
Nonlinear Dyn (2006) 46:259–272
DOI 10.1007/s11071-006-9041-0

O R I G I NA L A RT I C L E

Experimental evidence of non-standard bifurcations in
non-smooth oscillator dynamics

Paolo Casini · Oliviero Giannini ·
Fabrizio Vestroni

Received: 12 July 2005 / Accepted: 26 August 2005 / Published online: 8 August 2006
C© Springer Science + Business Media B.V. 2006

Abstract Analytical and experimental investigations
are performed in order to characterize the dynamic be-
haviour of a non-smooth rotational oscillator, which
exhibits multiple discontinuity boundaries in the phase
space. The physical system consists of a rotating body
subjected to an elastic restoring force and in contact
with one or two rough discs rotating with constant
driving velocities. The presence of multiple disconti-
nuity boundaries caused by frictional contacts leads to
non-standard bifurcations that are studied by means of
a simple mechanical model.

A test set-up has then been built to investigate the
correctness of modelling of the friction force and the
validity of the proposed model for technical applica-
tions: the experimental measurements qualitatively and
quantitatively capture the basic scenarios anticipated
by the model while a strong robustness of the phenom-
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Chieti-Pescara “G. D’Annunzio”, Viale Pindaro 42–65127
Pescara, Italy

O. Giannini
Dipartimento di Meccanica e Aeronautica, Università degli
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ena pointed out by the theoretical analyses has been
revealed in the experiments.
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1. Introduction

Non-smooth characteristics arise in many mechanical
systems due to dry friction, impacts, clearances or
a combination of these phenomena [1–13]. From a
mathematical point of view [14–16], their behaviour
is governed by dynamic systems having a different
smooth functional form of the vector field in different
countable regions of the state space: smoothness in
regions of phase space is lost as trajectories cross the
boundaries between adjacent regions (discontinuity
boundaries), where the vector field and its Jacobian
can be discontinuous, or even the state vector can be
discontinuous. Depending on the properties of the
discontinuity boundaries, piecewise smooth dynamic
systems (PSS) can be divided into three classes:
continuous PSS [4], Filippov PSS [1, 4] and hybrid
PSS [4, 15]. In the first class the system vector field is
the same in the adjacent regions, whereas its Jacobian
changes; in the second class the system vector field
changes passing from a region to the adjacent; finally,
in the third class the system vector state is discontin-
uous across a boundary. Examples of continuous PSS
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are mechanical systems characterized by discontinu-
ous compliance: namely, oscillators colliding with a
deformable stop, block assemblies connected by no-
tension springs, beams with breathing cracks. Stick-slip
mechanical systems characterized by friction contacts
are a widely studied example of Filippov systems [1–4,
17]. Finally, hybrid systems include important applica-
tions characterized by impacts, as rocking blocks and
oscillators colliding with rigid stops. The mentioned
examples are taken from the mechanical field, however,
problems concerning PSS are important also in other
branches of applied sciences. PSS can exhibit most of
the bifurcations exhibited by smooth systems, but in
addition they also show novel transitions which will
be called non-standard bifurcations [7–12, 15, 16].

Particular attention here is focussed on systems ex-
hibiting friction-induced vibrations: in recent years
much research effort has been devoted on the
theoretical as well as on technical implications of
these systems and important experimental studies [2,
13] have been performed dealing with the measure-
ments of friction parameters; nevertheless experimen-
tal investigations explicitly devoted to the non-standard
bifurcations caused by the presence of multiple fric-
tional contacts are missing.

The model of a non-smooth rotational oscillator,
in contact with one or two different rough discs ro-
tating with constant driving velocities, is considered

in order to investigate the dynamics of vibrating sys-
tems characterized by the occurrence of multiple fric-
tional contacts. Due to the peculiar nonlinearity of the
contact force exerted by the two driving supports, the
oscillator is modeled by a Filippov PSS, while the
presence of multiple discontinuity boundaries leads to
non-standard bifurcations governed by interactions be-
tween system trajectories and one or both discontinuity
boundaries; the evolution of steady state attractors, as
the angular velocities of the discs are varied, is studied
by means of analytical and experimental investigations.

A test set-up of the model is experimentally investi-
gated in order to verify the accuracy of the friction law
used in the model, in order to validate the existence of
the non-standard bifurcations predicted by theoretical
analyses and hence to check the validity of the proposed
model for technical applications.

