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Abstract We investigate the response of an electrically

actuated clamped circular plate to a primary resonance

excitation of its first axisymmetric mode using an an-

alytical reduced-order model (macromodel). We dis-

cuss the influence of the number of modes retained

in the discretization on the predicted solutions. The

reduced-order model, which is a system of coupled

nonlinear ordinary-differential equations, accounts for

general residual stress and strain hardening and allows

for general material and geometric design variables.

Our reduced-order model is robust up to the pull-in in-

stability and is general enough to be an effective design

tool for capacitive micromachined ultrasonic transduc-

ers.

Keywords CMUT . Electrostatic actuation .

Macromodel . Pull-in . Reduced-order model

1. Introduction

Circular microplates are commonly electrically actu-

ated in capacitive micromachined ultrasonic transduc-

ers (CMUTs) in both air [1–9] and liquids [4, 10–12].

The circular microplate is typically composed of a sin-
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gle silicon crystal or silicon nitride and is suspended

above a heavily doped silicon bulk material. When a

bias voltage is applied between a deposited conductive

material (the top electrode) on the microplate and the

bulk base (the bottom electrode), the attractive electro-

static forces cause the microplate to deflect downward.

If a small alternating voltage is added to the bias volt-

age, then relatively large displacements can be created

when the frequency is near resonance, causing signifi-

cant sound generation [2]. The CMUT converts electri-

cal energy into mechanical energy and vice versa [9],

and a good design requires a large displacement from

the bias voltage for efficient energy coupling between

the circular microplate and the air [1]. The microplate

can also be deflected by ambient pressure if the cav-

ity beneath the microplate is vacuum sealed [8], which

is necessary for immersion applications. Optimum en-

ergy coupling is achieved when the plate is near the

structural instability known as ‘pull-in’ [9], where the

largest stable plate deflection occurs.

Many resonance applications demand better un-

derstanding of CMUT behavior. Many researchers

use FEM simulations [6 8, 9, 13–15], analytical

plate or membrane models [1–3, 5, 10, 16, 17], or

lumped-element models [9, 14] to analyze resonat-

ing circular microstructures. These approaches have

their respective flaws. Most FEM simulations are

computationally inefficient or breakdown near pull-

in of electrostatically actuated structures, and mem-

brane models ignore plate bending, which is needed

for bending-dominated microstructures. Furthermore,

Springer



182 Nonlinear Dyn (2007) 47:181–192

analytical plate or plate-membrane models usually ig-

nore nonlinearities [18], such as those created by large

plate deflections, so linear theories may produce inac-

curate results. Then, a geometrically nonlinear elastic

analysis needs to be utilized [19].

We investigate the response of a clamped circular

plate to a primary resonance excitation of its first mode

through reduced-order modeling, which is atypical for

electrostatically actuated circular plates. We use the

analytical reduced-order model (macromodel) for an

electrostatically actuated clamped circular plate that

was developed in an earlier paper [20]. The reduced-

order model, which is a system of N coupled nonlinear

ordinary-differential equations, accounts for general

residual stress and allows for general material and

geometric design variables. The reduced-order model

uses a full plate model and is robust up to the pull-

in instability. Furthermore, large deformations are al-

lowed because the first geometric nonlinearity of the

von Kármán type is included in the model [21]. Conse-

quently, the reduced-order model captures the complex

multi-energy-domain physics in a relatively simple and

compact model and is general enough to be an effective

design tool.

2. System equations

A schematic of a circular plate under electrostatic ac-

tuation is shown in Fig. 1. The plate has a radius R,

thickness h, and is fully clamped above a parallel elec-

trode with an effective electrode separation distance d.

When a voltage v̂(t̂) is applied between the plate and

electrode at time t̂ , the plate will deflect towards the

fixed electrode. For an isotropic plate with a uniform

residual biaxial plane stress τ̂ , the transverse deflec-

tion ŵ is axisymmetric when the plate is electrically

Fig. 1 A schematic of electric actuation of a clamped circular
plate

actuated from rest. Furthermore, because of the fully

clamped boundary condition, the residual stress does

not cause the initial deflections that occur for other

boundary conditions [6].

