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Abstract Friction-induced limit cycling deteriorates
system performance in a wide variety of mechanical
systems. In this paper, we study the way in which es-
sential friction characteristics affect the occurrence and
nature of friction-induced limit cycling in an experi-
mental drill-string set-up. This study is performed on
the level of a Lyapunov-based stability analysis and on
the level of both numerical and experimental bifurca-
tion analyses. The synthesis of these results confirms
that friction-induced limit cycling is due to a subtle
balance between negative damping at lower velocities
and viscous friction at higher velocities. Moreover, it is
shown how these essential friction characteristics de-
pend on physical conditions such as temperature and
normal forces in the frictional contact in the experi-
mental set-up.
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1. Introduction

Friction-induced limit cycling endangers the perfor-
mance and safety of operation of a wide range of
mechanical systems. In this paper, we will focus on
friction-induced limit cycling in mechanical systems
with both friction and flexibilities. In this context, one
can think of drilling rigs [1–3], printers, turbine blade
dampers [4], industrial and domestic robots [5], simple
earth-quake models, curve squealing of railway vehi-
cles [6], accurate mirror positioning systems on satel-
lites and many more. In these systems, the combination
of friction and flexibility can give rise to limit cycling.
This paper aims at revealing the dependency of such
limit cycling on the friction characteristics through the-
oretical, numerical and experimental studies. In order
to perform such experimental validation of the results,
an experimental drill-string system is built in which
both a flexibility and friction are present. This experi-
mental set-up will support the study of friction-induced
limit-cycling in general mechanical systems with fric-
tion and flexibilities and the study of friction-induced
limit-cycling in drill-string systems in particular.

For the exploration and production of oil and gas,
deep wells are drilled with a rotary drilling system. A
rotary drilling system creates a borehole by means of a
rock-cutting tool, called a bit. The torque driving the bit
is generated at the surface by a motor with a mechan-
ical transmission box. Via the transmission, the motor
drives the rotary table: a large disc that acts as a kinetic
energy storage unit. The medium to transport the energy
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from the surface to the bit is a low-stiffness drill-string,
mainly consisting of drill pipes. The lowest part of the
drill-string is the Bottom-Hole-Assembly consisting of
drill collars and the bit. The drill-string undergoes var-
ious types of vibrations during drilling: torsional (ro-
tational) vibrations, caused by interaction between the
bit and well, bending (lateral) vibrations, caused by
pipe eccentricity, axial (longitudinal) vibrations, due
to bouncing of the bit, and hydraulic vibrations in the
circulation system, stemming from pump pulsations.
Drill-string vibrations are an important cause for pre-
mature failure of drill-string components and drilling
inefficiency. In this paper, torsional drill-string vibra-
tions will be investigated. Drill rigs should generally
operate at constant down-hole velocities (realised by
a constant torque at the rotary table); therefore, the
focus of this investigation will be on the steady-state
behaviour of drill-string systems.

Extensive research on the subject of torsional vibra-
tions has already been conducted [1–3, 7–9]. According
to some of those results, the cause for torsional vibra-
tions is the stick-slip phenomenon due to the friction
force between the bit and the well [2, 8, 9]. Moreover,
according to some other results, the cause for the tor-
sional vibrations is negative damping in the friction
force due to the contact between the bit and the bore-
hole [1, 3]. In [10], it is stated that such a (effective)
negative damping curve originates from the coupling
between the axial and torsional dynamics in drill-string
systems.

Friction-induced limit cycling is a performance lim-
iting factor in many other types of mechanical systems.
Survey papers on friction-induced limit cycling can be
found in [11–14], in which specific friction character-
istics are associated to the existence of such limit cy-
cling. Moreover, in [15, 16] causes for friction-induced
limit cycling, such as negative damping and fluctuat-
ing normal forces, are discussed. A limited amount
of experimental work on friction-induced limit cy-
cling in non-controlled systems is available [17]. It
should be noted that friction-induced vibrations are
also common in controlled mechanical systems, see
[18–22].

In order to gain an improved understanding of the
causes for torsional vibrations, an experimental drill-
string set-up has been built. This experimental set-
up consists of two discs, connected by a low-stiffness
string. The upper disc is driven by a motor and at the
lower disc a brake is implemented to exert a friction

force on the disc. In this paper, we investigate along
several routes how the occurrence and nature of the
friction-induced vibrations depend on specific friction
characteristics (of the friction exerted at the lower disc).
Firstly, using a Lyapunov-based stability analysis the
effect of certain friction characteristics on the stabil-
ity of the desired constant-speed operating condition is
studied. Secondly, an extensive numerical bifurcation
analysis is performed for changing friction character-
istics. Finally, such bifurcation analyses are also per-
formed on an experimental level to confirm the validity
of the model-based results. Moreover, physical condi-
tions, such as temperature and normal forces applied
to the brake, are changed in the experiments to illumi-
nate the influence of such changes on the friction and
the vibrations induced by the friction. The theoretical,
numerical and experimental results jointly constitute a
clear and coherent view on the way in which friction-
induced limit cycles arise and change under changing
frictional conditions.

In Section 2, the experimental set-up is introduced.
The model of the set-up and the estimates for its pa-
rameters are discussed in Section 3. Section 4 discusses
the dependency of the friction-induced limit cycling on
specific friction characteristics on a model level; firstly
through a theoretical stability analysis and secondly
through numerical bifurcation analyses. In Section 5,
the model-based results are compared to experimental
results and the dependency of the occurrence of tor-
sional vibrations on certain physical frictional condi-
tions is investigated on an experimental level. Finally,
Section 6 presents conclusions.