2. Theoretical model

2.1. System description

The proposed mechanical model is shown in Fig. 1a.
A circular sector, of amplitude π + 2α(0 ≤ α ≤ π/2),
radius R and moment of inertia Jo, can rotate around
a point O and is subjected to a visco-elastic restoring
force due to a linear rotational spring of stiffness kR

Fig. 1 System model: (a) general scheme; (b) friction law; (c) continuous double contact; (d) sequential contact
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Fig. 2 Discontinuity
boundaries in the phase
space: (a) continuous
contact with a unique disc;
(b) continuous double
contact with both discs
(α = π

2 ); (c) sequential
contact with only one disc at
a time (α = 0); (d)
Overlapping contact with
finite length (0 < α < π

2 )

and to a linearly viscous dashpot of damping coeffi-
cient c; its angular rotation θ at the actual time t with
respect to the unstressed position is denoted by x(t)
which is assumed positive if counterclockwise. The
body is dragged by two rough discs (disc 0 and disc
1 both of radius r) rotating with constant driving veloc-
ities w0, w1 and pushed onto the main disc by constant
compressive forces N0 and N1 normal to the contact
surfaces; unlike the sign convention assumed for the
main disc, the angular velocity of the driving discs are
assumed positive if clockwise, as shown in Fig. 1a,c,d:
this is due to the fact that during the rolling phase main
disc and the driving discs will have opposite angular
velocities. The driving discs can be characterized by
different friction parameters and they can be both in
contact with the body depending on the value assumed
by α. As it can been easily recognized, if α = 0 the
body interacts only with one disc at a time, if α = π/2
the body is continuously in contact with both discs, fi-
nally if 0 < α < π/2, during its motion the body can
be in contact with only disc 0, with both discs, with
only disc 1.

Energy is transferred from the moving supports
(disc 0 and/or disc 1) to the rotating oscillator via
the friction force which is described by the so-called
Conti’s friction law; this law, which is widely used in
the literature [2, 9, 10], is able to characterize com-
monly recorded features and provides an hyperbolical
dependence on the relative velocity vRi between the
contact points of the body and the disc i(i = 0, 1), as
qualitatively sketched in Fig. 1b.

Some important characteristics of the discontinuity
boundaries in the phase space, strictly depend on the
parameter α. In particular, four classes of systems can
be distinguished in which the mass is continuously in
contact with at least one disc:

(a) continuous single contact: α = π/2, disc 1 is not in
contact. This case, where the mass is continuously
in contact only with disc 0, is the simplest one and
it will be discussed in order to introduce the basic
features of the system behaviour. In the phase space
only one discontinuity boundary �F0 exists, Fig. 2a:
the model strictly recalls the case of the well-known
‘friction oscillator’, widely studied in the literature
[2, 3, 6, 8].

(b) continuous double contact: α = π/2 (Figs. 1c and
2b). The mass is continuously in contact with both
discs and two distinct discontinuity boundaries, �F0

and �F1, are present in the phase space: these
boundaries are placed one upon the other only in
the case w0 = w1.

(c) sequential contact with only one disc at a time: α =
0 (Figs. 1d and 2c). The mass is in contact only with
disc 0 if x(t) < 0 and only with disc 1 if x(t) ≥ 0.
Class c) is reduced to class a) if w0=w1 and the discs
are characterized by the same friction parameters.

(d) overlapping contact with finite length: 0 < α <

π/2. Depending on the position x(t), the mass in-
teracts either with only one disc at time or with
both discs. This is the general case and the relevant
switching manifolds are reported in Fig. 2d.
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Despite their possible interesting applications,
classes (b)–(d), where multiple discontinuity bound-
aries occur, have not exhaustively been studied in
the literature, notwithstanding these classes are felt
to likely exhibit a richness of different dynamic be-
haviours. Many of these phenomena are due to the
unique nature of these systems since they depend
on the non-smoothness sets of the system and, in
particular, on the presence of multiple discontinuity
boundaries. These novel phenomena involve gener-
ically interactions between system trajectories and
phase space discontinuity boundaries. In the following
the first three classes will be analytically studied and
compared mainly disclosing the dynamic behaviour of
class (b) and (c) systems.

