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Abstract Global bifurcations and chaos in modal in-

teractions of an imperfect circular plate with one-to-one

internal resonance are investigated. The case of primary

resonance, in which an excitation frequency is near nat-

ural frequencies, is considered. The damping force is

not included in the analysis. The method of multiple

scales is used to obtain an autonomous system from a

non-autonomous system of ordinary differential equa-

tions governing non-linear oscillations of an imperfect

circular plate. The Melnikov’s method for heteroclinic

orbits of the autonomous system is used to obtain the

criteria for chaotic motion. It is shown that the exis-

tence of heteroclinic orbits in the unperturbed system

implies chaos arising from breaking of heteroclinic or-

bits under perturbation. The validity of the result is

checked numerically. It is also observed numerically

that chaos can appear due to breaking of invariant tori

under perturbation.
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1. Introduction

Plates having two of their linear natural frequencies

nearly equal exhibit complicated and interesting phe-

nomena when nonlinear terms are taken into account.

Amongst the first theoretical analyses on the non-

linear vibration of circular disks were those by Tobias

[1], where the non-linear, undamped vibration of im-

perfect circular disks was studied, and Williams and

Tobias [2] where the undamped non-linear vibration of

imperfect disk subject to space-fixed harmonic excita-

tion was analyzed.

For local bifurcations, modal interactions of rect-

angular plates with one-to-one internal resonance have

been studied by many researchers. Sridhar et al. [3] and

Hadian and Nayfeh [4] studied symmetric responses in

primary resonance of a circular plate with three-mode

interaction. Lee and Kim [5] studied combination res-

onances of the plate. Sridhar et al. [6] derived solvabil-

ity conditions for asymmetric responses in four-mode

interaction of a circular plate. Nayfeh and Vakakis

[7] found subharmonic traveling waves in a circular

plate. Yeo and Lee [8] found that Sridhar et al.’s solv-

ability conditions were misderived, and corrected the

conditions. They observed that in the primary reso-

nance, the steady-state response can have not only the

form of standing wave but also the form of traveling

wave. Using the corrected solvability conditions, Lee

and Yeo [9] investigated modal interactions of a cir-

cular plate on an elastic foundation with one-to-three

internal resonance. Lee et al. [10] studied the effect of
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the number of nodal diameters on the interactions of the

plate. Touzé, Thomas and Chaigne [11, 12] presented

detailed theoretical and experimental study of asym-

metric vibrations of an imperfect circular plate with

one-to-one internal resonance.

Global bifurcations leading to dramatic changes in

the system behavior have been examined for a wide

class of problems. Feng and Sethna [13] studied global

bifurcations of a Hamiltonian system with a certain

symmetry in terms of breaking of homoclinic and

heteroclinic orbits. Kovac̆ic̆ and Wiggins [14] used

Melnikov’s method to obtain a sufficient condition for

the existence of Silnikov type homoclinic orbits in the

non-linear Schrödinger equation. Raman and Mote [15]

studied period-doubling, Rössler-type chaotic attractor

and boundary crises phenomena in motion of an im-

perfect spinning plate. Yeo and Lee [16] studied global

bifurcations in modal interactions of a circular plate us-

ing Wiggins and Kovac̆ic̆ method. Having found a suffi-

cient condition under which Silnikov type homoclinic

orbit can exist, they failed to observe any numerical

evidences of global bifurcation.

In this study we extended Yeo and Lee’s work

[16] to investigate heteroclinic orbits created in a

non-resonance case. In order to simplify the problem

we consider the undamped system. Melnikov method

[17, 18] was used to study global bifurcations due to

breaking of homoclinic orbits.

2. Governing equations

The equations governing the free, undamped oscilla-

tions of non-uniform circular plates were derived by

Efstathiades [19]. Yeo and Lee [16] simplified these

Equations to fit the special case of non-uniform circu-

lar plate shown in Fig. 1, for which forcing terms were

added. They assumed that transverse displacement of

the plate could be expressed as a combination of two

linearized modes. Neglecting damping terms we reduce

the system as follows:

ẍ j +ω2
j x j + εγω2

j x j
(
x2

1 + x2
2

)
= εμ j cos λt, j = 1, 2, (1)

where x j are amplitudes of normal modes, ω j are nor-

mal frequencies, γ plays a role of the parameter of

non-linearity, μ j are amplitudes of excitation and ε is

a small parameter. Equations (1) were derived from

Fig. 1 A schematic diagram of a circular plate

partial differential equations without using any spec-

ified boundary conditions [16]. Boundary conditions

determine values of normal frequencies ω1, ω2 and

nonlinear parameter γ , but does not affect the form

of Equations (1).

The difference between system (1) and one studied

by Yeo and Lee [16] is the scale of excitation ampli-

tude. In their work for a subharmonic resonance they

assumed the excitation amplitude to be order of 1. In

this study, however, the amplitude is assumed to be

order of ε to have the same order of magnitude as non-

linear terms.