2. The experimental set-up

The experimental drill-string set-up is shown in Fig. 1.
The set-up consists of a power amplifier, a DC-motor,
two rotational (upper and lower) discs, a low-stiffness
string and an additional brake applied to the lower disc.
The input voltage from the computer is fed into the
DC-motor via the power amplifier. The DC-motor is
connected to the upper steel disc via the gear box, see
Fig. 2. The upper disc and the lower disc are connected
through a low-stiffness steel string. Both discs can ro-
tate around their respective geometric centers and the
related angular positions are measured using incremen-
tal encoders (see Fig. 2 for the encoder at the upper
disc).
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Fig. 1 Experimental drill-string set-up

Fig. 2 The upper part of the experimental drill-string set-up

A brake and a small oil-box with felt stripes are
fixed to the upper bearing housing of the lower part of
the set-up, see Fig. 3. With the brake, a range of normal
forces can be applied and the contact between the brake
and the brake disc produces a friction force exerted on
the brake disc. This friction force can induce torsional
vibrations in the set-up. The brake contact material is
bronze. The steel brake disc is connected to the lower
brass disc via a very stiff shaft. The oil-box with the felt
stripes is constructed in order to add oil (ondina oil 68)
to the brake disc in a reproducible way. Namely, when
liquid is present in the oil-box, the liquid is supplied to

both sides of the brake disc by means of the capillary
effect of the felt. This oil lubrication between the lower
disc and the brake blocks will prove to be crucial for
the existence of torsional vibrations in the set-up.

3. Model of the set-up

In this section, we introduce a dynamic model of the
experimental drill-string set-up which will be used
throughout the paper. The system is depicted schemat-
ically in Fig. 4.

By θu and θl we denote the angular displacements of
the upper and lower disc, respectively. Moreover, ωu =
θ̇u and ωl = θ̇l represent the angular velocities of the
upper and lower disc, respectively. Furthermore, α =
θl − θu represents the relative angular displacement of
the lower disc with respect to the upper disc. In the
sequel, we will use a state vector x defined by x =
[α ωu α̇]

T
. The equations of motion of the system are

given by:

Juω̇u − kθα + T f u(ωu) = kmu,

JA(α̈ + ω̇u) + T f l(ωu + α̇) + kθ α = 0, (1)

where Ju and JA are the moments of inertia of respec-
tively the upper and lower discs about their respective
centers of mass, kθ is the torsional spring stiffness, u is
the input voltage to the motor and km is the motor con-
stant. It should be noted that the friction torque at the
upper disc T f u(ωu) is due to friction in the bearings of
the upper disc and the electro-magnetic characteristic
of the DC-motor [23, 24] and the friction torque at the
lower disc T f l(ωl) comprises the friction in the bear-
ings of the lower disc and the friction induced by the
brake-mechanism. Both friction torques are modelled
using set-valued force laws:

T f u(ωu) ∈
{

Tcu(ωu)sgn(ωu) for ωu �= 0

[−Tcu(0−), Tcu(0+)] for ωu = 0

T f l(ωl) ∈
{

Tcl(ωl)sgn(ωl) for ωl �= 0

[−Tcl(0−), Tcl(0+)] for ωl = 0

, (2)

where the velocity dependency of the friction at the
upper disc is expressed through Tcu(ωu), with

Tcu(ωu) = Tsu + �Tsusgn(ωu) + bu |ωu | + �buωu,

(3)
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Fig. 3 The lower part of the
set-up

DC motor
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Tfl(ωl)

Fig. 4 Schematic representation of the drill-string set-up

and the velocity dependency of the friction at the
lower disc is expressed through Tcl(ωl), consisting of a
Stribeck model with viscous friction:

Tcl(ωl) = Tcl + (Tsl − Tcl)e−|ωl/ωsl |δsl + bl |ωl |. (4)

Equation (3) expresses the fact that we model the fric-
tion at the upper disc as a combination of dry friction
and viscous friction and that it is asymmetric. Herein,
Tcu(0+) = Tsu + �Tsu and −Tcu(0−) = −Tsu + �Tsu

represent respectively the maximum and minimum
value of the friction torque for zero angular velocities

and bu + �bu and bu − �bu are viscous friction coeffi-
cients for positive and negative velocities, respectively.
Equation (4) expresses the fact that the friction at the
lower disc is modelled as a combination of dry friction
and viscous friction, where the dry friction is described
by a Stribeck curve for non-zero velocities. Herein, Tcl

and Tsl represent the Coulomb friction and static fric-
tion levels, respectively, ωsl is the Stribeck velocity, δsl

the Stribeck shape parameter and bl the viscous friction
coefficient.

The parameters of the model are estimated using
a nonlinear least-squares technique. For more infor-
mation on the identification procedure and the valida-
tion results we refer to [24, 25]. Here, we summarise
the result of this extensive identification procedure in
Table 1. In the remainder of this paper, this parame-
ter set will be referred to as the ‘nominal’ set of pa-
rameters. Especially the friction situation at the lower
disc will be varied in order to investigate its influence
on the friction-induced limit-cycling. Figure 5 shows
the identified friction models, which indicate a pro-
nounced Stribeck effect in the friction at the lower disc.
It should be noted that here a normal force of 20.5 N is
applied to the brake. Finally, the relatively small values
of �Tsu and �bu in Table 1 express the fact the fric-
tion model for the friction at the upper disc is close to
symmetric.

4. Steady-state analysis of the dynamics

In this section, we study the steady-state behaviour of
the drill-string system for constant values of the input
voltage u = uc on a model level. Such steady-state be-
haviour is of particular interest in drill-string systems
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(a) Friction model at the upper disc.
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Fig. 5 Estimated friction models

since these types of systems are generally driven by
a constant torque while aiming at a constant velocity
at the lower part of the system, because then drilling
is most effective. Such constant-velocity condition re-
flects equilibria of (1). First, in Section 4.1 these equi-
libria, along with related stability properties, are dis-
cussed. In Section 4.2, the bifurcation diagram with
the constant input voltage as a bifurcation parameter
is presented for the friction model for the friction at
the lower disc as introduced in Section 3 (the nominal
case). Finally, in Section 4.3, the dependency of the
steady-state behaviour on the friction characteristics at
the lower disc is investigated.

4.1. Equilibria and related stability properties

The equilibria of the system, that correspond to
a constant velocity of both discs, are investigated
(Section 4.1.1) and the related local and global stability

Table 1 Parameter estimates

Parameter Estimated value

Ju [kg m2/rad] 0.4765
km [Nm/V] 4.3228
Tsu [Nm] 0.37975
�Tsu [Nm] −0.00575
bu [Nms/rad] 2.4245
�bu [Nms/rad] −0.0084
kθ [Nm/rad] 0.0775
JA [kg m2/rad] 0.0414
Tsl [Nm] 0.2781
Tcl [Nm] 0.0473
ωsl [rad/s] 1.4302
δsl [−] 2.0575
bl [Nms/rad] 0.0105

properties are presented depending on qualitative fric-
tion characteristics (Section 4.1.2). We only discuss
the results for positive constant input voltages, since
the results for negative input voltages are qualitatively
comparable.