2.2. The governing equations: Class a (single
disc)

In this case, the oscillator is continuously in contact
only with disc 0, since it is assumed that disc 1 is not
in contact. The governing equation reads as:

JO
d2θ

dt2
+ c

dθ

dt
+ kRθ − RN0μ0(vR0) = 0 (1)

The Conti’s friction law, relevant to disc 0, reads as
follows

μ0(vR0) := μs0 − μk0

1 + p0|vR0| + μk0 (2)

where vR0 = rw0 − R dθ
dt is the relative velocity be-

tween the contact points of the main disc and disc 0
according to the sign conventions given in the previ-
ous section, μs0 is the static friction coefficient: the
friction coefficient hyperbolically decays to a resid-
ual value of friction μk0 < μs0 whereas the coefficient
p0>1 quantifies the descent steepness (negative slope)
of the friction force. It is now convenient to normalise
the equation of motion with respect to the rotary inertia
and the stiffness and by introducing a non-dimensional
time τ according to the following:

τ = ωt, ω =
√

kR

J0
,

·
(◦) = d(◦)

dτ
= d(◦)

dt
1

ω
,

u0 = RN0

kR
, u1 = RN1

kR
, ζ = c√

kR J0

(3)

Then, a state vector x ≡ (x1, x2) gathering the state
variables of rotation and absolute angular velocity is
defined. In a region D ⊂ Rn of the phase space the
system under investigation can be described as follows,
Fig. 2a:

ẋ =
{

f1(x; p), if HF0(x) > 0

f2(x; p), if HF0(x) < 0
(4)

where:

f1(x; p) =
{

x2

−x1 − ζ x2 + u0μ0(vR0)
(5)

f2(x; p) =
{

x2

−x1 − ζ x2 − u0μ0(vR0)
(6)

p is the parameter vector relevant to damping and fric-
tion characteristics, HF0 is a smooth scalar function of
the system state

HF0(x) := rw0 − ωRx2 (7)

with nonvanishing gradient ∇x HF0(x) and coinciding
with the relative velocity between mass and disc due to
the normalizations of Equation (3). HF0(x) defines the
unique switching manifold,

�F0 := {x ∈ Rn: HF0(x) = 0} (8)

The discontinuity boundary �F0 divides D in the two
regions D1 and D2 where the system is smooth and
is described by the vector fields f1(x; p) and f2(x; p)
respectively, defined over the entire phase space under
consideration, i.e., on both sides of �F0:{

D1 := {x ∈ D : HF0(x) > 0}
D2 := {x ∈ D : HF0(x) < 0} (9)

Since the system at hand is a discontinuous PSS, two
different vectors, namely f1(x; p) and f2(x; p), can be
associated to a point x ∈ �F0. If the transversal com-
ponents of f1(x; p) and f2(x; p) have the same sign,
the orbit crosses the boundary and has, at that point,
a discontinuity in its tangent vector; the set of this
kind of points is called the crossing set �c

F0 ⊂ �F0. On
the contrary, if the transversal components of f1(x; p)
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and f2(x; p) are of opposite sign, i.e. if the two vector
fields are ‘pushing’ in opposite directions, the state of
the system is forced to remain on the boundary and
to ‘slide’ on it. Thus a so-called sliding motion takes
place; the set of this kind of points is called the sliding
set �s

F0 ⊂ �F0 and is the complement to �c
F0 in �F0. It

should be noted that in the case of friction discontinuity
boundaries, when the above defined sliding motion oc-
curs, a rolling motion occurs between the rotating body
and the driving disc and a sticking phase is also said
to be attained. In other words, the term sliding motion
refers to the motion of the state point in the phase space
while the term stick phase refers to the motion of the
rotating disc.

The solutions of Equation (4) can be constructed by
concatenating standard solutions in D1, D2 and sliding
solutions on �F0. The latter ones can be obtained in dif-
ferent ways, e.g. the Filippov’s convex method [14] or
Utkin’s equivalent control method [18]. The governing
equations for x ∈ �s

F0 are:{
ẋ1 = x2

ẋ2 = 0
, |−x1 − ζ x2| < u0μs0 (10)

2.3. The governing equations: Class b
(continuous double contact)

In this case two different discontinuity boundaries and
three smoothness regions do exist in the phase plane:
the system can be described as follows, Fig. 2b:

ẋ =

⎧⎪⎨⎪⎩
f1(x; p), if HF0(x) > 0 and HF1(x) > 0

f2(x; p), if HF0(x) < 0 and HF1(x) > 0

f3(x; p), if HF0(x) < 0 and HF1(x) < 0

(11)

where:

f1(x; p)=
{

x2

−x1 − ζ x2 + u0μ0(vR0) + u1μ1(vR1)
(12)

f2(x; p)=
{

x2

−x1 − ζ x2 − u0μ0(vR0) + u1μ1(vR1)
(13)

f3(x; p)=
{

x2

−x1 − ζ x2 − u0μ0(vR0) − u1μ1(vR1)
(14)

HF0 and HF1 are smooth scalar functions of the system
state with nonvanishing gradients:{

HF0(x) := rw0 − ωRx2

HF1(x) := rw1 − ωRx2
(15)