An approximate analytical model [21]

w(r, t) =
N∑

m=1

ηm(t)φm(r ) (1)

has been created for the nondimensional axisymmetric

deflection w(r, t) of a clamped circular plate, where t
and r are the nondimensional temporal and spatial vari-

ables, respectively. The shape functions φm(r ) seen in

Equation (1) are the first N axisymmetric modes of the

linear undamped case with zero residual stress and no

electrostatic forcing, and ηm(t) is the generalized coor-

dinate associated with the mth shape function. All ηm(t)
can be determined by solving the following system of

N coupled nonlinear ordinary-differential equations in

matrix form:

M(η)η̈ + 2cM(η)η̇ + N (η)η = P(η) + v2(t)L, (2)

where the matrices M(η) and N (η) and the vector P(η)

are nonlinear functions of η(t) = {η1(t), η2(t), . . . ,

ηN (t)}, L is a constant vector, c is a nondimensional

damping parameter, and v(t) is the nondimensional po-

tential difference between the ground and the electrode

on the plate. The matrices M and N and the vectors P
and L are defined in Appendix A.

The N × N matrices M and N and N -length vec-

tor P are functions of a nondimensional residual stress

τ , Poisson’s ratio ν, the number of modes N , an ax-

isymmetric downward pressure difference F(r, t) on

the plate, and a nondimensional parameter β defined

as

β = 12

(
d

h

)2

(1 − ν2).

Once all ηm(t) are determined by solving the nonlinear

matrix equation (2), the plate deflection w(r, t) is given

approximately by Equation (1).
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3. Primary resonance of the first mode

We investigate the response of a clamped circular plate

to a primary resonance excitation of its first mode.

Hence, we let the nondimensional voltage v(t) be

v(t) = χ0 + χ3 cos(ωft), (3a)

where the forcing frequency ωf is defined as

ωf = ω1 + σ, (3b)

and the detuning parameter σ represents how far the

forcing frequency is from the first natural frequency

ω1 of the plate around its deformed equilibrium state.

Physically, the parametersχ0 andχ3 are associated with

the DC and AC voltage components, respectively. The

nondimensional DC voltage χ0 causes the plate to de-

form towards the fixed electrode, and the first frequency

ω1 is then determined for the deflected equilibrium.

Following the method of multiple scales (MMS)

[22, 23], we seek a third-order approximate solution

of Equation (2) in the form

η(t ; ε) = η0 + εη1(T0, T1, T2) + ε2η2(T0, T1, T2)

+ ε3η3(T0, T1, T2) + O(ε4) (4)

where Tn = εnt and ε is a small bookkeeping parame-

ter. In order that the nonlinearity balance the effects of

the damping and forcing, we introduce the following

scaled variables a priori:

c → ε2c, χ3 → ε3χ3, and σ → ε2σ, (5)

and rewrite Equation (2) as

M(η)η̈ + 2ε2cM(η)η̇ + N (η)η = P(η) + v2(t)L.(6)

Moreover, we express the cosine function in Equation

(3a) in terms of exponentials, apply the new scaling for

the detuning parameter σ , and then use the time scales

Tn to obtain

v(t) = χ0 + 1

2
ε3χ3(eiσ T2 eiω1T0 + e−iσ T2 e−iω1T0 ). (7)

We substitute Equations (4) and (7) into Equation (6),

expand all matrices and vectors that are functions of η

in powers of ε, collect terms of orders of ε up to O(ε3),

and obtain the following equations:

Order(1)

N0 η0 − P0 − χ2
0 L = 0 (8)

Order(ε)

M0 D2
0η1 + N0 η1 + N1(η1)η0 − P1 η1 = 0 (9)

Order(ε2)

M0 D2
0η2 + N0 η2 + N1(η2)η0 − P1 η2

= − 2M0 D0 D1η1 − M1(η1) D2
0η1

−N1(η1)η1 − N2(η1,η1) η0 + P2(η1,η1)

(10)

Order(ε3)

M0 D2
0η3 + N0 η3 + N1(η3)η0 − P1 η3

= −2cM0 D0η1 − 2M0 D0 D1η2

−M0 D2
1η1 − 2M0 D0 D2η1 − M1(η1) D2

0η2

−2M1(η1) D0 D1η1

−M1(η2) D2
0η1 − M2(η1,η1) D2

0η1

−N1(η1)η2 − N1(η2)η1

−N2(η1,η1)η1 − 2N2(η1,η2)η0

−N3(η1,η1,η1)η0 + 2P2(η1,η2)

+P3(η1,η1,η1)

+χ0χ3

(
eiσ T2 eiω1T0 + e−iσ T2 e−iω1T0

)
L (11)

where Di = ∂
∂Ti

, 0 is the zero vector of length N ,

M0 = M(η0), N0 = N (η0), (12a)

P0 = P(η0), (12b)

M1(x) =
[

∂ M

∂ηi
xi

]
, N1(x) =

[
∂ N

∂ηi
xi

]
,

(12c)

