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Abstract Hopf bifurcation of a unified chaotic system
— the generalized Lorenz canonical form (GLCF) — is
investigated. Based on rigorous mathematical analysis
and symbolic computations, some conditions for sta-
bility and direction of the periodic obits from the Hopf
bifurcation are derived.
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1. Introduction

Bifurcation properties of the classic Lorenz system is
very well known (see, e.g., [1-4]).

Recently, Chen and Ueta [5, 6] constructed a three-
dimensional autonomous differential equation with
only two quadratic terms, and found a new chaotic at-
tractor [7], referred to as Chen’s attractor thereafter by
others. This system displays very complex dynamics
like the Lorenz system, but they are topologically not
equivalent. The stability and various bifurcations es-
pecially the Hopf bifurcation of Chen’s system were
studied in [6, 8, 9], showing various bifurcations in

T.Li () - Y. Tang - L. Yang

Department of Mathematical Sciences, Tsinghua
University, Beijing 100084, P. R. China

e-mail: tli@math.tsinghua.edu.cn

G. Chen
Department of Electronic Engineering, City University of
Hong Kong, Kowloon, Hong Kong SAR, P. R. China

this system such as tangent bifurcation, pitchfork bi-
furcation, period-doubling bifurcation, homoclinic bi-
furcation, coexistence of two stable limit cycles and
one chaotic attractor, as well as some periodic solu-
tions emerging from Hopf bifurcation but ending in
homoclinic bifurcation, etc. Moreover, the travelling
of nontrivial trajectories is discussed in [10], and the
unstable periodic orbits of the system are detected in
[11].

More recently, it was discovered that there is a very
large and general class of relevant chaotic systems —
the family of generalized Lorenz systems, named Gen-
eralized Lorenz Canonical Form (GLCF) [13, 20] —
defined according to the system structures, which cov-
ers all the aforementioned chaotic systems as special
cases. This family of chaotic systems has only one pa-
rameter, satisfying —1 < t < 400, and there is an-
other large family of chaotic systems, named Hyper-
bolic Generalized Lorenz Canonical Forms, satisfying
—00 < 7 < —1 [12]. Notably, the Lorenz system sat-
isfies 0 < T < 4o00; the Lii system, t = 0; [22] the
Chen system, —1 < 7 < 0; the Shimizu-Morioka sys-
tem, T = —1 [23]. It has been mathematically proved
that Smale horseshoe and horseshoe chaos, hence
Shil’nikov chaos, exist in the GLCF [14].

Given the above background, it is clearly impor-
tant to study the bifurcation of the GLCF, which is the
scope of the present paper. In Section 2, some stability
analysis on the GLCF will be derived based on the cen-
ter manifold theory and symbolic computations (for
general references concerning symbolic computation
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of Hopf bifurcations, see [8, 15-19]). Section 3 ana-
lyzes the bifurcation of periodic orbits of the GLCF,
and gives some conditions for stability and directions
of the periodic obits from the Hopf bifurcation. Section
4 concludes the investigation.

2. Stability analysis

GLCF is described by the following three-dimensional
smooth quadratic autonomous system [13, 20]:

X=ax—(x—y)z
y=—-by—(x —y)z (D
i=—cz+x—y)(x+1Yy),

where (a,b,c, 1) € Ri x R. This system contains
the classical Lorenz system and the newly dis-
covered Chen system as two special and extreme
cases, along with infinitely many chaotic systems in
between [6, 12, 13, 20].
In the following, some stability properties of system
(1) are studied first.

Proposition 1. The equilibria of system (1) are all iso-
lated; moreover, when t > b/a system (1) has only one
equilibrium Sy = (0, 0, 0), and when t < b/a system
(1) has three equilibria: So = (0, 0, 0)

S,

< b abc B avabc ab )
(a+bvb—art (a+bb—ar a+b)

95}

B <_ b abc a~/abc ab )
"\ (@a+bWb—at (a+bb—ar a+b)

Proof: The equilibria of system (1) are the solutions
of the following equations:

ax —(x—y)z=0
—by—(x—y)z=0 2
—cz+(x—y)(x+1y)=0.
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Condition (2) leads to

ax —(x—y)z=0

_ a
y—lbx
z=—-(x—y)(x+T1Yy),

c

which gives, by eliminating y and z from the above
equations, the following:

11+a 21 at 3_0
ax — — — —— | x°=0;
c b b

that is,
x(ab*c — (a + b)* (b — at) x*) = 0.