In order to consider internal resonance due to imper-

fection, ω1 ≈ ω2, and external resonance due to forc-

ing, λ ≈ ω1, we introduce two parameters β and σ as

follows:

ω2 = ω1 + εβ, ω1 = λ + εσ, (2)

where β and σ are called internal and external detuning

parameters, respectively. Substituting Equation (2) into

system (1) and neglecting terms order of ε2, we have

ẍ1 +(λ2 + 2ελσ )x1 + εγ λ2x1

(
x2

1 + x2
2

)
= εμ1 cos λt, (3a)

ẍ2 +[λ2 + 2ελ(σ + β)]x2 + εγ λ2x2

(
x2

1 + x2
2

)
= εμ2 cos λt. (3b)

In order to use the method of multiple scales [20]

we assume

x j (t) = x j0(T0, T1, . . .) + εx j1(T0, T1, . . .),

j = 1, 2, (4)
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where Tk = εk t, k = 0, 1, .... Substituting Equation

(4) into Equation (3) and equating coefficients of like

powers of ε yield

O(1):

D0x j0 + λ2x j0 = 0, j = 1, 2 (5)

O(ε):

D2
0 x11 + λ2x11 = −2D0 D1x10 − 2λσ x10

−γ λ2
(
x3

10 + x10x2
20

)
+μ1 cos λT0 (6a)

D2
0 x21 + λ2x21 = −2D0 D1x20 − 2λ(σ + β)x20

−γ λ2
(
x3

20 + x20x2
10

)
+μ2 cos λT0. (6b)

The general solution of Equation (5) can be written

in the form

x j0 = Z j (T1)eiλT0 + Z∗
j (T1)e−iλT0 , (7)

where i = √−1 and asterisk denotes complex conju-

gate. The functions Z j (T1) are to be determined by sat-

isfying the solvability conditions for boundedness of

the solution. Substituting Equation (7) into (6) we ob-

tain solvability conditions as follows:

Z ′
1 = i

[
εF1 + σ Z1 + 3

2
γ λZ2

1 Z∗
1 + γ λZ1 Z2 Z∗

2

+1

2
γ λZ2

2 Z∗
1

]
(8a)

Z ′
2 = i

[
εF2 + (σ + β)Z2 + 3

2
γ λZ2

2 Z∗
2

+γ λZ2 Z1 Z∗
1 + 1

2
γ λZ2

1 Z∗
2

]
, (8b)

where

Fj = − μ j

4ελ

and a prime denotes differentiation with respect to slow

time T1.

Assuming harmonic amplitudes Z j (T1) as follows:

Z j (T1) = √
2a j (sin φ j + i cos φ j )

and introducing new variables:

p1 = a1, q1 = φ1 − φ2,

p2 − p1 = a2, q2 = φ2,
(9)

we transform system (8) to the following form

p′
1 = 2γ λp1(p1 − p2) sin 2q1

+εF1

√
2p1 cos(q1 + q2)

q ′
1 = β + γ λ(−1 + cos 2q1)(2p1 − p2)

+
[

F2√
2(p2 − p1)

sin q2 − F1√
2p1

sin(q1 + q2)

]
p′

2 = ε
[

F1

√
2p1 cos(q1 + q2)

+F2

√
2(p2 − p1) cos q2

]
q ′

2 = −β − σ + γ λ(−1 + cos 2q1)p1

−3γ λp2 − ε
F2√

2(p2 − p1)
sin q2.

Rescaling variables

p j = Pj

γ λ
, q j = π

2
+ Q j ,

F1 = − f1√
γ λ

, F2 = f2√
γ λ

(10)

allows to rewrite this system in a simpler way:

P ′
1 = 2P1 (P2 − P1) sin 2Q1

+ε f1

√
2P1 cos (Q1 + Q2) (11a)

Q′
1 = β − (1 + cos 2Q1) (2P1 − P2)

+ε

[
f2√

2(P2 − P1)
cos Q2

− f1√
2P1

sin(Q1 + Q2)

]
(11b)

P ′
2 = ε

[
f1

√
2P1 cos(Q1 + Q2)

− f2

√
2(P2 − P1) sin Q2

]
(11c)
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Q′
2 = −β − σ + (1 + cos 2Q1) P1 − 3P2

−ε
f2√

2 (P2 − P1)
cos Q2. (11d)

Since this is a Hamiltonian system, we can express

the system as follows:

Ṗ1 = − ∂ H

∂ Q1

, Q̇1 = ∂ H

∂ P1

,

Ṗ2 = − ∂ H

∂ Q2

, Q̇2 = ∂ H

∂ P2

with Hamiltonian

H = H0 + εH1,

H0 = β P1 − (β + σ )P2 − (1 + cos 2Q1)

×P1(P1 − P2) − 3

2
P2

2 ,

H1 = − f1

√
2P1 sin(Q1 + Q2)

− f2

√
2 (P2 − P1) cos Q2.

According to Equations (9) P1 and P2 represent the

amplitude of the mode x1 and the total of two modes

x1 + x2, respectively. Therefore P1 satisfies condition

0 ≤ P1 ≤ P2. (12)

This condition implies that function H has only real

values.

3. Unperturbed system

Let us consider an unperturbed system, which corre-

sponds to case ε = 0 in system (11) as follows:

P ′
1 = 2P1 (P2 − P1) sin 2Q1 (13a)

Q′
1 = β − (1 + cos 2Q1)(2P1 − P2) (13b)

P ′
2 = 0 (13c)

Q′
2 = −β − σ + (1 + cos 2Q1) P1 − 3P2. (13d)

System (13) is a completely integrable Hamiltonian

system with P2 = P20 as a conserved quantity.