P1 = [P1i j ] =
[

∂ P i

∂η j

]
, (12d)

M2(x, y) =
[

1

2

∂2 M

∂ηi∂η j
xi y j

]
, (12e)
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N2(x, y) =
[

1

2

∂2 N

∂ηi∂η j
xi y j

]
, (12f)

P2(x, y) = {P2k(x, y)}

=
{

1

2

∂2 Pk

∂ηi∂η j
xi y j

}
, (12g)

N3(x, y, z) =
[

1

6

∂3 N

∂ηi∂η j∂ηk
xi y j zk

]
, (12h)

and P3(x, y, z) = {P3k(x, y, z)}

=
[

1

6

∂3 Pk

∂ηi∂η j∂ηk
xi y j zk

]
. (12i)

Here, v i is the i th component of a general vector v ,

all derivatives are evaluated at η = η0, and Einstein’s

summation convention is used.

Before solving Equations (8)–(11), we rearrange

their left-hand sides and rewrite them as

Order(1)

N0 η0 − P0 − χ2
0 L = 0 (13)

Order(ε)

M0 D2
0η1 + R0 η1 = 0 (14)

Order(ε2)

M0 D2
0η2 + R0 η2 = −2M0 D0 D1η1

−M1(η1) D2
0η1 − N1(η1)η1

−N2(η1,η1) η0 + P2(η1,η1) (15)

Order(ε3)

M0 D2
0η3 + R0 η3 = −2cM0 D0η1

−2M0 D0 D1η2 − M0 D2
1η1 − 2M0 D0 D2η1

−M1(η1) D2
0η2 − 2M1(η1) D0 D1η1

−M1(η2) D2
0η1 − M2(η1,η1) D2

0η1

−N1(η1)η2 − N1(η2)η1 − N2(η1,η1)η1

−2N2(η1,η2)η0 − N3(η1,η1,η1)η0

+2P2(η1,η2) + P3(η1,η1,η1)

+χ0χ3

(
eiσ T2 eiω1T0 + e−iσ T2 e−iω1T0

)
L (16)

where R0 = N0 − P1 + Q0 and

Q0 =
[{

∂ N

∂η1

η0

} {
∂ N

∂η2

η0

}
· · ·

{
∂ N

∂ηN
η0

}]∣∣∣∣∣
η0

.

(17)

We now solve Equations (13)–(16) sequentially, start-

ing with Equation (13). The equations are solved sym-

bolically here and numerical solutions are generated

afterwards.

Order(1)

If χ0 is less than its pull-in value χ
pi
0 , the nondi-

mensional DC voltage χ0 causes the plate to deform

towards the fixed electrode and reach a new static equi-

librium state. We solve the nonlinear matrix equation

(13) numerically.

Order(ε)

If M0 is nonsingular, then Equation (14) can be re-

arranged as

D2
0η1 + S0 η1 = 0, (18)

where S0 = M−1
0 R0 is a known matrix function of η0.

Assuming that η1 = A(T1, T2)eiωT0 p is a solution of

Equation (18), we obtain the eigenvalue problem

S0 p = ω2 p. (19)

We consider the case in which Equation (19) has N
unique real eigenvalues ω2

1, ω2
2, . . . , ω2

N and associ-

ated real eigenvectors p1, p2, . . . , pN , which represent

the undamped natural frequencies and mode shapes

around the deflected configuration, respectively. Con-

sequently, the general solution of Equation (18) can be

expressed as

η1=
N∑

k=1

(Ak(T1, T2)eiωk T0 pk + Āk(T1, T2)e−iωk T0 pk),

(20)

where Ak is a complex measure of the vibration am-

plitude and phase of the kth mode, and the overbar

denotes the complex conjugate of an expression. We
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consider the case in which the first mode is excited

with a primary resonance and not involved in an internal

resonance with any other mode. Because in the pres-

ence of damping all of the modes that are not directly

or indirectly excited decay with time [24, 25], the long-

time response of Equation (18) can be expressed as

η1 = A(T1, T2)eiω1T0 p1 + Ā(T1, T2)e−iω1T0 p1. (21)

Order(ε2)

Substituting for η0 and η1 in Equation (15), we ob-

tain

M0 D2
0η2 + R0 η2 = −2iω1 D1 A eiω1T0 M0 p1

+2iω1 D1 Ā e−iω1T0 M0 p1

+ω2
1 A2e2iω1T0 M1(p1) p1+ω2

1 Ā2e−2iω1T0 M1(p1) p1

+2ω2
1 AĀM1(p1) p1

−A2e2iω1T0 N1(p1) p1 − Ā2e−2iω1T0 N1(p1) p1

−2AĀN1(p1) p1

−A2e2iω1T0 N2(p1, p1)η0

− Ā2e−2iω1T0 N2(p1, p1)η0

−2AĀN2(p1, p1)η0

+A2e2iω1T0 P2(p1, p1) + Ā2e−2iω1T0 P2(p1, p1)

+2AĀP2(p1, p1). (22)

We want to solve for η2, but we need to eliminate sec-

ular solutions to ensure uniformity of the expansion.