As in the previous case, Equations (12)–(14) have been
derived by normalising the equations of motion, ac-
cording to Equation (3). The friction force, relevant to
disc i(i = 0, 1) reads as follows:

μi (vRi) : = μsi − μki

1 + pi |vRi | + μki ,

vRi : = rwi − ωRx2 (16)

In Equation (11) HF0(x) and HF1(x) define the two dis-
continuities boundaries:{

�F0 := {x ∈ Rn : HF0(x) = 0}
�F1 := {x ∈ Rn : HF1(x) = 0} (17)

The discontinuity boundaries �F0 and �F1 divide D in
the three regions Di (i = 1, 2, 3)⎧⎪⎨⎪⎩

D1 := {x ∈ D : HF0(x) > 0, HF1(x) > 0}
D2 := {x ∈ D : HF0(x) < 0, HF1(x) > 0}
D3 := {x ∈ D : HF0(x) < 0, HF1(x) < 0}

(18)

where the system is smooth and is defined by the vec-
tor fields fi (x; p)(i = 1, 2, 3) which are assumed to be
defined over the entire local region of phase space.

In this case too, two different vector ẋ can be asso-
ciated to points belonging to a discontinuity boundary:
namely f1(x; p), f2(x; p) to x ∈ �F0 and f2(x; p), f3(x;
p) to x ∈ �F1. As it has been done in Subs. 2.2, for each
switching manifold the crossing set and the sliding set
can be defined: i.e. �c

F0, �s
F0 belonging to �F0 and �c

F1,
�s

F1 belonging to �F1. Two sliding motions are possi-
ble: a) sliding motion in �s

F0, when the mass rolls on
disc 0, b) sliding motion in �s

F1, when the mass rolls
on disc 1.

Equation (11) can be solved by concatenating stan-
dard solutions in D1, D2, D3 and sliding solutions on
�F0 and �F1. The governing equations for x ∈ �s

F0 are
now:{

ẋ1 = x2

ẋ2 = 0
, |−x1 − ζ x2 + u1μ1(vR1) sgn (vR1)|

< u0μs0 (19)
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whereas the governing equations for x ∈ �s
F1 are:{

ẋ1 = x2

ẋ2 = 0
, |−x1 − ζ x2 + u0μ0(vR0)sgn(vR0) |

< u1μs1 (20)

2.4. The governing equations: class c (sequential
contact)

In this configuration the rotating half-disc is in contact
with one driving disc at a time: thus the state space
exhibits four discontinuity boundaries. By proceeding
as in the previous sections, the system can be described
as follows, Fig. 2c:

ẋ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f1(x; p), if HF0(x) > 0 and Hσ (x) < 0

f2(x; p), if HF0(x) < 0 and Hσ (x) < 0

f3(x; p), if HF1(x) > 0 and Hσ (x) > 0

f4(x; p), if HF1(x) < 0 and Hσ (x) > 0

(21)

where:

f1,2(x; p) =
{

x2

−x1 − ζ x2 ± u0μ0(vR0)
(22)

f3,4(x; p) =
{

x2

−x1 − ζ x2 ± u1μ1(vR1)
(23)

In Equation (21) HF0(x), HF1(x) and Hσ (x) define three
discontinuities boundaries, the last one coinciding with
the x2 axis of the phase plane:⎧⎪⎨⎪⎩

�F0 := {x ∈ Rn: HF0(x) = 0}
�F1 := {x ∈ Rn: HF1(x) = 0}
�σ := {x ∈ Rn: Hσ (x) = 0}

(24)

D is then divided in the four regions Di (i = 1, 2, 3, 4)⎧⎪⎪⎪⎨⎪⎪⎪⎩
D1 := {x ∈ D: HF0(x) > 0, Hσ (x) < 0}
D2 := {x ∈ D: HF0(x) < 0, Hσ (x) < 0}
D3 := {x ∈ D: HF1(x) > 0, Hσ (x) > 0}
D4 := {x ∈ D: HF1(x) < 0, Hσ (x) > 0}

(25)

where the system is smooth and is defined by the vector
fields fi (x; p) (i = 1, 2, 3, 4) which are assumed to be
defined over the entire local region of phase space.

Sliding motions on �F0 and �F1 are governed by
the following equations:{

ẋ1 = x2

ẋ2 = 0
, |−x1 − ζ x2| < u0μs0{

ẋ1 = x2

ẋ2 = 0
, |−x1 − ζ x2| < u1μs1

(26)

2.5. Characteristic bifurcations exhibited
by the model

The previous model exhibits a number of bifurcations
with non-standard properties: these have been found
and discussed in [9, 10]. Attention is here focused
on three characteristic bifurcations disclosed by the
model, Figs. 3–5, by varying the velocity of disc 0,
w0, while the velocity of disc 1 is fixed: w1 = w̄.