In view of the structure of system (13) study of the

flow in two-dimensional space (P1, Q1) may be useful

to understand the system. Thus we study fixed points

and orbits of corresponding system

P ′
1 = 2P1 (P20 − P1) sin 2Q1 (14a)

Q′
1 = β − (1 + cos 2Q1) (2P1 − P20). (14b)

It has five fixed points, whose locations depend on

two parameters β and P20:

P1 = 1

4
(β + 2P20) , Q1 = πn (15a)

P1 = 0, Q1 = 2πn ± Q̃1 (15b)

P1 = P20, Q1 = 2πn ± Q̃1, (15c)

where

Q̃1 = arccos

[√
|β|

2P20

]

and n = 0, 1, 2, . . . . Analysis of stability of system

(14) shows that point (15a) is center and points (15b,c)

are saddle points. At the fixed points, in view of Equa-

tion (13d), Q′
2 is a constant, which implies the rotation

of the flow considering that Q2 is an angle variable.

Therefore fixed points in two-dimensional system (14)

correspond to invariant tori in four-dimensional system

(13).

Returning to coordinates (a1, a2, φ1, φ2) gives us

physical meaning of these solutions in terms of plate

oscillations. Let’s consider the possibility of existence

of a periodic solution of system (1), with (i) x1 = 0 or

x2 = 0, or (ii) x1 �= 0 and x2 �= 0. The former is called

a single-mode solution and the later a mixed-mode so-

lution. There may exist two types of single-mode solu-

tions. One is x1-mode (x2 = 0) and the other x2-mode

(x1 = 0). In view of (9) and (10) coordinates P1 and

P2 − P1, respectively, denote the amplitudes of x1 and

x2. In other words, P2 denotes the sum of both ampli-

tudes. Therefore, vanishing of P1 means single-mode

(x1-mode) solution, while non-vanishing of P1 does

mixed-mode (x1- and x2- mode) solution. Another sin-

gle mode (x1-mode) solution exists when P2 − P1 = 0.

Since center (15a) has non-vanishing P1 and P2 − P1,

it turns out to be a mixed-mode solution. Saddle-point

(15b) has vanishing P1, while saddle-point (15c) has

vanishing P2 − P1. Therefore, saddle-points (15b) and
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Fig. 2 Global bifurcation diagram of unperturbed system (14).

(15c) turn out to be single-mode solutions, x2-mode

and x1-mode, respectively.

For the system (14) it is possible to study global

bifurcations in the (β, P20) parameter plane shown in

Fig. 2, where exist four regions

(I) β < −2P20, (II) −2P20 < β < 0,

(III) 0 < β < 2P20, (IV) 2P20 < β.

Each of these has qualitatively different behavior of

the flow as shown in Fig. 3. For regions I and IV there

are neither homoclinic nor heteroclinic orbits in (Q1,

P1)-plane considering condition (12). For regions II and

III each phase portrait contains three heteroclinic orbits

(A, A′, A′′ in II and B, B ′, B ′′ in III). We will consider

breaking of heteroclinic orbits under perturbation and

consequences of this breaking. Therefore regions II and

III will be of our interest.

Yang and Sethna [21] have studied global bifurca-

tion of a nearly square plate. The system (11) could

be considered as a particular case of system (5.3) in

[21] for which parameter K = −1. The global bifur-

cation analysis given in [21] considers as a bifurcation

parameter quantity proportional to β

P20
and excludes

case K = −1 because of singularity. In present work

we adapt parameters β and P20 to avoid the singularity

and study the global bifurcations of case K = −1.

4. Perturbed system and Melnikov theory

In order to investigate the behavior of the perturbed

system (11) we use generalized multidimensional Mel-

nikov’s method [18]. Let’s consider a system having

some invariant sets (fixed points or invariant mani-

folds, such as invariant tori), whose stable manifolds

tangentially intersect unstable manifolds to construct

Fig. 3 Phase portraits of
system (14) in different
regions on bifurcation
diagram Figure 2. Here
P∗

1 = (β + 2P20)/4.
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homoclinic or heteroclinic orbits. When the system

is exposed to a small perturbation, stable and unsta-

ble manifolds of these invariant sets may no longer

construct homoclinic or heteroclinic orbits, which

means that stable and unstable manifolds split up.

However, as shown in [17, 18] stable manifolds may

transversally intersect unstable manifolds, in this case

intersection points compose countably infinite set hav-

ing complicated Cantor-set type. This phenomenon

leads to chaos through generation of Smale’s horse-

shoes [22, 23].

The main goal of Melnikov’s method is to estimate

the minimal distance between splitted manifolds of hy-

perbolic invariant manifold and find the conditions un-

der which this distance vanishes. The leading term of

this distance could be expressed as a certain function of

system parameters called “Melnikov function”, there-

fore transversal crossing of splitted manifolds occurs

when Melnikov function has simple zero. The Mel-

nikov function could be expressed by an improper in-

tegral. We will use expressions for Melnikov function

derived in [18]. In our case of four-dimensional com-

pletely integrable system Melnikov integral has form:

M = lim
l→∞

∫ T s
l

−T u
l

∂ H1

∂ Q2

dt

= −
√

2 lim
l→∞

∫ T s
l

−T u
l

[ f1

√
P1 cos(Q1 + Q2)

− f2

√
P2 − P1 sin Q2]dt, (16)

where limits T s
l and T u

l are sequences of time, which

go to infinity as index l does.