In the absence of internal resonances, the only terms

that produce secular terms are the terms on the right-

hand side proportional to eiω1T0 or e−iω1T0 . A uniform

solution for η2 exists only if the terms that produce

secular terms are orthogonal to every solution u1 of

the adjoint homogeneous problem associated with ω1,

given as

ω2
1 MT

0 u1 = RT
0 u1. (23)

Impozing the solvability condition on Equation (22)

demands that

D1 A = 0 =⇒ A(T1, T2) = A(T2). (24)

The general solution of Equation (22) consists of a

homogeneous component and a particular component.

We “lump” the homogeneous component for η2 with

the homogeneous solution for η1, since they are of the

same form, leaving us with the following particular

solution for η2:

η2 = A2e2iω1T0 z1 + Ā2e−2iω1T0 z1 + AĀz2, (25)

where

z1 = [
R0 − 4ω2

1 M0

]−1{
ω2

1 M1(p1) p1

− N1(p1) p1−N2(p1, p1)η0+P2(p1, p1)
}
,

(26a)

and z2 = 2 R−1
0

{
ω2

1 M1(p1) p1

−N1(p1) p1−N2(p1, p1)η0+P2(p1, p1)
}
.

(26b)

Order(ε3)

As with η2, a uniform solution for η3 exists only

if the terms that produce secular terms at O(ε3)

are orthogonal to u1. Substituting for η0, η1, and

η2 in Equation (16), using Equation (24), collecting

terms proportional to eiω1T0 , and making the vector

sum be orthogonal to u1, we obtain the solvability

condition

(u1 · v1) A′ + c (u1 · v1) A

+(u1 · v2) A2 Ā + (χ0 u1 · L) eiσ T2χ3 = 0, (27)

where

v1 = −2iω1 M0 p1, (28a)

v2 = ω2
1 M1(z1) p1 + ω2

1 M1(z2) p1

+ 3ω2
1 M2(p1, p1) p1 − N1(z1) p1

− N1(z2) p1 − 3N2(p1, p1) p1

+ 4ω2
1 M1(p1) z1 − N1(p1) z1 − N1(p1) z2

− 2N2(p1, z1)η0 − 2N2(p1, z2)η0

− 3N3(p1, p1, p1)η0 + 2P2(p1, z1)

+ 2P2(p1, z2) + 3P3(p1, p1, p1), (28b)
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and the prime denotes differentiation with respect to T2.

Now, because the eigenvector u1 is known to within an

arbitrary constant, we normalize u1 such that

u1 · v1 = 1

and reduce Equation (27) to

A′ + cA − 4iα1 A2 Ā + 1

2
iα2eiσ T2χ3 = 0, (29)

where α1 and α2 are real and defined as

α1 = 1

4
iu1 · v2 (30a)

and

α2 = −2iχ0 u1 · L. (30b)

4. Modulation equations

To solve Equation (29), we first transform it into two

coupled real equations using the transformation

A(T2) = 1

2
a(T2)eiθ (T2), (31)

where a(T2) and θ (T2) are real functions. Substituting

Equations (21), (25), and (31) into Equation (4), we

have

η(t ; ε) = η0 + ε a(T2) cos(ω1T0 + θ (T2)) p1

+ 1

2
ε2a2(T2)

[
cos(2ω1T0 + 2θ (T2)) z1

+ 1

2
z2

]
+ O(ε3). (32)

Because ε is a bookkeeping parameter, we absorb ε into

a by letting εa → a, such that a is now small. In other

words, we let ε be equal to one, with the understanding

that a is small, and rewrite Equation (32) as

η(t) = η0 + a(t) cos(ωft + γ (t)) p1

+1

2
a2(t)

[
cos(2ωft + 2γ (t)) z1 + 1

2
z2

]
+O(a3), (33)

where γ (t) = θ (t) − σ t . If a is sufficiently small and

||p1|| = 1, then the functions a(t) and θ (t) represent

the amplitude and phase of the response of the plate,

respectively.