4.1.1. Equilibria

The equilibria xeq = (αeq , ωeq , 0) of system (1), for
u = uc, with uc a constant, satisfy the following equi-
librium equations:

T f l(ωeq ) + T f u(ωeq ) = kmuc,

T f l(ωeq ) + kθ αeq = 0, (5)

which in fact represent algebraic inclusions due to the
fact that both friction torques are modelled using the
set-valued force laws (2). Let us now consider two
cases:

1. equilibrium points for which ωeq > 0, i.e. both the
lower and the upper disc rotate with the same con-
stant angular velocity ωeq and

2. equilibrium points for which ωeq = 0, i.e. both the
lower and the upper disc stand still.

Let us first consider the case of ωeq > 0.
For ωeq > 0, T f u(ωeq ) = Tcu(ωeq ) and T f l(ωeq ) =
Tcl(ωeq ) (see (2)), where Tcu(ωu) and Tcl(ωl) are
given by (3) and (4), respectively. Therefore, such
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equilibrium points satisfy the following set of nonlinear
algebraic equations

kmuc − (Tsu + �Tsu) − (bu + �bu)ωeq

−Tcl(ωeq ) = 0,

αeq = −Tcl(ωeq )

kθ

.

(6)

From (2), (4), the first algebraic equation of (6) and
since ωeq > 0, it can be concluded that the system only
exhibits such an isolated equilibrium point for

uc > uE := Tsu + �Tsu + Tsl

km
. (7)

This equation expresses the fact that the motor torque
should overcome the joint static friction level at the
upper and lower discs in order for the system to ex-
hibit an equilibrium at non-zero velocity. In general,
the first equation in (6) can have more than one solu-
tion. However, for the estimated parameters presented
in Table 1, it holds that −bu − �bu − dTcl/dωl(ωl =
ωeq ) ≤ 0, ∀ ωeq > 0, which means that the consid-
ered system has only one equilibrium point for a given
uc > uE (ωeq > 0), taking into account (7). Clearly,
the latter is mainly due to the relatively high viscous
friction level at the upper disc.

Now, let us consider equilibria for ωeq = 0. Such
equilibria only exist when the input voltage satisfies
the condition: 0 ≤ uc ≤ uE . Moreover, (5) (with (2), (3)
and (4)) implies that these equilibria constitute an equi-
librium set E , with

E = {x ∈ R3 | α̇ = ωl = 0, α ∈ [αmin, αmax]},
(8)

with

αmin = max

(−kmuc − (Tsu − �Tsu)

kθ

, −Tsl

kθ

)
,

αmax = min

(−kmuc + (Tsu + �Tsu)

kθ

,
Tsl

kθ

)
. (9)

4.1.2. Stability of the equilibria

In the sequel, we investigate the (local and global) sta-
bility properties of these equilibria since the loss of such
stability is strongly related to the occurrence of limit

cycling. First we will address the stability properties
of the isolated equilibrium points (ωeq > 0). The local
stability properties can be accessed by means of lin-
earisation. This yields the following condition for the
local stability of these equilibrium points:

dl := dTcl

dωl

∣∣∣∣
ωl=ωeq

> dmin := max (d1, d2, d3) , (10)

where

d1 = −(bu + �bu)JA/Ju, d2 = −bu − �bu

d3 = −J 2
u kθ − (bu + �bu)2 JA

2 Ju(bu + �bu)

+
√

(J 2
u kθ+(bu+�bu)2 JA)2 − 4 Ju J 2

Akθ (bu+�bu)2

2 Ju(bu + �bu)
.

(11)

In other words, the local stability of these equilibria is
guaranteed if the frictional damping at the lower disc at
ωu = ωl = ωeq , denoted by dl in (10), exceeds a certain
threshold depending on the other system parameters as
in (11). Therefore, it becomes immediately clear that a
certain level of negative damping in Tcl(ωl) can induce
instability.

The global stability of the equilibria is assessed
through a Lyapunov-based approach, see appendix A.
Herein, a candidate Lyapunov function, defined by

V (x, xeq ) = 1

2
kθ (α − αeq )2 + 1

2
Ju(ωu − ωeq )2

+1

2
JA(ωu + α̇ − ωeq )2 (12)

is used. The corresponding time-derivative of V equals

V̇ (x, xeq ) = −(ωu − ωeq )(T f u(ωu) − T f u(ωeq ))

−(ωu + α̇ − ωeq )(T f l(ωu + α̇)

−T f l(ωeq )). (13)

Consequently, a requirement on the negative semi-
definiteness of V̇ culminates in the following two in-
cremental sector conditions for the friction at the upper
disc and the friction at the lower disc:

−(ωu − ωeq )(T f u(ωu) − T f u(ωeq )) ≤ 0 (14)
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(a) Friction without negative damping.
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Fig. 6 A friction model T f l (ωl ) without negative damping and a graphical representation of stability properties of related equilibria

and

−(ωl − ωeq )(T f l(ωl) − T f l(ωeq )) ≤ 0. (15)

Considering the identified friction model at the upper
disc, see Fig. 5(a), we can conclude that (14) is satisfied
for all ωu and ωeq . However, (15) is not satisfied ev-
erywhere for the identified friction model at the lower
disc, see Fig. 5(b), due to the fact that for a certain
range of angular velocities of the lower disc a ’nega-
tive damping’-range is present.

The stability properties of the equilibrium set E , for
u ≤ uE , are assessed using the same candidate Lya-
punov function, see appendix A.