Calculation of the integral (16) requires evaluation

of integrands along unperturbed heteroclinic orbits, and

therefore knowledge of the explicit dependence of vari-

ables P1, Q1 and Q2 on time. In other words we have

to build up a parametrization of this orbits. Equations

that give time parametrization of heteroclinic orbits are

given in Appendix A.

4.1. Calculation of Melnikov function

It is possible to simplify integral (16) noting that the

structure of explicit expressions for Q2 in (A.5)–(A.21)

has form

Q2 = Q̃2 +Q20,

where Q̃2 is a function of time and Q20 is an arbitrary

constant. Using this representation we may transform

the integrand of (16):

f1

√
P1 cos(Q1 + Q2) − f2

√
P2 − P1 sin (Q2)

= f1

√
P1[cos (Q1 + Q̃2) cos Q20

− sin (Q1 + Q̃2) sin Q20]

− f2

√
P2 − P1[cos Q̃2 sin Q20 − sin Q̃2 cos Q20]

= − cos Q20[ f1

√
P1 cos (Q1 + Q̃2)

+ f2

√
P2 − P1 sin Q̃2]

+ sin Q20[ f1

√
P1 sin (Q1 + Q̃2)

+ f2

√
P2 − P1 cos Q̃2].

So integral (16) could be expressed as:

M = −
√

2 cos Q20( f1 I1 + f2 I2)

+
√

2 sin Q20 ( f1 I3 + f2 I4) , (17)

where

I1 = lim
l→∞

∫ T s
l

−T u
l

√
P1 cos(Q1 + Q̃2) dt

I2 = lim
l→∞

∫ T s
l

−T u
l

√
P2 − P1 sin Q̃2 dt

I3 = lim
l→∞

∫ T s
l

−T u
l

√
P1 sin(Q1 + Q̃2) dt

I4 = lim
l→∞

∫ T s
l

−T u
l

√
P2 − P1 cos Q̃2 dt.

Substitution of explicit time dependencies

(A.2)∼(A.5) to Equation (17) and computation

of integrals give for the heteroclinic orbit A:

I1 = −
√

P20 sin Q̃1

2eA
�1,

I2 = I3 = 0,

I4 = −
√

P20 sin Q̃1

2eA
�2.

See Appendix B for details. Here

�1 = i

[
ψ

(
1

4
− i νA

)
− ψ

(
1

4
+ i νA

)
+ψ

(
3

4
+ i νA

)
− ψ

(
3

4
− i νA

)]
,
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�2 = ψ

(
1

2
+ i νA

)
+ ψ

(
1

2
− i νA

)
−ψ(i νA) − ψ(−i νA)

νA = ωR

4eA
(18)

and function ψ(x) is given as

ψ (x) = �′(x)/�(x),

where �(x) is the gamma function. We should note that

quantities �1 and �2 are real-valued. Quantities eA and

ωR are given in (A.3) and (A.6) in Appendix A.

Now returning to (17) we may write the expression

for the Melnikov function as follows:

M A =
√

2P20 sin Q̃1

2eA
[ f1�1 cos Q20 − f2�2 sin Q20]

or, equivalently

M A =
√

2P20 sin Q̃1

2eA
m A( f1, f2, νA)

× cos [Q20 − φA( f1, f2, νA)], (19)

where

m A( f1, f2, νA) =
√

f1�
2
1 + f2�

2
2 ,

φA( f1, f2, νA) = tan

(
f1�1

f2�2

)
For heteroclinic orbits A′ and A′′ we have

I1 = I2 = I3 = I4 = 0.

Therefore we have the Melnikov functions for these

orbits:

M A′ = M A′′ = 0. (20)

By use of explicit time dependencies

(A.13) ∼ (A.15) Equation (17) gives for the het-

eroclinic orbit B:

I1 = π
√

P20 sin Q̃1

eA

{
1

sinh νB
− 1

νB

}
,

I2 = I3 = 0,

I4 = π
√

P20 sin Q̃1

eA cosh νB
,

where

νB = π (β − ωR)

2eA
(21)

The Melnikov function for orbit B becomes

M B = −π
√

P20 sin Q̃1

eA

[
f1

{
1

sinh νB
− 1

νB

}
× cos Q20− f2

cosh νB
sin Q20

]
,

or equivalently

M B = −π
√

P20 sin Q̃1

eA
m B ( f1, f2, νB)

× cos[Q20 − φB( f1, f2, νB)], (22)

where

m B( f1, f2, νB) =

√√√√
f 2
1

2(
1

sinh νB
− 1

νB

)
+ f 2

2

cosh2 νB
,

φB ( f1, f2, νB) = tan

[
f1

f2

(
coth νB − cosh νB

νB

)]
,

For orbits B′ and B′′ we have

M B ′ = M B ′′ = 0. (23)