Substituting Equation (31) into Equation (29) and

separating real and imaginary parts yields the following

autonomous set of modulation equations:

ȧ = −ca − α2χ3 sin(γ ) (34)

and

γ̇ = α1a2 − σ − α2χ3 cos(γ )

a
. (35)

5. Frequency-response (F-R) equation

The equations governing the equilibrium values aeq and

γeq of Equations (34) and (35) are found by setting

ȧ = 0 and γ̇ = 0. They are given by

0 = −ca − α2χ3 sin(γ ) (36)

and

0 = α1a2 − σ − α2χ3 cos(γ )

a
. (37)

Eliminating γ from Equations (36) and (37) yields the

frequency-response (F-R) equation

a2
eq

{
c2 + (σ − α1a2

eq)2
} = α2

2χ
2
3 . (38)

A point on the frequency-response curve is asymptoti-

cally stable if the eigenvalues λ1 and λ2 of the Jacobian

matrix of the right-hand sides of Equations (34) and

(35) at that point are in the left-half of the complex

plane.

6. Nonlinear resonance

The nonlinear resonance frequency occurs at the peak

of the F-R curve; that is, the maximum value anr in

the σ − aeq plane. By using the F-R equation (38) and

Equation (3b), we find that the nonlinear resonance

frequency ωnr is given by

ωnr = ω1 + α1α
2
2χ

2
3

c2
. (39)
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Thus, when only the first mode is excited by a primary

resonance excitation, the plate resonates nonlinearly

at the frequency ωnr with a first-order amplitude anr,

according to the solution (33) forη(t). We also note that

anr must be sufficiently small in order for the truncated

terms of O(a3) to be neglected in η(t).

7. Inflection point, softening/hardening,
and saddle-nodes

For sufficiently small forcing χ3, the amplitude aeq is

a single-valued function of the detuning parameter σ .

The F-R curve has a “camel’s hump” with a peak at

the nonlinear resonance point. However, as the forcing

parameter χ3 increases, the camel’s hump bends either

to the left (softening) or to the right (hardening). An ex-

ample of hardening-type behavior, which is discussed

in the following section, is seen in Fig. 2. At a critical

value χ cr
3 , the camel’s hump loses its single-valuedness

(one value of aeq for one σ ) and is multi-valued (three

values of aeq for one σ ) for certain σ when χ3 > χ cr
3 .

Therefore, an inflection point exists on the F-R curve

when χ3 = χ cr
3 , being the transition value separating

single- and multi-valued solutions. The inflection point

can be shown to occur at

(σ, aeq) =
(√

3 c sgn(α1),

√
2 c

4

√
3 α2

1

)
, (40)

Fig. 2 F-R curves for β = 100, ν = 0.1, τ = 1, χ2
0 = 0.5,

F(r, t) = 0, c = 2 and (a) χ3 = 5, (b) χ3 = χ cr
3 = 7.98,

(c) χ3 = 10, or (d) multiple values of χ3

where sgn(x) gives the sign of a real nonzero number x ,

and the critical value of χ3 is

χ cr
3 =

(
8 c3

3
√

3 |α1| α2
2

)1/2

. (41)

Then, it follows from the F-R equation and the

inflection point (40) that the F-R curve bends to the

left (softening) or to the right (hardening) according to

the following rules:

α1 < 0 =⇒ softening (42a)

and

α1 > 0 =⇒ hardening. (42b)

8. Numerical results

By using the frequency-response equation (38), we

can plot the equilibrium vibration amplitude aeq (a,

for short) versus the forcing frequency ωf; that is, we

can create F-R curves for general system parameters.

The nonlinear resonance frequency ωnr is given by

Equation (39) and the nonlinear resonance amplitude

anr is the largest solution of Equation (38) for the detun-

ing parameter from Equation (39). For computational

efficiency, three modes are used to generate the curves

presented in this section, and the convergence of similar

curves in investigated in the next section. Furthermore,

the softening or hardening nature of the nonlinearity is

determined according to conditions (42), and the criti-

cal AC voltage χ cr
3 for the onset of multi-valuedness is

given by Equation (41).