2.5.1. Sliding-exchange bifurcation
in double contact

This behaviour is relevant to a double continuous con-
tact configuration, Fig. 1c. The portraits in Fig. 3 have
been obtained by assuming the same friction char-
acteristics for both discs. The bifurcation occurs at
w0 = w1 = wα

0 , when the two discontinuity boundaries
are placed one upon the other. The sliding motions
in the stable cycle change: in fact, for values of w0

smaller than wα
0 the stable cycle shows a sliding solu-

tion only in �F0, i.e. the oscillating disc rolls on disc 0
(Fig. 3a); for values of w0 larger than wα

0 the stable cy-
cle shows a sliding solution only in �F1, i.e. oscillating
disc rolls on disc 1 (Fig. 3c). Thus, at w0 = wα

0 = w̄,
Fig. 3b, a bifurcation occurs since a sliding solution
disappears in �F1 and appears in �F0. This bifurca-
tion is strictly related to the presence of two different
discontinuity boundaries and it will be called ‘sliding-
exchange’ bifurcation.

2.5.2. Discontinuous fold bifurcation
in double contact

In this case too, the portraits in Fig. 4 have been ob-
tained by considering double contact configuration,
Fig. 1c, and by assuming the same friction charac-
teristics for both discs. The bifurcation occurs when
w0 = w

β

0 Fig. 4b: two periodic solutions, one stable and
the other unstable, tangent to �F1 coexist in the phase
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Fig. 3 Phase portraits around the ‘sliding-exchange’ bifurcation at wα
0 ; (a) w0 < wα

0 , (b) w0 = wα
0 , (c) w0 > wα

0

Fig. 4 Phase portraits around the non-smooth fold bifurcation at wα
0 ; (a) w0 < w

β

0 , (b) w0 = w
β

0 , (c) w0 > w
β

0

Fig. 5 Phase portraits around the sticking appearance bifurcation at w
γ

0 ; (a) w0 < w
γ

0 , (b) w0 = w
γ

0 , (c) w0 > w
γ

0

plane, which are a repelling motion for internal points
and an attracting motion for external initial conditions.
For values of w0 smaller than w

β

0 three limit sets exist,
Fig. 4a: a stable fixed point, a stable one-sliding �F1

limit cycle and one unstable zero-sliding limit cycle.
The growth of w0 up to w

β

0 has a two-fold effect: the
amplitude of the unstable cycle increases and the length
of the stick phase on belt 1 decreases. For values of w0

larger than w
β

0 only a stable fixed point attractor exists:
the relevant phase portrait is shown in Fig. 4c. This
bifurcation can be classified as a ‘discontinuous fold
bifurcation’ according to the definition given in [8].

2.5.3. Sticking appearance bifurcation
in sequential contact

The portraits in Fig. 5 have been obtained by con-
sidering sequential contact configuration, Fig. 1d, and
by assuming the same friction characteristics for both
discs. The bifurcation occurs at w0 = w

γ

0 , Fig. 5b. The

sliding motions in the stable cycle change: in fact, for
values of w0 smaller than w

γ

0 the stable cycle shows
one stick phase only on �F0 (Fig. 5a); for values of
w0 larger than w

γ

0 a sliding solution on �F1 is present
and the oscillating body rolls sequentially on both discs
(Fig. 5c). Thus a bifurcation occurs for w0 = w

γ

0 since,
in the stable cycle, a sliding solution appears on �F1.

3. Experiment

The main aim of the experimental campaign is to ob-
tain a qualitative and quantitative confirmation of the
peculiar scenarios exhibited by the proposed model.
As a first step, the main parameters of the system
(e.g. friction coefficients, modal parameters etc.) have
been quantified and reported in Section 3.3 and in the
Appendix. As a second step, the stick-slip limit cycles
obtained for different values of the rotational velocity
of the driving discs have been measured for different
contact materials.
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3.1. Test rig

The experimental rigs, Fig. 6, consist in one oscillating
stainless steel disc (D), which represents a one-degree
of freedom system that is characterized by the moment
of inertia Jo, the rotational stiffness kR, and the damping
coefficient c. The oscillating disc is 25 mm thick and
has a diameter of 250 mm, its moment of inertia J is
0.0548 Kg m2. The two linear springs S1 and S2 provide
the elastic force that recalls the disc’s angular position
toward the equilibrium point; the stiffness constant of
these springs is 10.5 N/m. The natural frequency of the
system can be adjusted changing the spring stiffness.