Finally, gathering Equations (18), (21), (22) and (23)

we have Melnikov functions for all orbits as follows:

M A,B ∝ m A,B cos(Q20 + φA,B) (24)

and

M A′ = M A′′ = M B ′ = M B ′′ = 0. (25)

According to the Melnikov theory [17, 18] transver-

sal intersections of stable and unstable invariant man-

ifolds appear when the Melnikov function, a function

of parameters, has simple zeros. Moreover, we need to

prove the existence of simple zeros, but we don’t need

to determine their locations in parameter space.
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For heteroclinic orbits A and B Melnikov function

given by Equations (19) and (22) depends on the pa-

rameter Q20 (special value of a phase variable Q2) and

system parameters β, σ , P20, f1, f2. The parameter Q20

appears in integration and determines the starting point

in time parametrization of heteroclinic orbits in the un-

perturbed system. We see that even when all system

parameters are fixed, Melnikov function being a func-

tion of Q20 definitely has simple zeros. It means that

when unperturbed system has heteroclinic orbits A and

B, under perturbation this orbits can break and transver-

sal intersections of invariant manifolds can take place,

except for some cases to be discussed later. In other

words, chaos led by breaking of heteroclinic orbits oc-

curs everywhere in regions II (orbit A) and III (orbit B)

of Fig. 2.

It is necessary to pay some attention to simplicity of

zeros. In order to study the cases in which Melnikov

function having form (24) is identically zero, we need to

find conditions for m A,B = 0. Consider first MA. Since

both �1 and �2 are real, mA is strictly positive and

equal to zero only when f1�1 = f2�2 = 0. Quantities

�1 and �2 vanish only when νA = 0. According to

Equation (18) it implies

ωR = β + σ + 3P20 = 0.

Referring to [14], we call this a resonance. In the res-

onance Q2 in unperturbed case is constant on the in-

variant manifolds. Moreover, mA is equal to zero if

f1 = f2 = 0 meaning no excitation. Consider MB next.

Function mB is equal to zero when νB = 0. According

to Equation (21) it implies a resonance condition

β − ωR = σ + 3P20 = 0.

It is obvious to see that mB is equal to zero when

f1 = f2 = 0. In cases of resonance and no excitation,

Melnikov functions MA and MB being identical zero

imply that the distance between stable and unstable

manifolds of hyperbolic tori is equal to zero every-

where. This means that the perturbation does not break

the heteroclinic orbits. In resonance, however, absence

of breaking of heteroclinic orbits under perturbation

does not imply the absence of chaos [14]. The nature

of chaos due to resonance is different from the one of

chaos due to breaking of heteroclinic orbits. In reso-

nance homoclinic orbit of Silnikov type can occur and

hence Silnikov chaos can take place [14, 22].

For heteroclinic orbits A′, A′′, B′ and B′′, the identical

zero of Melnikov function in Equation (25) does not tell

whether those orbits break under perturbation or not.

Pairs of orbits A′, A′′ and B′, B′′ correspond to lines

P1 = 0 and P1 = P20, respectively. In contrast to the

unperturbed system (13) the perturbed system (11) does

not have solutions on these lines, in view of Equation

(12). For the perturbed system these lines bound the

domain in which solutions exist.

5. Numerical examples

The coordinates P1, Q1, P2, Q2 belong in R1 × S1 ×
R1 × S1, where S1 is a circle of length 2π . Thus we

have a two-torus in four-dimensional space. Unper-

turbed system (13) shows that coordinates P1, Q1 and

P2 do not depend on Q2. Therefore, in order to un-

derstand flows in four-dimensional space we can use

a projection of phase portraits on a three-dimensional

space (P1, Q1, P2).

To illustrate the behavior of stable and unstable man-

ifolds of invariant tori for perturbed system (11) we set

up the Poincaré section given by

�Q2
= {Q2 = 0, Q̇2 > 0}

and build a three-dimensional Poincaré map [22, 23].

It should be noted that system (11) is Hamiltonian and

all solutions lie on a manifold H = constant. The in-

tersection of Poincaré map and this manifold is a two-

dimensional smooth surface. The hyperbolic invariant

tori of flow (11) with stable and unstable invariant

manifolds correspond to hyperbolic fixed points of the

Poincaré map with one-dimensional stable and unsta-

ble invariant manifolds. Two-dimensional projections

of the Poincaré map for cases II and III in Fig. 3 are

shown in Figs. 4 and 5, respectively. Solid and dotted

lines, respectively, denote stable and unstable mani-

folds of fixed points. We can see the typical pattern

of heteroclinic tangles [17, 22] appearing when man-

ifolds intersect transversely. These illustrations verify

that under perturbation heteroclinic orbits A and B are

broken with subsequent intersection of stable and un-

stable invariant manifolds. Lines P1 = 0 and P1 = P20

which correspond to these orbits and bound the domain
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Fig. 4 Intersection of stable and unstable manifolds of hy-
perbolic fixed point on the Poincaré section in (P1, Q1)-plane
for case II of Fig. 3, for ε = 0.05, f1 = 0.5, f2 = 1.0, σ =
−0.25, β = −1.1, P20 = 1.0

Fig. 5 Intersection of stable and unstable manifolds of hyper-
bolic fixed point on the Poincaré section in (P1, Q1)-plane for
case II of Fig. 3 for ε = 0.05, f1 = 1.0, f2 = 3.0, σ = −0.25,
β = 1.0, P20 = 1.0

where system’s solutions exist are shown, respectively,

in Figs. 4 and 5.

