpose, the continuous

lines of Fig. 15 represent results obtained by utilizing

the experimentally determined transfer functions of the

frame substructure, while the dashed lines correspond

to results obtained by utilizing the numerically deter-

mined transfer functions of the frame. In both cases,

classical damping was assumed, with the damping ra-

tios required for each linear mode selected according

to the experimentally determined values. The compar-

ison of the results presented indicates that a sufficient

level of agreement has been achieved within the pres-

elected frequency interval of 0–150 Hz. Moreover, for

frequencies outside this interval significant deviations

start to arise between the experimental and the numer-

ical results.

Although the frequency domain approaches are

more fitted to apply in conjunction with experimen-

tal procedures, they are also associated with serious

drawbacks, due to the fact that they are usually based

on linear formulations. As an immediate consequence

of this, the results obtained depend heavily on the ex-

citation level applied. For instance, Fig. 16 shows the

magnitude of the same FRFs presented in the previ-

ous figure, obtained experimentally for the composite

system by applying two different excitation levels. In

particular, the continuous and dashed lines shown cor-

respond to results obtained for the smaller and the larger

forcing amplitude applied, respectively. Obviously, the

results shown, together with the results presented in
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Fig. 15 FRFs of complete
system determined by the
frequency domain hybrid
method: (a) drive point
inertance function; (b)
transfer inertance function

the previous figure, verify the significant dependence

of the response on the excitation level applied, as ex-

pected due to the presence of the nonlinearities in the

support units.

Since the results obtained through the application of

the frequency domain approach depend heavily on the

excitation level, the experimental procedure was even-

tually combined with the time domain hybrid method-

ology presented in Section 2.2, as explained in the

remaining paragraphs of this section. Again, the frame

substructure was modeled by the finite element method.

However, here the equations of motion were set up in

the time domain and include the fully nonlinear charac-

teristics of the suspension dampers. Namely, the equa-

tions of motion were finally put into a set of equations

like (10). Then, requiring sufficiently accurate response

predictions up to 100 Hz led eventually to a reduced

model possessing 114 degrees of freedom.

First, Fig. 17a presents a typical acceleration

transmissibility function, obtained by experimentally

recording both the response of and the excitation ap-

plied at the composite system, for two different forcing
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Fig. 16 Comparison of
FRFs of the composite
system for two different
forcing levels: (a) drive
point inertance function; (b)
transfer inertance function

levels. The continuous and the dashed lines correspond

to the smaller and the larger forcing amplitude applied,

respectively. This transmissibility function represents

the ratio of the root mean square value of the accel-

eration recorded at point 5 to the root mean square

value of the forcing signal measured at the point E of

its application (see Fig. 7), for each forcing frequency.

Once again, the deviations observed between the two

forcing levels reflect the fact that the system examined

possesses nonlinear properties. Moreover, neither the

applied forcing is actually harmonic, once again, espe-

cially within the lower frequency range examined. To

illustrate this, Fig. 17b shows two periods of the exci-

tation force applied in each of the same two excitation

levels in obtaining the results of Fig. 17a, at a funda-

mental forcing frequency of ω = 3.4 Hz. The deviation

of the forcing signal from the harmonic form becomes

larger as the forcing amplitude increases even further.

Finally, Fig. 18a depicts the results of a compar-

ison performed between experimentally determined

data with results obtained by applying the time domain

hybrid method. In particular, the continuous line repre-

sents results obtained for the transmissibility function

presented in the previous figure, which was obtained
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Fig. 17 (a) Acceleration
transmissibility function of
the complete system, for
two different forcing levels.
(b) History of the external
force applied at point E,
with a fundamental
frequency ω = 3.4 Hz

by direct experimental measurements corresponding to

the larger forcing amplitude. The remaining two curves

depict results obtained by applying the hybrid method,

employing the finite element model for discretizing

the frame substructure and the experimentally deter-

mined properties of the supporting substructures. In

particular, the results obtained by considering the cor-

responding linearized support models are represented

by the dashed line, while the results obtained by em-

ploying relations (11) and (12) are indicated by dots.

The forcing imposed at each frequency was identical

to the corresponding periodic signal recorded during

the experiments at the same frequency. Moreover, due

to both the form of the actually applied forcing sig-

nal and the support nonlinearities, the system steady

state response is in fact periodic instead of harmonic.

Direct comparison indicates that there is a significant

deviation between the results predicted by the hybrid

model when the restoring and damping forces at the

support units are assumed to be linear or nonlinear. On

the other hand, the results obtained experimentally are

now sufficiently close to those obtained from the hybrid
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Fig. 18 Comparison of: (a)
the acceleration
transmissibility function and
(b) the acceleration histories
obtained experimentally
(continuous line) and
numerically (dotted line for
nonlinear and dashed line
for the linear supports), at a
fundamental forcing
frequency of ω = 3.4 Hz
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model, when using relations (11) and (12) in modeling

the restoring and damping forces of the supports. To

explain this agreement and reinforce this observation

even further, Figs. 18b and 18c compare the accelera-

tion histories obtained experimentally and numerically

at point 5 and at the front left wheel, respectively, at

a forcing frequency of ω = 3.4 Hz. The meaning of

the lines is the same as in Fig. 18a. Obviously, the

results obtained by employing the time domain hybrid

method demonstrate a close agreement between the ex-

perimentally measured signals (continuous lines) and

the predictions of the hybrid model (dotted lines), when

using the nonlinear characteristics of the system. On the

other hand, there exist significant differences between

these signals and those obtained by applying the hybrid

method but with linear properties.

5. Summary

Two hybrid methodologies were applied for determin-

ing dynamic response of large scale mechanical sys-

tems with linear or nonlinear characteristics, in a sys-

tematic and efficient way. According to these methods,

some of the system components are modeled numer-

ically, while the parameters of the remaining compo-

nents are measured experimentally. The basic idea was

to start the solution process by first applying a reduc-

tion method in either the frequency or the time domain

in order to eliminate a substantial number of the orig-

inal degrees of freedom, so that the reduced model is

sufficiently accurate up to a prespecified level of forc-

ing frequencies. Besides the direct computational sav-

ings, this reduction in the model dimensions enables

the application of powerful numerical and experimen-

tal procedures, which are applicable for low order sys-

tems only. First, the accuracy and effectiveness of these

methodologies was illustrated and confirmed by pre-

senting numerical results for two mechanical models,

referring to a gear-pair system and a ground vehicle.

Frequency response spectra of several response quan-

tities related to dynamic performance were constructed.

Among other things, it was shown that the residual flex-

ibility effects are necessary for improving the model

accuracy throughout the low frequency range exam-

ined. Then, the same methodologies were applied to a

specially designed structure, involving a linear frame

component with high modal density and four support-

ing substructures with nonlinear characteristics, which

were identified experimentally. At the beginning, the

frequency domain methodology was applied by con-

sidering an appropriate linearized model of the support

units. However, this led to unacceptably large errors in

the response, due to the activation of the support nonlin-

earities. These difficulties were eventually overcome by

applying the time domain hybrid methodology, which

led to sufficiently accurate results.
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