A test has been performed to measure the resulting
rotational stiffness kR and the damping of the system
before starting the stick-slip tests. The first parameter
is obtained from a measure of the natural frequency
of the oscillating disc, which is 1.1 Hz, leading to a
rotational stiffness kR = 2.6 Nm/rad, while the latter,
measured from the time decay of the amplitude of free
oscillations of the disc, is c = 0.055 N ms/rad.

The driving discs (d0 and d1) are mounted on two
electric DC motors; each motor has a two stages speed
reducer. The voltage of the current powering each mo-
tor can be adjusted between 2 V and 30 V, allowing the
rotational velocity to range between 2 rpm and 26 rpm.
To further increase the maximum velocity of the disc’s
edge, it is possible to change the diameter of the disc.
Changing the driving discs, or by adding a coating
film around their contact circumference, also allows
for the change of the materials in contact. The motors
are mounted over a sliding carriage sustained by the
two slide bars G. Dead weights provides the force that
pushes the driving discs toward the oscillating disc D.

In order to obtain alternate contact between the os-
cillating disc and the driving disc, some minor mod-
ification must be done to the experimental rig: i) the
oscillating disc should not be axially symmetric any
longer: on its contact surface, along half circumference
a patch, obtained from drum brake shoe lining mate-
rial, is applied (Fig. 6c); ii) an end-stop collar is added
to the slide bars, in order to avoid the contact between
the rotating and oscillating disc outside of the brake
friction material patch.

3.2. Instrumentation

The proposed tests are aimed to characterize how the
state-space trajectory of the oscillating disc changes

as the velocity of the driving disc changes. In order
to measure the state of the oscillating disc two inde-
pendent measures are taken: a laser telemeter provides
the measure of the displacement of the border of the
disc that can be easily converted in its angular position,
while a relative digital encoder measures the angular
velocity of the oscillating disc.

During test the velocity of driving discs are main-
tained constant. In order to provide that the velocity of
driving discs are constant even during the rolling mo-
tion, a second encoder was used; in all the cases, the
speed variation was found lower than 1%.

Each encoder has 1000 pulse per revolution. In order
to obtain a good resolution from the encoder, the soft-
ware processor of the encoder signals measures both
the number of spikes generated by the encoder within
the unit time, as well as the average time between two
spikes, granting good resolution even for very low an-
gular velocity.

3.3. Friction materials

Experimental tests have been performed with 3 dif-
ferent sets of contact materials, i.e. paper vs. rubber
(Figs. 8–10), paper vs. paper (Fig. 11) and drum brake
liner vs. rubber (Figs. 12, 13). For each one of these
materials the friction law, as a function of the sliding
velocity, has been measured.

In order to retrieve the friction law an inverse tech-
nique has been used. From a free test the dynamic
characteristic of the oscillator is obtained, i.e. the mo-
ment of inertia Jo, the rotational stiffness kR, and
the damping coefficient c. The system equation is
therefore:

JO
d2θ

dt2
+ c

dθ

dt
+ kRθ = RF(t) (27)

where F(t) the sum of the external forces, that is the
friction force between the oscillating disc and the rotat-
ing disc. Since θ and the angular velocity are measured,
while the angular acceleration is obtained by numerical
derivation, the time history of the friction force F(t) is
the only unknown. From the measurement is then pos-
sible to obtain both F(t) and the sliding velocity at the
contact vR(t) and then plot the first as a function of the
second (Fig. 7).

The plot shows a first zone for |vR| < 0.01 ms−1,
characterized by a micro slip between the two materials
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Fig. 6 Experimental set-up: (a) plan view (double contact configuration); (b) front view, (c) detail (sequential contact configuration)

up to the maximum and then exhibits the sliding zone
characterized by a decreasing value of the friction co-
efficient as the sliding velocity increases. The friction
force is expressed as a function of the relative velocity
as:

F(t) = F(vR(t)) = N
(

μs − μk

1 + p|vR| + μk

)
(28)

where N is the normal force, applied by the dead weight
to the carriage supporting the disc. From the measure-
ments it is then possible to fit the experimental data
with the proposed friction model in order to obtain the
best values for the three unknown parameters μs, μk,
and p as shown in Table 1. The resulting friction force
is plotted in figure as a grey line.