One of the main goals of this paper is to investi-
gate the dependency of friction-induced limit-cycling
on specific friction characteristics. Since the stability
of the equilibria is crucial in this respect, these prop-
erties are studied for four types of (qualitatively dif-
ferent) friction models for the friction at the lower
disc:

1. Consider a friction model T f l(ωl) which is a mono-
tonically increasing function (see Fig. 6(a)). In
Fig. 6(b), the equilibria of the system are depicted as
far as the value of ωeq is concerned with a constant
input voltage uc as a bifurcation parameter. Clearly,
one can recognise that for uc < uE an equilibrium
set, at which ωeq = 0, exists which condenses to an
equilibrium point at uc = uE and progresses as a
branch of isolated equilibria for increasing uc. Due
to the fact that no negative damping is present, the
local stability of the isolated equilibria will be pre-
served for all uc (see condition (10)). Moreover, even

global asymptotic stability of both the equilibrium
set and the isolated equilibria can be guaranteed
since the incremental sector condition (15) on the
friction model is always satisfied, see appendix A.
These stability properties are schematically depicted
in Fig. 6(b) by the arrows and a grey area spanning
the entire range in vertical direction indicates global
asymptotic stability.

2. Consider a friction model T f l(ωl) which exhibits a
region of negative damping and a region of positive
damping for very small and for very high velocities
(a so-called humped friction model) as shown in
Figs. 7(a) and (c). The essential difference between
these two types of humped friction models lies in
the fact that in Fig. 7(a), min(Tcl(ωl)) > Tsl , and in
Fig. 7(c), min(Tcl(ωl)) < Tsl . In Fig. 7(b), the equi-
libria, and related stability properties, of the system
with the friction model as in Fig. 7(a) are depicted.
Based on the stability analyses, global stability (de-
picted by a grey area which extends along the en-
tire vertical axis) and local stability (a bounded grey
area in vertical direction) properties are displayed.
The fact that local stability can not be guaranteed is
caused by the fact that the isolated equilibria are un-
stable for uh1 < uc < uh2, where the subscript ‘h’
indicates that at these points Hopf bifurcations occur
and uh1 and uh2 are defined by

uhi = Tcu(ωhi ) + Tcl(ωhi )

km
, with

dTcl

dωl

∣∣∣∣
ωl=ωhi

= dmin, i = 1, 2, (16)

see (10). Moreover, the global stability proof
is limited by the satisfaction of the incremental
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Fig. 7 Two types of humped friction models T f l (ωl ) and a graphical representation of stability properties of related equilibria

sector condition (15), which is only satisfied for
uc ∈ (0, ug1) ∪ (ug2, ∞), where the subscript ‘g’
indicates that global stability can be guaranteed be-
yond these points and ugi , i = 1, 2, is defined by

ug1 = Tcu(ωg1) + Tcl(ωg1)

km
,

ug2 = Tcu(ωg2) + Tcl(ωg2)

km
, (17)

where ωg1 and ωg2 are chosen such that Tcl(ωg1) =
Tcl(ω2) and Tcl(ωg2) = Tcl(ω1), respectively, with

dTcl

dωl

∣∣∣∣
ωl∈{ω1, ω2}

= 0, ω1 < ω2, (18)

see Figs. 7 and 18. The fact that global sta-
bility is guaranteed for a significantly smaller
range of input voltages than local stability is
obviously due to the conservative nature of the
Lyapunov-based stability analysis, but also hints

towards the fact that limit cycling may exist for
input voltages at which the equilibrium is locally
stable, see Section 4.2. In Fig. 7(b) and (d), for
uh2 < uc < ug2 the grey area increases for increas-
ing uc. This expresses the fact that for increasing uc,
the estimate of the region of attraction increases, see
appendix A. The only difference between Figs. 7(b)
and (d) is that in Fig. 7(d), we can not prove global
asymptotic stability of the equilibrium set, which is
caused by the fact that min(Tcl(ωl)) < Tsl .

3. Consider a friction model T f l(ωl) which exhibits the
Stribeck effect and positive damping exists only for
high velocities (as shown in Fig. 8(a)). In this case,
the isolated equilibrium points are globally asymp-
totically stable when uc ≥ ug2. As far as the equi-
librium set is concerned, we can only show that part
of it is stable, see appendix A.

Figures 6–8 visualise the effect of friction charac-
teristics on the stability of the equilibria, which is
closely related to the occurrence or absence of limit
cycling.
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Fig. 8 A friction model T f l (ωl ) with a Stribeck effect and a graphical representation of stability properties of related equilibria

4.2. Bifurcation diagram (nominal case)

Here we analyze the steady-state behaviour (equilib-
ria and limit cycles) of the estimated model, with
parameters as in Table 1. More specifically, a bifur-
cation diagram with uc as a bifurcation parameter is
constructed. The equilibria are discussed in the previ-
ous section. According to the analysis in the previous
section, Hopf bifurcation points occur for uc = uh1 and
uc = uh2, which give rise to limit cycles. Using a path
following technique in combination with a shooting
method [26, 27], these limit cycles are computed nu-
merically. Herein, the so-called switch model [28] is
used to properly deal with the discontinuities in the dy-
namics, related to the set-valued nature of the friction
models.

The results of an extensive bifurcation analysis are
shown in a bifurcation diagram in Fig. 9, with uc as
a bifurcation parameter. In those figures, the maximal
and minimal values of ωl are plotted when a limit cycle
is found. Floquet multipliers, corresponding to these
limit cycles, are computed numerically and used to de-
termine the local stability properties of these limit cy-
cles. With respect to the obtained results, the following
remarks can be made:

� For uc < uE , an equilibrium set E exists indicated by
branch e1 which condenses to an equilibrium point at
point A (uc = uE ) and progresses as an equilibrium
branch e2 of isolated equilibria.� Point B (uc = uh1) represents a subcritical Hopf bi-
furcation point. For uc > uh1 an unstable equilib-
rium branch e3 exists and an unstable periodic branch

p1 arises from point B, see Fig. 9(b). The periodic
branch p1 consists of limit cycles without stick-slip.� The unstable periodic branch p1 is connected to a
locally stable periodic branch p2 at the point(s) D,
which represents a fold bifurcation point. Since the
periodic branch p2 consists of limit cycles which rep-
resent torsional vibrations with stick-slip, point D
represents a discontinuous fold bifurcation. Fold bi-
furcations in Filippov systems are discussed in the
references [28–30].� Periodic branch p2 consists only of locally stable
limit-cycles with stick-slip, due to the non-smooth
nonlinearities in the friction torque at the lower disc.
For some higher constant input voltage uc (point E
in Fig. 9(a)) the locally stable periodic branch p2 dis-
appears through another discontinuous fold bifurca-
tion. At this fold bifurcation point the stable periodic
branch p2 merges with an unstable periodic branch
p3.� The unstable periodic branch p3 is connected to the
equilibrium branches e3 and e4 in the subcritical Hopf
bifurcation point C .