In Fig. 2, we show representative frequency-

response curves. For any system, a critical AC voltage

χ cr
3 exists, such that the F-R curve is single-valued for

χ3 < χ cr
3 , as in Fig. 2(a). The solution is purely stable,

being represented by a solid curve, and the nonlinear

resonance point is represented by a circle. At the critical

value χ cr
3 , the single-valuedness is about to break down,

as in Fig. 2(b). An inflection point exists, denoted by the

dot. For χ3 > χ cr
3 , the curve is partially multi-valued,

as seen in Fig. 2(c). Two saddle-node bifurcations, also

denoted by dots, now exist and the curve between them

is unstable (dashed). Accordingly, hysteresis exists as-

sociated with jumps at the saddle-node bifurcations as

the forcing frequency ωf is slowly varied up and down.
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Fig. 3 Frequency-response and force-response curves for the
system with β = 100, ν = 0.1, τ = 1, F(r, t) = 0, c = 2, and
either (a)-(b) χ2

0 = 0.5 or (c)-(d) χ2
0 = 25

The evolution of the vibration amplitude with in-

creasing χ3 can be seen in Fig. 2(d). As the AC forcing

χ3 increases, a increases and the F-R curve bends to

the right (hardening). Eventually, the F-R curve be-

comes multi-valued and hysteresis exists. We note that

according to conditions (42), the nonlinearity is of the

hardening type because α1 = 157.5 > 0.

Jumps can also be seen in force-response curves,

which depict how the vibration amplitude a changes

with the AC forcing χ3 for a fixed forcing frequency ωf,

or alternatively a fixed detuning parameter σ . Example

force-response curves are seen in Figs. 3(b) and (d) cor-

responding to the frequencies marked in Figs. 3(a) and

(c), respectively. Jumps (depicted as arrows) occur in

Fig. 3(b) because σ is greater than the critical value for

the inflection point (40) of the hardening-type system,

and amplitude jumps occur in Fig. 3(d) because σ is less

than the critical inflection value of the softening-type

system. Conversely, if the chosen forcing frequency ωf

does not deviate far enough from the natural frequency

ω1 for either system parameters, then no jumps in the

vibration amplitude will occur.

We note that the softening/hardening nature of the

plate is independent of χ3, but is strongly dependent

on the DC component χ0, which affects equilibrium.

In fact, the nature of the nonlinearity transitions from

hardening to softening as χ0 increases and the plate

deflects more towards the fixed electrode. This tran-

sition is seen in the bold curve of Fig. 4. The curve

Fig. 4 Progression from hardening to softening as χ0 increases
for β = 100, ν = 0.1, τ = 1, F(r, t) = 0, c = 0.25, and χ3 =
0.25

Fig. 5 Hardening and softening regions for ν = 0.1, τ = 1, and
F(r, t) = 0

tracks the nonlinear resonance frequency from its posi-

tion for zero χ0 (denoted with a circle) up to pull-in (not

seen in the figure). Initially, we only have a hardening-

type behavior (α1 > 0). However, as we increase χ0 to

3.36 (denoted by an asterisk), we find that there is nei-

ther hardening nor softening, since α1 = 0. Hence, the

system is locally linear and the F-R curve is not bent

for that case. As we increase χ0 beyond 3.36, we find

that the nonlinearity of the system becomes softening

(α1 < 0), with the F-R curve being bent to the left, like

that for χ0 = 3.61. Softening remains until the plate

reaches pull-in.

The DC voltage χ0 at the transition point (α1 = 0)

from a hardening-type to a softening-type behavior de-

pends on the parameters β, ν, and τ . The dependence on

β for ν = 0.1 and τ = 1 is shown in Fig. 5. For exam-

ple, when β = 100, the system being studied is that of

Fig. 4. The effective nonlinearity moves from the hard-

ening region to the softening region as χ0 is increased.

Eventually, the plate is pulled into the “brick wall” (the
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fixed electrode). In fact, α1 → −∞ and α2 → ∞ as

the pull-in limit is approached, which means that the

nonlinear resonance amplitude and frequency become

increasingly sensitive to χ3. Consequently, χ3 must ap-

proach zero to maintain finite responses as the plate

approaches pull-in.

9. Numerical convergence

We have found that stable deflections converge suffi-

ciently with five axisymmetric modes [20]. However,

in order for the reduced-order model to be of any use,

the equilibrium amplitude a also has to converge as

the number N of modes increases. This means that the

system parameters α1 and α2 in the F-R equation (38)

and the first undamped natural frequency ω1 must all

be sufficiently close to their limits for some N , such

that the F-R curve is sufficiently converged.

We calculated α1, α2, and ω1 as functions of χ0 for

various combinations of system parameters β, ν, and τ

with different values of N . Because the reduced-order

model is intended for analysis of CMUTs, we choose

(nondimensional) system parameters feasible for typi-

cal CMUTs. We focus on modeling air transducers by

restricting the nondimensional residual stress τ to be

less than the nondimensional parameter β, where β is

as high as 100. For simplicity, we also let Poisson’s ratio

ν equal 0.2 and let F(r, t) = 0 (no pressure difference

across the plate).