Heteroclinic intersections of stable and unstable

manifolds imply the presence of horseshoe type dy-

namics and hence chaos. Building a sequence of

Poincaré maps for different starting points could ap-

prove chaotic behavior. In order to verify the validity of

the results by Melnikov method, we obtained Poincaré

maps built for cases II and III in Fig. 3 shown in Figs.

6 and 7, respectively. The pattern of maps is typical for

Hamiltonian systems. Here we can see that in a neigh-

borhood of broken heteroclinic orbits Poincaré maps

form stochastic layers. We believe that this pattern ver-

ifies the validity of the results by Melnikov method as

expected in the previous section. We can observe some

overlappings of trajectories in Fig. 6. It appears be-

Fig. 6 Poincaré sections of flow (11) for a number of
different starting points in (P1, Q1)-plane for case II on
Fig. 3 for (ε = 0.05, f1 = 0.5, f2 = 1.0, σ = −0.25, β =
−1.1, P20 = 1.0)

Fig. 7 Poincaré sections of flow (11) for a number of different
starting points in (P1, Q1)-plane for case III on Fig. 3 for (ε =
0.05, f1 = 0.5, f2 = 1.0, σ = −0.25, β = 1.0, P20 = 1.0)

cause Fig. 6 represents two-dimensional projection of

three-dimensional Poincaré sections.

For both cases II and III in Figs. 6 and 7 the Poincaré

maps around the centers are similar with the phase por-

traits around the center in Fig. 3 (II) and (III), respec-

tively. Therefore, mixed mode solutions (0< P1 <P 2),

corresponding to center (15a), and solutions close to it

do not change qualitatively under perturbation. How-

ever, perturbed system has no single-mode solutions

(x2-mode and x1-mode for case II and III, respectively).

The vicinity of unperturbed single-mode solutions and

heteroclinic orbits on the Poincaré map is filled by

stochastic layer, which corresponds to chaotic mixed-

mode motion.

We want to look closely how Poincaré map changes

as parameter values cross the boundary between re-

gions III and IV, respectively, expected as chaotic and
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Fig. 8 Poincaré sections of flow (11) for a number of different
starting points in (P1, Q1)-plane for case III on Fig. 3 for (ε =
0.05, f1 = 0.5, f2 = 1.0, σ = −0.25).

non-chaotic regions. For this purpose four points with

coordinates P20 = 1 and β = 1.0, 1.9, 2.1, 2.5 were

chosen on the bifurcation diagram as shown in Fig. 8.

Poincaré sections corresponding to these points are

shown in Fig. 9(a–d), respectively. For P20 = 1 bound-

ary between regions III and IV corresponds to β = 2.

It is shown in Fig. 9(a) and (b) that as internal detuning

parameter β approaches 2, heteroclinic orbit B shrinks

and so does the chaotic layer caused by breaking of

this orbit. Finally for β > 2.0 orbit B disappears and

Poincaré section doesn’t have wide chaotic layers as

shown in Fig. 9(c) and (d). This verifies that the bound-

ary between regions III and IV separates chaotic and

non-chaotic regions as expected. Fig. 10 presents a se-

quence of Poincaré sections for points with coordinates

P20 = 0.5 and β = 0.5, 0.9, 1.1 and 2.0, shown in Fig.

8. In this case β = 1 is on the boundary between regions

III and IV. We see that Poincaré sections for β > 1 have

wide stochastic layers. Contrast to Fig. 9, Fig. 10 shows

that the boundary between regions III and IV doesn’t re-

ally divide chaotic and non-chaotic regions. Chaos can

appear in region IV, even though unperturbed system

has no heteroclinic orbits in this region. The scenario of

chaotic phenomenon shown in Fig. 10 is different from

one shown in Fig. 9. For the case of Fig. 10 heteroclinic

orbits, according to Poincaré-Birkhoff theorem [23],

arise from resonant invariant tori due to perturbation.

Breaking of these orbits leads to chaos [24, 25]. Figure

10(a) and (b) show that for values of β = 0.5 and 0.9

corresponding to region III, breaking of unperturbed

heteroclinic orbits as well as orbits due to invariant tori

occurs. It was observed that stochastic layers similar

to ones in region IV appeared in region I, which is not

shown in this paper. The transition to chaos through

breaking of invariant tori could be studied analytically

by use of Greene method [26] or renormalization-group

technique [27–29].