It should be noted that the friction model in
Fig. 5(b) corresponds to the type of friction model
in Fig. 7(c). Consequently, the existence of the fold
bifurcation point E is expected based on the analy-
sis of global stability properties of equilibrium points
(see Fig. 7(d)). Namely, the stability analysis for such
friction model implies that the equilibrium points
are locally asymptotically stable for uh2 < uc < ug2

and are globally asymptotically stable for uc > ug2,
i.e. limit cycling can not persist beyond uc = ug2.
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Fig. 9 Bifurcation diagram of system (1) with parameters as in Table 1

Consequently, uc = ug2 represents a (conservative) es-
timate of the voltage where the fold bifurcation point E
occurs.

Summarizing, we can conclude that the instability
which is induced by the negative damping in the fric-
tion gives rise to limit cycling. However, the range (in
terms of uc) for which limit cycling occurs is lim-
ited by the presence of viscous friction at higher an-
gular velocities. Moreover, there exists a range of in-
put voltages for which both stable equilibria and sta-
ble limit cycles exist. This co-existence can be ex-
plained by the fact that the viscous friction is only dom-
inant in a neighborhood (in state-space) of the equilib-
ria and outside this neighborhood the negative damp-
ing effect comes into plays once more giving rise to
limit cycling. On this limit cycle a steady-state bal-
ance between the ‘stabilizing’ effect of viscous friction
(at higher velocities) and the ‘destabilizing’ effect of
negative damping (at lower velocities) is attained. In
this respect, we should note that the magnitude of the
range of input voltages for which such co-existence
persists is directly related to the range of angular ve-
locities ωl ∈ [ω1, ωg2] (see Fig. 18), in which the fric-
tion force drops below its value for very low velocities
(due to negative damping). Note that the magnitude of
the range of angular velocities is determined by a bal-
ance between the level of negative damping and viscous
friction. The fact that such subtle balance between neg-
ative damping and viscous friction is a crucial factor
in the qualitative steady-state behaviour will be con-
firmed in the next section, in which the dependency
of this behaviour on these friction characteristics is
studied.

4.3. Changes in the friction characteristics

The previous sections show that the friction character-
istics largely determine whether or not limit cycling
occurs. Now, we will discuss the influence of these
characteristics of the friction at the lower disc on the
steady-state behaviour of the system. In doing so, we
will use the friction model in Fig. 5(b) and the resulting
bifurcation diagram, see Fig. 9, as a reference situation
(i.e. the nominal case). The study of the stability of
the equilibria in Section 4.1 shows that these stability
properties are closely connected to two specific friction
characteristics: firstly, the negative damping/Stribeck-
effect and, secondly, the presence of viscous friction
at higher velocities. Therefore, in this section we will
explicitly investigate the influence of these two friction
characteristics on the steady-state behaviour (i.e. on the
bifurcation diagram).

4.3.1. Changes in the negative damping

In order to analyze the influence of various negative
damping levels in T f l(ωl) on the steady-state behaviour
of the drill-string system (1), we consider two fric-
tion situations that differ from the nominal case, see
Fig. 10(a). In all cases, both the static friction level
Tsl and the viscous friction coefficient bl coincide with
those of the nominal friction model. The angular ve-
locities ωh1 and ωh2, at which dl = dmin, are such that
Hopf bifurcation points appear at approximately the
same input voltages uh1 and uh2 (see expression (16)
and Fig. 10(b)) as in the nominal case. However, in
one friction situation the negative damping is higher
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Fig. 10 Friction torques for various negative damping levels and related bifurcation diagrams

(dark-grey line in Fig. 10(a)) and in the second friction
situation the negative damping is lower (black line in
Fig. 10(a)) than in the nominal friction torque (light-
grey line in Fig. 10(a)). The related bifurcation dia-
grams together with the bifurcation diagram for the
nominal model are shown in Fig. 10(b).

When we compare these bifurcation diagrams the
following can be concluded:� Equilibrium branches e1, e′

1 and e′′
1 are identical for

all friction situations.� The Hopf bifurcation points C , C ′ and C ′′ occur for
(nearly) identical constant input voltages for all fric-
tion situations.� If the negative damping is lower (black line in
Fig. 10(a)), then torsional vibrations disappear for
lower constant input voltages (compare discontinu-
ous fold bifurcation points E ′ and E ′′ in Fig. 10(b)).
In other words, if the negative damping in the fric-
tion torque at the lower disc is lower, then torsional
vibrations appear for a smaller range of input volt-
ages uc. This can be explained using the analysis
of the global stability properties of the equilibrium
points performed in Section 4.1. In that section, we
show that for uc > ug2 (ug2 is defined by (17) and
Fig. 7(a)) equilibrium points of the system are glob-
ally asymptotically stable and, hence, no torsional
vibrations can appear. We also conclude that ug2

does not represent the exact position of the fold
bifurcation point, but only provides a conservative

estimate of the constant voltage at which torsional
vibrations disappear. If we determine ug2 for each
friction situation shown in Fig. 10(a) we obtain that
u′

g2 = 13.9890 V for the friction shown with dark-
grey line and u′′

g2 = 9.2941 V for the friction shown
with black line. Indeed, Fig. 10 shows that if the
range of angular velocities defined by ωl ∈ [ω1, ωg2]
decreases (increases), due to a lower (higher) nega-
tive damping level, then the region (in terms of input
voltages) of co-existence decreases (increases).� From Fig. 10(b), we can conclude that a lower neg-
ative damping level causes lower amplitudes of the
torsional vibrations in the drill-string system. Indeed,
a lower negative damping level causes the friction
force to be higher (see Fig. 10(a)), the dissipation
of the energy due to such friction is higher, which
in turn leads to a lower amplitude of the torsional
vibrations.