Results for a combination of parameters are shown in

Fig. 6. As pull-in is approached, the respective curves in

Figs. 6(a)–(c) generally deviate from each other. How-

ever, three modes seem to be sufficient to characterize

the dynamic-related quantities α1, α2, and ω1 for most

of the range of χ0 up to pull-in. In fact, the curves for

three and four modes are hardly distinguishable. At

χ2
0 = 13, which is about 87% of the critical value for

pull-in, the frequency-response curves in Fig. 6(d) are

basically converged for three modes.

Three modes may not be sufficient for convergence,

as seen in Fig. 7, where at least four modes are needed to

sufficiently characterize the steady-state dynamics for

most of the range up to pull-in. The curves for four and

fives modes are barely distinguishable, and at χ2
0 = 28,

which is about 84% of the critical value for pull-in, the

F-R curves in Fig. 7(d) are basically converged for four

modes.

Fig. 6 Parameter and response curves forβ = 1, ν = 0.2, τ = 1,
and F(r, t) = 0 with different numbers of modes

Fig. 7 Parameter and response curves for β = 100, ν = 0.2,
τ = 1, and F(r, t) = 0 with different numbers of modes

The previous analysis was for systems with zero

pressure difference across the plate, but advantageous

pressure differences exist in many CMUTs. For in-

stance, when a vacuum is created under the plate and the

pressure from a fluid acts on its top, the electromechan-

ical coupling increases due to the plate deflection, mak-

ing the system more efficient for conversion of electri-

cal energy to mechanical energy [8]. We would like

the macromodel to be applicable for such situations. In

this spirit, we let F(r, t) be constant and test conver-

gence for feasible cases, one of which is seen in Fig. 8.

For all four values of F , four modes are sufficient for

convergence for most of the range up to the respective

pull-in. However, as F increases, the curves deviate
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Fig. 8 First undamped natural frequency for β = 50, ν = 0.2,
τ = 50, and (for paired curves from left to right) F(r, t) = 150,
F(r, t) = 100, F(r, t) = 50, or F(r, t) = 0 for four or five modes

more and five modes become necessary for conver-

gence.

In general, at least three (N = 3) modes should be

used in the reduced-order model (2) to characterize

the responses of clamped circular plates used in air-

immersed CMUTs to primary resonance excitations. In

fact, three modes were used to generate the curves in

Figs. 2–5. Consequently, the error in the approximate

equilibrium solution (33) is mainly due to truncation

at a certain order of a in the method of multiple scales

and not due to the truncation of the number N of modes

in the reduced-order model. In practice, however, the

nondimensional amplitude a will be sufficiently small,

such that the number N of modes primarily limits the

accuracy of the approximate amplitudes.

10. Conclusions

We used an analytical reduced-order model (macro-

model) to investigate the response of an electrostat-

ically actuated clamped circular plate to a primary

resonance excitation of its first axisymmetric mode.

The method of multiple scales was used to derive a

semi-analytical expression for the equilibrium ampli-

tude of vibration. The plate was found to always transi-

tion from a hardening-type to a softening-type behavior

as the DC voltage increases towards pull-in.

We found that, in general, at least three linear un-

damped axisymmetric modes are needed to charac-

terize the equilibrium amplitude of vibration for pri-

mary resonance excitation of clamped circular plates

used in many capacitive micromachined ultrasonic

transducers. Sufficient convergence up to pull-in seems

to be met for feasible CMUTs if five modes are used,

but one should inspect the frequency-response curves

for assurance of convergence.

Our macromodel can be used as an effective de-

sign tool for CMUTs for multiple reasons. First, the

equilibrium-amplitude expressions allow for general

residual stress and material and geometric design vari-

ables. For instance, the nonlinear resonance point of

any system can easily be calculated for multiple values

of the AC voltage forcing. Second, our model elimi-

nates the computational problems near pull-in found in

many FEM-based models, because the amplitudes near

pull-in can be calculated as fast as those away from

the instability. Third, our model allows for bending-

dominated plates, which is desirable for CMUTs in

which the residual stress is negligible. Fourth, the

reduced-order model presented here accounts for the

first geometric nonlinearity of the von Kármán type.

Consequently, any increase in frequency due to strain

hardening is accounted for, as seen in Fig. 7(c) in which

the frequency can increase instead of always decrease

with deflection as in Fig. 6(c).