In order to ensure whether behavior of the system

is really chaotic or not, the largest Lyapunov exponent

[23] was calculated for the flow (11). In order for an

Hamiltonian system to have chaotic motion the largest

Lyapunov exponent must be positive. For non-chaotic

motion of an Hamiltonian system the largest Lyapunov

exponent becomes zero. Figure 11 shows the largest

Lyapunov exponent as a function of parameter β for

P20 = 1 and P20 = 0.5. We can see that for P20 = 1

(Fig. 11(a)), positive values of the largest Lyapunov ex-

ponent correspond to −2 < β and β < 2 as predicted

by Melnikov method. Near β = 0, heteroclinic orbits

Fig. 9 Poincaré sections of
flow (12) in (P1, Q1)-plane
for (a): β = 1.0, (b):
β = 1.9, (c): β = 2.1, (d):
β = 3.0 and ε = 0.05,
f1 = 0.5, f2 = 1, σ =
−0.25, P20 = 1
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Fig. 10 Poincaré sections
of flow (12) in (P1,
Q1)-plane for (a): β = 0.5,
(b): β = 0.9, (c): β = 1.1,
(d): β = 2.0 and ε = 0.05,
f1 = 0.5, f2 = 1, σ =
−0.25, P20 = 0.5

Fig. 11 The largest Lyapunov exponent of system (11) as a
function of parameter β for ε = 0.05, f1 = 0.5, f2 = 1, σ =
−0.25. ‘Chaos’ and ‘nonchaos’ denote regions predicted by
Melnikov method. (a) P20 = 1.0. (b) P20 = 0.5

degenerate and therefore the largest Lyapunov expo-

nent becomes zero. For P20 = 0.5 (Fig. 11(b)), because

of breaking of the invariant tori, the chaotic region is

wider than predicted. It is meaningful to compare Figs.

11 and 2, which eventually gives the boundary between

chaotic and non-chaotic region predicted by Melnikov

method. Further study of the transition to chaos via

breaking of invariant tori is needed.

6. Conclusion

Global bifurcations and chaos in modal interactions

of an imperfect circular plate with one-to-one internal

resonance have been investigated. The case of primary

resonance, in which an excitation frequency is near nat-

ural frequencies, is considered. The damping force is

not included in the analysis. The method of multiple

scales is used to obtain an autonomous system from a

non-autonomous system of ordinary differential Equa-

tions governing non-linear oscillations of an imperfect

circular plate.

The Melnikov method for heteroclinic orbits of the

autonomous system is used to obtain the criteria for

chaotic motion. It is shown that the existence of hete-

roclinic orbits in the unperturbed system implies chaos

arising from breaking of heteroclinic orbits under per-

turbation. The validity of the result is checked numer-

ically. It is also observed numerically that chaos can

appear due to breaking of invariant tori under pertur-

bation as well as the breaking of heteroclinic orbits.

Appendix A: Parametrization of heteroclinic
orbits

A.1. On the orbit A

Phase portraits of flow (14) for negative β in (P1, Q1)

plane is shown in Fig. 3 (II). Equations describing
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heteroclinic orbits could be simply obtained from

Equation H0(P1, Q1) = H0(P∗
1 , Q∗

1), where (P∗
1 , Q∗

1)

are coordinates of saddle points (15b) which gives:

P1[β + (1 + cos 2Q1) (P20 − P1)] = 0,

with solutions

P1 = 1

2
β sec2 Q1 + P20 (A.1a)

P1 = 0. (A.1b)

First of the above equations corresponds to the orbit

A, the second to orbits A′ and A′′. Now we are able to

obtain explicit time solution of system (13) on hetero-

clinic orbits.

Substitution (A.1a) into (14b) gives us Equation for

Q1

Q′
1(t) = −β − 2P20 cos2 Q1(t).

In order to get the expression for orbit A we set the

initial condition Q1(0) = 0 and obtain solution

Q A
1 (t) = − arctan[tan pQ̃1 tanh(eAt)], (A.2)

where

eA = P20 sin(2 Q̃1). (A.3)

Now using (A.1a) we can get expression for P1(t):

P A
1 (t) = P20 sin2 Q̃1

cosh2(eAt)
. (A.4)

Finally from (13d), (A.2) and (A.4) we get Equation

on Q2:

Q′
2 = −β − σ − 3P20 + P20 sin2(2 Q̃1)

cos(2 Q̃1) + cosh(2eAt)
,

which could be integrated to give

Q A
2 (t) = −ωRt − arctan[cot Q̃1 coth(eAt)] + Q20.

(A.5)

Here Q20 is integration constant and

ωR = β + σ + 3P20. (A.6)

A.2 On the orbit A′ and A′′

By the same procedure, using Equation (A.1b) we ob-

tain explicit time parametrization of orbits A′ and A′′:

P A′
1 (t) = 0 (A.7)

Q A′
1 (t) = arctan[tan Q̃1 tanh (eAt)] (A.8)

Q A′
2 (t) = −ωRt + Q20 (A.9)

P A′′
1 (t) = 0 (A.10)

Q A′′
1 (t) = − arctan

[
tan Q̃1 tanh (eAt)

]
(A.11)

Q A′′
2 (t) = −ωRt + Q20 (A.12)

A.3 On the orbit B, B′ and B′′

For positive β flow (14) in (P1, Q1) plane has phase

portrait shown in Fig. 3 (III).

The derivation of explicit time parametrization of

heteroclinic orbits B, B′ and B′′ could be done in the

same way as it was shown for case β < 0.