Table 1 Estimated values of the friction law parameters

Paper vs. Drum brake liner Paper vs.
paper vs rubber rubber

μs 0.35 0.5 0.65
μk 0.25 0.33 0.35
p 15 20 15

3.4. Test procedure

The output of the measure is the state-space trajectory
of the oscillating disc. Each set of measurements is
characterized by the normal force, the contact materi-
als (coating of the discs), and the velocity of the first
driving disc, the one with fixed angular velocity. Each
measure within a set is characterized by the angular
velocity of the second driving disc that ranges from
2 rpm, its lower limit, to 26 rpm, its upper limit. Within
a set of measurements, the velocity of the second disc
is changed randomly within the range, to avoid system-
atic error due the wear of the contact surface.

The stick-slip measures consist of a 20 s acquisition
of the data by the laser telemeter and the digital en-
coders. It is useful to wait between the beginning of the
oscillation of the disc and the actual start of the mea-
sure, up to 5 s to avoid transitory behaviour: in this time
the system usually reaches a steady limit cycle which
is measured.

A further refinement of the acquired interval is pos-
sible during the post processing, when the time bounds
of the measurement can be redefined to cut out non-
consistent behaviour.
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Fig. 7 Experimental and identified friction laws: (a) rubber-paper; (b) rubber- brake patch

4. Experimental results and comparisons

As shown in the previous Section, the system behaviour
of the nonsmooth oscillator has been measured under
different conditions: the comparison of numerical sim-
ulations using the identified friction characteristics in
Subsection 3.3 with the measured system behaviour
shows a good agreement and gives a verification of the
theoretical model proposed in Section 2.

4.1. Double contact

4.1.1. Sliding-exchange bifurcation

The relevant theoretical basis for this kind of bifur-
cation has been recalled in Subsection 2.5. The same
behaviour has been experimentally reproduced and
measured, considering a contact pair rubber vs. paper
for both discs. The measured friction characteristics
are reported in Fig. 7a while the measured phase por-

traits are shown in Figs. 8, where disc 1 is kept at fixed
angular velocity w1 = 0.83 rad/s, while the velocity of
disc 0 varies from 0.41 (Fig. 8a) to 1.4 rad/s (Fig. 8f);
the predicted sliding-exchange bifurcation occurs at
w0 = 0.83 rad/s, as shown in Fig. 8c. Figures 9 report
the comparison of the previous measured response with
the theoretical model with the identified friction char-
acteristics: the agreement is very good and the basic
phenomenological aspects are captured qualitatively
and quantitatively by the theoretical model.

The only difference between measured and numer-
ical response is related to the small oscillation that the
experiments show at the slip-stick transition and that
is revealed by a small protuberance in the measured
phase plane just before entering the stick phase. These
oscillations consistently precede the stick phase when
rubber is present, Figs. 9, 10, 12, 13, while are not
revealed in the other cases studied in absence of rub-
ber, Fig. 11. Indeed they are probably related to the
microslip due to elastic contact force and are not really
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Fig. 8 Experimental phase portraits around the sliding exchange bifurcation. w1 = −0.83 rad/s

Fig. 9 Phase portraits around the sliding exchange bifurcation: model (—) and experiments (......). w1 = −0.83 rad/s

Fig. 10 Phase portraits around the sticking disappearance bifurcation: model (—) and experiments (......). w1 = −0.5 rad/s

oscillations in the friction force since gross slip is no
longer taking place.

4.1.2. Sticking disappearance bifurcation

This kind of bifurcation, predicted by the theoreti-
cal analysis as shown in Subsection 2.5, has been

experimentally obtained when the discs rotate with
discordant angular velocities and the same contact
materials of the previous case have been considered.
The measured friction characteristics are reported in
Fig. 7a while the measured phase portraits are shown
in Fig. 10, where disc 1 is kept at fixed angular
velocity w1 = −0.5 rad/s and the velocity of disc 0
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Fig. 11 Phase portraits around the nonsmooth fold bifurcation: model (—) and experiments (.....). w1 = −0.5 rad/s

Fig. 12 Phase portraits around the sticking appearance bifurcation: model (—) and experiments (......). w1 = 1.0 rad/s

Fig. 13 Phase portraits around the sticking appearance bifurcation: model (—) and experiments (......). w1 = 1.15 rad/s

varies from 0.35 (Fig. 10a) to 1.5 rad/s (Fig. 10f);
the predicted bifurcation occurs around w0 = 1.2 rad/s,
where the measured stable cycle becomes tangent to
�F0 and the stick phase is no longer present in �F0.