Appendix A: Matrix and vector definitions for
reduced-order model

In this appendix, we reduce the reduced-order model

developed in a previous paper [21] to the matrix form

in Equation (2). First, we let

ψ ′
mn(r ) = ϕ1mn(r ) + 1 + ν

1 − ν
ϕ2mn(r ), (43)

where

ϕ1mn(r ) = 1

4r

∫ r

0

ξφ′
mφ′

ndξ + r

4

∫ 1

r

φ′
mφ′

n

ξ
dξ

(44a)

and

ϕ2mn(r ) = r

4

∫ 1

0

ξφ′
mφ′

ndξ. (44b)
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The reduced-order model then becomes

(
η̈q + 2cη̇q + �2

qηq
) − 2

(
η̈m + 2cη̇m + �2

mηm
)
ηi Aimq

+(
η̈m + 2cη̇m + �2

mηm
)
ηiη j Bi jmq

= β

[
− ηmηnηp

(
C1mnpq + 1 + ν

1 − ν
C2mnpq

)

+2ηiηmηnηp

(
D1imnpq + 1 + ν

1 − ν
D2imnpq

)

−ηiη jηmηnηp

(
E1i jmnpq + 1 + ν

1 − ν
E2i jmnpq

)]
−τηm Fmq + 2τηiηm Gimq − τηiη jηm Hi jmq

+Iq − 2ηi Jiq + ηiη j Ki jq + v2(t)Lq , (45)

where

Aimq =
∫ 1

0

rφiφmφqdr, (46a)

Bi jmq =
∫ 1

0

rφiφ jφmφqdr, (46b)

C1mnpq =
∫ 1

0

φ′
qφ

′
mϕ1npdr, (46c)

C2mnpq =
∫ 1

0

φ′
qφ

′
mϕ2npdr, (46d)

D1imnpq =
∫ 1

0

(φiφq )′φ′
mϕ1npdr, (46e)

D2imnpq =
∫ 1

0

(φiφq )′φ′
mϕ2npdr, (46f)

E1i jmnpq =
∫ 1

0

(φiφ jφq )′φ′
mϕ1npdr, (46g)

E2i jmnpq =
∫ 1

0

(φiφ jφq )′φ′
mϕ2npdr, (46h)

Fmq =
∫ 1

0

rφ′
mφ′

qdr, (46i)

Gimq =
∫ 1

0

rφ′
m(φiφq )′dr, (46j)

Hi jmq =
∫ 1

0

rφ′
m(φiφ jφq )′dr, (46k)

Iq =
∫ 1

0

Frφqdr, Jiq =
∫ 1

0

Frφiφqdr, (46l)

Ki jq =
∫ 1

0

Frφiφ jφqdr, Lq =
∫ 1

0

rφqdr,(46m)

for q = 1, 2, . . . , N , and the summation signs have

been removed in Equation (45) for notation simplifica-

tion. Therefore, all terms in Equation (45) are created

by summing over their respective lower-case Latin in-

dices (excluding q), which range from 1 to N .

Because all integrands in Equations (46) are known

explictly after a function F(r, t) is chosen, the integrals

can be evaluated numerically one time and saved for

use in Equation (45). Thus, the variables with upper-

case Latin names in Equation (45) are simply known

constants.

Finally, we simplify the form of Equation (45) by

putting the N coupled equations (q = 1, 2, . . . , N )

into matrix form. We collect all ηi (t) into a column

vector η(t); that is,

η(t) = {η1(t), η2(t), . . . , ηN (t)}, (47)

and then rearrange Equation (45) to obtain

Equation (2); that is,

M(η)η̈ + 2cM(η)η̇ + N (η)η = P(η) + v2(t)L,

where

M(η) = [Mqs(η)] = [δqs − 2ηi Aisq + ηiη j Bi jsq ],

(48a)

N (η) = [Nqs(η)]

= [
�2

qδqs − 2�2
s ηi Aisq + �2

s ηiη j Bi jsq
]
, (48b)

P(η) = {Pq (η)}

=
{

β

[
− ηmηnηp

(
C1mnpq + 1 + ν

1 − ν
C2mnpq

)

+2ηiηmηnηp

(
D1imnpq + 1 + ν

1 − ν
D2imnpq

)

−ηiη jηmηnηp

(
E1i jmnpq + 1 + ν

1 − ν
E2i jmnpq

)]
−τηm Fmq + 2τηiηm Gimq − τηiη jηm Hi jmq
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+Iq − 2ηi Jiq + ηiη j Ki jq

}
, (48c)

L = {Lq}, δqs is the Kronecker delta, and the summa-

tion signs have been removed in Equations (48) for

notation simplification.
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