P B
1 (t) = cos2 Q̃1 P20[1 + tan2 Q̃1 tanh2(eAt)] (A.13)

Q B
1 (t) = arctan[tan Q̃1 tanh(eAt)] (A.14)

Q B
2 (t) = (β − ωR)t + Q20 (A.15)

P B ′
1 (t) = P20 (A.16)

Q B ′
1 (t) = − arctan[tan Q̃1 tanh(eAt)] (A.17)

Q B ′
2 (t) = − arctan[cot Q̃1 coth(eAt)]

+(β − ωR)t + Q20 (A.18)

P B ′′
1 (t) = P20 (A.19)

Q B ′′
1 (t) = − arctan

[
tan Q̃1

tanh(eAt)

]
(A.20)

Q B ′′
2 (t) = − arctan[cot Q̃1 tanh(eAt)]

+(β − ωR)t + Q20. (A.21)
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Appendix B: Calculation of the Melnikov
integral for the orbit A

We give the procedure of computation of integrals in

Equation (17) for the heteroclinic orbit A.

(i) The first integral I1:

Substitution of explicit time dependencies (A.2),

(A.4) and (A.5) gives

I1 =
∫ ∞

−∞

√
P1 cos(Q1 + Q̃2) dt

=
√

P20 sin Q̃1

∫ ∞

−∞
cos{arctan[cot Q̃1 coth(eAt)]

+ arctan[tan Q̃1 tanh(eAt)]

+ωRt}/ cosh(eAt) dt.

By use of trigonometric relation

arctan x + arctan
1

x
= π

2
sign x

integral I1 may be simplified:

I1 =
√

P20 sin Q̃1

[ ∫ 0

−∞

sin(ωRt)

cosh(eAt)
dt

−
∫ ∞

0

sin(ωRt)

cosh(eAt)
dt

]

and solved in terms of digamma functions ψ(x) =
�′(x)/�(x):

I1 = −
√

P20 sin Q̃1

2eA
�1

(
ωR

4eA

)
,

where �(x) is the gamma function and

�1(x) = i

[
ψ

(
1

4
− i x

)
− ψ

(
1

4
+ i x

)
+ψ

(
3

4
+ i x

)
− ψ

(
3

4
− i x

)]
.

We should note that �1 is a real-valued function

of a real argument.

(ii) The second integral I2:

I2 =
∫ ∞

−∞

√
P2 − P1 sin Q̃2 dt

−
√

P20

∫ ∞

−∞

√
1 − sin2 Q̃1

cosh2(eAt)

× sin{arctan[cot Q̃1 coth(eAt)] − ωAt} dt=0.

We could make the integral vanish by choosing

T s
l = T u

l for all l since the integrand in the last

expression is odd function.

(iii) The third integral I3:

Arguments for the third integral are the same as

for the second integral:

I3 =
∫ ∞

−∞

√
P1 sin(Q1 + Q̃2) dt

=
√

P20

∫ ∞

−∞

sin Q̃1

cosh(eAt)

× sin{− arctan[tan Q̃1 tanh(eAt)]

+ arctan[cot Q̃1 coth(eAt)] − ωAt} dt = 0.

(iv) The fourth integral I4:

I4 =
∫ ∞

−∞

√
P2 − P1 cos Q̃2 dt

= −
√

P20

∫ ∞

−∞
R(t) dt,

where

R(t) =
√

1 − sin2 Q̃1

cosh2(eAt)

× cos {arctan[cot Q̃1 coth(eAt)] − ωAt}.

We use the method adapted by Feng and Sethna [13]

to solve this integral. Typical behavior of integrand R(t)
is shown in Fig. 12. For t → ±∞ it behaves as a har-

monic function:

R(t) →
√

P20 sin(Q̃1 ∓ ωRt).
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Fig. 12 Behavior of integrand R(t)

Fig. 13 Behavior of function R(t) − r (t).

We may rewrite R(t) as

R(t) = [R(t) − r (t)] + r (t),

where

r (t) =
{ √

P20 sin(Q̃1 + ωRt), t ≤ 0
√

P20 sin(Q̃1 − ωRt), t > 0.

Figure 13 shows the typical graph of R(t) − r (t). Inte-

gral∫ ∞

−∞
[R(t) − r (t)] dt

could be reduced to form

2 sin Q̃1

∫ ∞

−∞
cos(ωRt) (1 − tanh(eAt)) dt

and evaluated in terms of digamma functions as fol-

lows:∫ ∞

−∞
[R(t) − r (t)] dt = sin Q̃1

2eA
�2

(
ωR

4eA

)
,

where

�2(x) = ψ

(
1

2
+ i x

)
+ ψ

(
1

2
− i x

)
−ψ (i x) − ψ (−i x) .

Function �2 is also a real-valued function of a

real argument. Furthermore, we can make the integral∫ T s
l

−T u
l

r (t) dt vanish by choosing time sequences T u
l and

T s
l as follows:

T u
l = Q̃1 + lπ

ωR
, T s

l = Q̃1 − lπ

ωR
.

Finally we get

I4 = −
√

P20

{∫ ∞

−∞
[R(t) − r (t)] dt +

∫ ∞

−∞
r (t) dt

}

= −
√

P20 sin Q̃1

2eA
�2

(
ωR

4eA

)
.

For heteroclinic orbits A′, A′′, B, B′′ and B′′ procedure

of calculation of integrals in Equation (17) is similar.
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