In this case too comparison with the numerical re-
sults, which has been reported in the same figure by
a thick line, confirms the accuracy of the proposed
model.
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4.1.3. Non-smooth fold bifurcation

In this case the relevant theoretical basis has been re-
called in Subsection 2.5 and the same behaviour has
been experimentally reproduced and measured when
the discs rotate with discordant angular velocities and
a contact pair paper vs. paper for both discs is con-
sidered. The measured friction characteristics are re-
ported in Table 1 while the measured phase portraits
are shown in Fig. 11a,b, where disc 1 is kept at fixed
angular velocity w1 = −0.5 rad/s, while the velocity
of disc 0 varies from 1.1 (Fig. 11a) to values higher
than 2 rad/s (Fig. 11b); Figures 11c,e shows the com-
parisons with numerical results: it should be noted that
the predicted bifurcation can be captured uniquely by
the theoretical model, Fig. 11c, since the trajectory be-
comes unstable. The scenario with only one stable fixed
point in the phase plane is shown in Figs. 11b, e: the
measured phase portrait is not characterized simply by
a ‘point’ but consists of small oscillations around the
fixed point: unlike the previous scenarios, here the im-
perfections in the real system and the inability of the
set-up prevent a better description of the phase portrait.

4.2. Sequential contact

Sequential contact configuration has been then consid-
ered for experimental purposes.

4.2.1. Sticking-appearance and sticking
disappearance bifurcations

These non-standard bifurcations, theoretically de-
scribed in Subsection 2.5, have been experimentally re-
produced and measured when a contact pair rubber vs.
drum brake linen for both discs is considered, Fig. 7b.
As far as sticking appearance bifurcation is concerned,
Fig. 12a,b,c show the measured phase portraits whereas
Fig. 12d,e,f report the relevant comparisons with the
model.

The sticking-disappearance bifurcation is described
at the same way by Fig. 13. This last bifurcation, occurs
at w0 = 1.1 rad/s (Fig. 13b,f) and it is basically similar
to the one experimentally reported by Fig. 10e for the
double contact configuration.

In both cases, a good qualitative and quantitative
agreement is observed, the only difference being the
changeover at θ = 0 when one driving disc replaces
the other: in the model this change is quite sudden

while in the physical prototype it occurs gradually and it
is accompanied by small oscillations. Notwithstanding
these phenomena the predicted bifurcations exhibit a
strong robustness and are well captured by the model.

5. Conclusions

The model of a non-smooth rotational oscillator, which
exhibits multiple discontinuity boundaries in the phase
space, is considered in order to investigate the dynamics
of vibrating systems characterized by the occurrence of
multiple frictional contacts. The dynamics of the model
are of interest because it is a simple representation of
mechanical systems with multiple non-smooth char-
acteristics and at the same time its response exhibits
non-classical bifurcation scenarios as a consequence
of the occurrence of multiple discontinuity boundaries
caused by the disc contacts.

Particular attention has been devoted to three dif-
ferent bifurcations disclosed by the theoretical analy-
ses: (i) non-smooth fold bifurcation, which divides a
scenario with one fixed point from another with three
co-existing solutions; (ii) sliding-exchange bifurcation,
when the trajectory has a stick phase on one driving disc
and then on the other; (iii) sliding bifurcations, charac-
terized by abrupt appearance, or disappearance, of one
or multiple stick phases in the trajectories.

An experimental rig has been built and its behaviour
is experimentally investigated: the accuracy of the fric-
tion law used in the model has been verified and the rel-
evant friction parameters have been identified; further-
more, the existence of the non-standard bifurcations
predicted by the theoretical analyses has been con-
firmed.

Based on the performed measurements, a good qual-
itative and quantitative agreement with the numerical
results furnished by the model with identified fric-
tion parameters has been observed: the non-standard
bifurcations predicted by the model are revealed
throughout the experiments under different schemes
independent of the contact materials involved. The ro-
bustness of these phenomena is important, since in
technical applications the friction parameters may vary
considerably, and frequently they are not known at all.
Thus, the analytical and experimental investigations,
though limited to this simple model, could provide
a valuable insight on the basic features exhibited by
more complex mechanical systems with non-smooth
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characteristics related to the presence of multiple fric-
tional contacts.

Appendix: System parameters

Oscillating Disc

Material: stainless steel.
Density: ρ = 7800 Kg/m3.
Mass: m = 9.57 Kg, Radius: R = 0.125 m.
Thickness: s = 0.025 m.
Moment of inertia: Jo = 0.0548 Kg m2.
Rotational stiffness: kR = 2.62 Nm/rad.
Natural frequency: fn = 1.1 Hz.
Damping: c = 0.055 N m s/rad

Driving Discs

Rotational velocity range: 2.5 rpm < n < 26 rpm
Radius: r = 0.06 m;
Velocity range at the edge: 0.019 m/s < v < 0.16 m/s
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