4.3.2. Changes in the viscous friction

In order to discuss the influence of various viscous fric-
tion levels in T f l(ωl) on the steady-state behaviour of
the drill-string system (1), we consider two friction sit-
uations in comparison with the nominal friction torque
of the set-up, see Fig. 11(a). In all friction situations,
the static friction level Tsl is the same and the friction
torques differ only for high angular velocities ωl . In
one friction situation, the viscous friction level is higher
(dark-grey line in Fig. 11(a)) and, in the second friction
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Fig. 11 Friction torques for various viscous friction levels and related bifurcation diagrams

situation, the viscous friction level is lower (black line
in the same figure) than in the nominal friction torque
(light-grey line). The related bifurcation diagrams and
the bifurcation diagram for the estimated friction model
of the set-up are shown in Fig. 11(b). When we compare
the obtained bifurcation diagrams the following can be
concluded:� Equilibrium branches e1, e′

1 and e′′
1 are identical for

all friction situations.� The Hopf bifurcation points C , C ′ and C ′′ occur for
(nearly) identical constant input voltages for all fric-
tion situations.� If the viscous friction level is lower, then the fold bi-
furcation point E ′′ appears for higher constant input
voltages; i.e. in such cases torsional vibrations can
appear for larger range of input voltages uc (compare
discontinuous fold bifurcation points E ′ and E ′′ in
Fig. 11(b)). This can be explained in a similar fashion
as we explained the influence of the negative damping
level on the bifurcation diagram using the analysis of
global stability properties of the equilibrium points
performed in Section 4.1. Namely, for a lower vis-
cous friction level, ug2 is higher (see expression (17)
and Fig. 7(d)) and, therefore, the voltages at which no
torsional vibrations can appear (uc > ug2) are higher
(u′

g2 = 8.8290 V for the friction plotted by the dark-
grey line and u′′

g2 = 18.3156 V for the friction plotted
by the black line). Indeed, Fig. 11 shows that if the
range of angular velocities defined by ωl ∈ [ω1, ωg2]

decreases (increases), due to a higher (lower) viscous
friction level, then the region (in terms of input volt-
ages) of co-existence decreases (increases).� In Fig. 11(b), we observe that a lower viscous fric-
tion level causes higher amplitudes of the torsional
vibrations in the system. Namely, when the vis-
cous friction level is lower, then the friction is also
lower (see Fig. 11(a)); hence, the dissipated energy
is lower and the amplitude of torsional vibrations is
larger.

5. Experiments

In this section, the steady-state behaviour (for constant
input voltages) of the experimental drill-string system
is studied and compared to the model-based results. In
Section 5.1, the bifurcation diagram of the estimated
(nominal) case is compared to an experimentally con-
structed bifurcation diagram. In analogy to Section 4.3,
in Section 5.2 the dependency of the steady-state be-
haviour on the friction characteristics is studied exper-
imentally.

5.1. Bifurcation diagram (nominal case)

In order to check the validity of the obtained model of
the drill-string set-up when ondina oil 68 is used as a
lubrication fluid and a 20.5 N normal force is applied at
the brake, experimental results are compared with the
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Fig. 12 Comparison of the simulated and experimental bifurcation diagram

model-based results. As already mentioned earlier, the
predictive quality of the estimated model in steady-state
is of great interest. Therefore, when a constant voltage
is applied at the input of the set-up, each experiment
lasted long enough to guarantee that all transient effects
have disappeared and the last part of the measurement
signals are recorded.

The same type of bifurcation diagram, as shown in
Fig. 9, is constructed experimentally. In order to con-
struct such experimental bifurcation diagram, a range
of constant input voltages are applied to the set-up.
When no torsional vibrations are observed (the system
is in equilibrium), the mean value of the recorded an-
gular velocity is computed and obtained data are plot-
ted using the symbol “x”. When torsional vibrations
are observed at the lower disc, the mean value of lo-
cal maxima and the mean value of local minima of
the vibrations are computed. Then, these experimen-
tally obtained data are plotted using the symbol “o”.
Such experimental results, together with the bifurca-
tion diagram obtained by a numerical analysis of the
estimated model, are shown in Fig. 12(a). Moreover,
when torsional vibrations are observed in the set-up,
the period time T of the vibrations is determined as
well. In Fig. 12(b) such experimental results are com-
pared to the period time of the numerically obtained
limit cycles. The results, shown in Fig. 12, illustrate
the predictive quality of the obtained model.

Both in the numerical and the experimental bi-
furcation diagram we notice qualitatively different

behaviour of the system when the constant input volt-
age is changed:� For very low input voltages, the system is in the stick-

ing phase.� If the input voltage is increased, the system enters
the region where only torsional vibrations (i.e. stable
limit cycles) appear.� If the input voltage is even higher, then the input
voltage is in the region where torsional vibrations
(stable limit cycles) and constant angular velocity at
the lower disc (stable equilibrium points) co-exist in
the set-up.� If the input voltage is high enough (uc > 3.8 V), the
system enters the region where no torsional vibra-
tions can appear in the system in steady-state.

In order to show that the experimental behaviour
indeed matches well with the model behaviour, a com-
parison between the experimentally and numerically
obtained time-series is provided in Fig. 13. In this fig-
ure, the experimental angular velocity (solid black line)
and the angular velocity obtained using the estimated
model (dashed grey line) in steady-state are shown for
different constant input voltages. Namely, signals de-
picted in Figs. 13(a–c) represent stick-slip limit-cycling
(torsional vibrations) and Fig. 13(d) represents an equi-
librium point. Clearly, the combination of Fig. 13(c)
and (d) confirms that in the experiments a region ex-
ists for which both stable equilibria and stable limit
cycles exist. From the comparison between simulation
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Fig. 13 Experimental and simulated angular velocity at the lower disc for various constant input voltages and various initial conditions

and experimental results, it can be concluded that with
the suggested model the steady-state behaviour of the
set-up is modelled accurately.

5.2. Changes in the friction characteristics

In Section 4.3, we have analyzed how various changes
in the friction characteristics can influence torsional
vibrations in drill-string systems. Here, we investi-
gate the way in which various friction conditions
influence torsional vibrations in the experimental
set-up.

5.2.1. Changes in the applied normal force

In order to analyze how changes in the normal force,
which is applied to the brake, influence the steady-state
behaviour of the set-up, we subsequently apply a 18 N
and a 12.2 N normal force to the brake. Next, the param-

eters of the model of the obtained friction torques are es-
timated, using a similar identification procedure used to
identify the nominal model, see Section 3. The obtained
models are validated and numerical and experimental
bifurcation diagrams are constructed for both normal
force levels. The estimated friction models T f l(ωl) are
shown in Fig. 14. The related bifurcation diagrams are
shown in Fig. 15.

When a lower normal force is applied to the brake,
the static friction level is lower, the sticking region de-
creases and the lower disc starts to rotate for lower input
voltages. Furthermore, for lower normal force levels,
the separation process between the contacting surfaces
(brake disc and the brake blocks) and, therefore, the
full fluid lubrication regime occur for lower velocities
(different friction regimes are depicted schematically
in Fig. 16). Moreover, in Section 4.1 we have con-
cluded that the position of the second Hopf bifurcation
point is determined by the point on the friction curve
T f l(ωl) where the negative damping reaches the value
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Fig. 14 Estimated friction models for the friction at the lower
disc for various normal force levels applied at the brake

dmin (ωeq = ωh2). This, in fact, corresponds to the point
where the full fluid lubrication appears (see Fig. 16).
Consequently, for lower normal force levels, the Hopf
bifurcation points C ′ and C ′′ in Fig. 15 appear for lower
input voltages and the region, in which a constant veloc-
ity at the lower disc (a stable equilibrium) can appear,
increases.

From Fig. 14, it can be seen that we estimate a
higher viscous friction coefficient for a lower normal
force level. Namely, when a lower normal force is ap-

plied, full fluid lubrication appears at the lower angu-
lar velocities. Moreover, for higher normal forces (and
uc high enough) the system is closer to the transition
between the partial and full fluid lubrication regime
than when the normal force is lower. Consequently, in
the range of input voltages which can be applied to the
system, this effect is modelled with a lower viscous
friction for higher normal forces. However, if normal
forces are low enough, the effects which cause the neg-
ative damping in friction disappear and torsional vi-
brations in the drill-string system also disappear. In the
considered experimental drill-string set-up torsional vi-
brations disappear when the normal force is smaller
than 7.8 N. An important observation is that the nor-
mal force influences the friction characteristics in a
rather complex way, which can be explained using
the friction regimes in Fig. 16. By no means the nor-
mal force forms a mere scaling factor for the friction
force.

Moreover, Figs. 14 and 15 indicate, on an exper-
imental level, that if the range of angular velocities
defined by ωl ∈ [ω1, ωg2] decreases, in this case due
to a decreasing normal force level, then the region
(in terms of input voltages) of co-existence decreases
(mainly due to the fact that the discontinuous fold
bifurcation point E moves to lower constant input
voltages).
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5.2.2. Temperature changes

The results, which are analyzed in Section 5.1, are ob-
tained when the temperature in the laboratory, where
the set-up is placed, is between 25 ◦C and 30 ◦C. The
same kind of experimental results are collected when
the temperature in the laboratory is between 17 ◦C
and 22 ◦C, for the same normal force applied at the
brake (20.5 N). The parameters of the obtained fric-
tion torque are estimated, the obtained model is vali-
dated and both the numerical and experimental bifur-
cation diagrams are constructed. The estimated friction

torque at the lower part of the set-up is shown in Fig.
17(a). The related bifurcation diagrams are shown in
Fig. 17(b).

When the temperature is lower, the viscosity of
the oil becomes higher. With such oil, the separation
between the contacting surfaces (brake disc and the
brake blocks in the experimental set-up) and the full
fluid lubrication process occurs for lower velocities. In
Section 4.1, we have concluded that the position of the
second Hopf bifurcation point is determined by the an-
gular velocity ωl for which the negative damping in
T f l(ωl) reaches value dmin, which corresponds to the
point where full fluid lubrication appears (see Fig. 16).
Consequently, the Hopf bifurcation point C ′, in Fig.
17(b), appears for lower input voltages than it does in
the set-up when the temperature in the laboratory is
higher.

Moreover, in Section 4.3 we also conclude that a
higher viscous friction level causes the decrease of the
amplitude of torsional vibrations and that the range of
voltages in which torsional vibrations can appear is
smaller (compare Fig. 11 with Fig. 17).

Finally, Fig. 17 indicates on an experimental level
that if the range of angular velocities defined by ωl ∈
[ω1, ωg2] decreases, in this case due to a lower tem-
perature, then the region (in terms of input voltages) of
co-existence decreases.
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(a) Estimated friction model at the lower
disc for various temperatures.
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Fig. 17 Dependency of the friction characteristics and the bifurcation diagram on temperature changes: T ∈ [17 ◦C, 22 ◦C] and
Tref ∈ [25 ◦C, 30 ◦C]
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6. Conclusions

In this paper, we investigate the way in which the oc-
currence and nature of friction-induced limit cycling in
flexible mechanical systems (e.g. a drill-string system)
depends on essential friction characteristics. This study
is performed on the level of a theoretical stability analy-
sis and both model-based and experimental bifurcation
analyses. The striking similarity of these model-based
and experimental results confirms the quality of the
model. The main conclusion, which is based on the-
oretical, numerical and experimental results, is that a
subtle interplay of negative damping characteristics at
low velocities and viscous friction at higher velocities
determines the occurrence and nature of the friction-
induced limit cycling and the range of parameters for
which these limit cycles sustain. Moreover, results on
all levels confirm that discontinuous bifurcations play
a crucial role in the creation and destruction of these
limit cycles.

The way in which such friction characteristics are
influenced by physical conditions such as temperature
and normal forces on the frictional contact is stud-
ied experimentally. An important observation is that
the normal force in the frictional contact influences
the friction force in a rather complex way and can
induce a higher negative damping level (for higher
normal forces), which in turn can give rise to limit
cycles of higher amplitudes for a larger range of
parameters.

It should be noted that the configuration of the ex-
perimental set-up (two masses, coupled by a flexibil-
ity, of which one is subject to friction and the other is
driven by an actuator) can be recognised in many other
mechanical systems, in which friction deteriorates the
system performance by the induction of vibrations. In

this context, one can think of printers, pick and place
machines, industrial and domestic robots, simple earth-
quake models, accurate mirror positioning systems on
satellites and many more. Finally, the insight gained by
this work could very well be used to steer research on
controller design for such systems aiming at the avoid-
ance of friction-induced limit cycling.

Appendix A: Non-local asymptotic stability

of equilibria

In this appendix, the (non-local) stability properties of
the equilibria of system (1) will be investigated. Here,
we will address the stability properties of the equilibria
for the case of a humped friction model for the friction
at the lower disc as given in Fig. 7(a). Based on that
analysis we will also be able to draw conclusions for the
case when the friction at the lower disc is as depicted
in Figs. 6(a), 7(c) and 8(a).

Let us assess the stability properties of the isolated
equilibria using the candidate Lyapunov function V
given by (12). The time-derivative of V obeys (13).
Note that, for the friction model for the friction at the
upper disc, the incremental sector condition (14) is sat-
isfied. When T f l(ωl) is represented by a humped fric-
tion model, as shown in Fig. 7(a), then the incremental
sector condition (15) can be satisfied in the neighbor-
hood of an equilibrium point only when

uc ∈ (uE , u1) ∪ (u2, ∞), (19)

where uE is defined by (7) and

u1 = Tcu(ω1) + Tcl(ω1)

km
, u2 = Tcu(ω2) + Tcl(ω2)

km
,

(20)

where ω1 and ω2 are defined by (18) (see also Fig. 18).
In other words, V̇ (x, xeq ) can be shown to be negative
semidefinite, at least in a neighborhood of xeq , when
xeq is such that

dTcl

dωl

∣∣∣∣
ωl=ωeq

> 0. (21)

As a consequence, stability is guaranteed for equilib-
rium points satisfying (19). Let us now address the issue
of asymptotic stability.
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We first focus on a range of input voltages for
which global asymptotic stability can be shown. Note
that when the input voltage uc satisfies the condi-
tion uc ∈ (0, ug1) ∪ (ug2, ∞), with ug1 and ug2 defined
by (17) and ωg1 and ωg2 visualised in Fig. 18, then the
related equilibrium point xeq is such that condition (15)
is satisfied for all x ∈ R3; consequently, V̇ (x, xeq ) ≤ 0
for all x ∈ R3. For such equilibria, it can be concluded
that V̇ (x, xeq ) = 0 for x ∈ L, with

L = {x ∈ R3 | ωu = ωeq , α̇ = 0}. (22)

If x ∈ L, then ωu = ωeq = const and α̇ = 0. Conse-
quently, for an invariant subset of L it should hold
that ω̇u = α̈ = 0. If we substitute this in the equations
of motion (1) of the system, then the obtained equa-
tions can only be satisfied in the equilibrium point.
This leads to the conclusion that such an equilibrium
point xeq represents the largest invariant set on L.
The application of LaSalle’s invariance principle now
proves that such equilibrium points are attractive and
the whole state space R3 represents the region of at-
traction. Therefore, since we proved that every equi-
librium point is stable and globally attractive, we can
conclude that all those equilibria are globally asymptot-
ically stable. We illustrate this fact graphically in Fig.
7(b).

In the range of input voltages uc ∈ (ug1, u1) ∪
(u2, ug2) global stability can not be guaranteed. Let
us now consider such an equilibrium for uc = û2 (with
û2 ∈ (u2, ug2)), given by

û2 = Tcu(ω̂2) + Tcl(ω̂2)

km
, (23)

see Fig. 18. For such an equilibrium, V̇ (x, xeq ) ≤
0, ∀ x ∈ B2, with

B2 = {x ∈ R3 | ωl ∈ [ω̂′
2, ω̂2]}, (24)

where ω̂′
2 is such that T f l(ωl) ≤ T f l(ω̂2), for all ωl in

the connected set [ω̂′
2, ω̂2]. Moreover, we define a set

x ∈ L̄, on which V̇ (x, xeq ) = 0, by

L̄ = {x ∈ B2 | ωu = ωeq , α̇ = 0}. (25)

Again we can conclude that such equilibrium points
xeq represents the largest invariant set on L̄ and appli-

cation of LaSalle’s invariance principle now proves that
such equilibrium points are (at least locally) attractive.
Therefore, since we proved that every equilibrium point
is stable and locally attractive, we can conclude that all
those equilibria are locally asymptotically stable. An
estimate of the region of attraction of xeq is given by:

Iρmax = {x ∈ R3 | V (x, xeq ) < ρmax}, with ρmax

= max
Iρ⊂B2

ρ, (26)

with

Iρ = {x ∈ R3 | V (x, xeq ) < ρ}. (27)

Consequently, if û2 is closer to u2, defined by (20), then
the set Iρmax is smaller and therefore the estimate of the
basin of attraction of the equilibrium point for uc = û2

is also smaller, see Fig. 7(b). A similar reasoning can be
adopted for equilibria, for input voltages uc = û1, with
û1 ∈ (ug1, u1). This concludes the proof of the (non-
local) stability properties of the isolated equilibria in
case of a friction model as depicted in Fig. 7(a).

For the stability proof of the equilibrium set, which
is based on the same candidate Lyapunov function, we
refer to [23, 24]. Based on the results therein we con-
clude that for the friction model presented in Fig. 7(a),
the equilibrium set is globally asymptotically stable.
The entire stability analysis presented above yields the
stability of all equilibria as depicted schematically in
Fig. 7(b).

For a monotonically increasing friction model
T f l(ωl), as in Fig. 6(a), the incremental sector condi-
tion (15) is satisfied globally for all equilibria. Hence
global asymptotic stability can be proven, using similar
reasoning as above, for all isolated equilibria and equi-
librium sets, see Fig. 6(b).

Now, let us consider the humped friction model
shown in Fig. 7(c). The only differences between
the stability properties of the equilibria for this fric-
tion model and those for the friction model shown
in Fig. 7(a) are that the isolated equilibria can
only be proven to be globally asymptotically stable
for uc > ug2 and that the equilibrium set can only
be proven to be locally asymptotically stable [24].
This leads to the stability results as depicted in
Fig. 7(d).

Finally, the stability results for the equilibria for a
friction model as shown in Fig. 8(a) differs from those
for the friction model in Fig. 7(c) in the sense that the
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asymptotic stability of the equilibrium set as a whole
can not be shown, however almost all points of the equi-
librium set (except the boundary points of the equilib-
rium set) are Lyapunov stable [24]. This degradation
of the stability properties is directly related to the fact
that negative damping occurs for infinitesimally small
ωl in T f l(ωl).
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