Solving this equation for x yields x = Owhent > b/a,
andyields x = Oand x = +b+/abc/((a + b)/b — at)
when t < b/a. Therefore, when 7 > b/a system (1)
has only one equilibrium Sy = (0, 0, 0), but when t <
b/a it has three equilibria: Sy = (0, 0, 0) and

Sy
B < b/abc 3 a~/abc ab )
(@+bWb—at’ (a+bb—at a+b)

S_
. <_ b abc a~/abc ab )
(a+b)vb—at (a+b~b—at a+b)
The proposition is thus proved. O

Since the Jacobian of system (1) at Sy is

a O 0
0O —-b 0 |,
0 0 -—c

the equilibrium Sy of system (1) is always a saddle
point, which possesses a 1-dimensional local unstable
manifold and a 2-dimensional local stable manifold.

It is interesting to consider the stability of system
(1) at S; and S_ with t < b/a. Notice the invari-
ance of system (1) under the transformation (x, y, z) >
(—x, —y, z). Thus, one only needs to consider the sta-
bility of system (1) at S..
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Let x = X + bvabc/((a + b)vb —at), y=Y —
a~/abc/((a + b)s/b —art), and z = Z + ab/(a + b).

Then, system (1) becomes

3= @ x, 9y abe_, _(x-v)z

Ta+b a+b Vb —at

. b b? Jab

y=—-2 x_ Y- 7 _(x-Y)Z
a+b a+b Jb—art

PR (a+2b— ar)\/ach (—b + 2at + bt)/abc

" (a+bWb—art (a +b)Wb —ar
XY —cZ+(X-Y)X+7T1Y).

3

Hence, one has to consider the stability of system (3)
at(0,0,0) witht < b/a.

Denote
a ab_ _ abe
a+b a+b JVb—at
_ ab b2 abc
A+ - T a+b T a+b T Jh—at
(a+2b—at)v/abc (=b+2at+br)Vabe —c
(a+b)/b—at (a+b)v/b—at
Then, the characteristic equation of A is
c(b* + a*t
s3+(—a+b+c)s2+%s+2abc=0.
—art

“)

Proposition 2. The condition T < b/a and the real
parts of the roots of Equation (4) being negative to-
gether are equivalent to the conditions of a < b +
cand b*Ba — b —¢)/(a*(—a+3b+¢)) <t < b/a.
In this case, the equilibrium (0, 0, 0) of system (3) is
asymptotically stable.

Proof: By the Routh-Hurwitz Theorem, the real parts
of the roots of (4) are negative if and only if

c(b? + a*1)
_— >

0, 2abc >0,
b—art
b2 2
catb+0" D oibe o,
b—art

so the conditions of v < b/a and the real parts of
the roots of Equation (4) being negative together are

equivalent to

b
T<—, (B®+d’1t)>0,
a

(b* + a’1)
_— >

(—a+b+c)
b—art

2ab,
which, in turn, are equivalent to the following:

b
T<—, —a+b+c>0,
a

(—a + b+ c)(b* + a’t) > 2ab(b — at);

namely,

b
T<—, —a+b+4+c>0,
a

a’t(—a+3b+c) > b*(Ba—b—o).
The proposition is thus proved. O

Next, denote

Z:{(a,b,c,r)eRixR|a<b+c,

b*Ba —b —¢)
a*(—a+3b+c) |

Proposition 3. The conditions of t© <b/a and
Equation (4) having roots with zero real parts together
are equivalent to the condition (a,b,c,t) € ) . In
this case, Equation (4) has one pair of purely imag-
inary conjugate roots, s = i~/2abc//—a + b + c,
together with a negative root, s = a — b — c.

Proof: The conditions 7 < b/a and s = iw(w € R)
satisfying Equation (4) together imply that

2abc—|—(a—b—c)a)2=0,

b
T < —,
a

s b +a*t)
= —CL),
b—art

which are equivalent to

2 2abc
T<—, a—-b—-c<0, o=—-——,
a —a—+b+c
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2ab . (b? +a2t).
—a+b+c b—at ’
namely,
2ab
T<—, a—-b—-—c<O, wzz—L,
a a+b+c
b*Ba—b—c)
T=—";
a*(—a +3b+c¢)
that is,
b*(Ba —b — b
u<_’ a—b—c<0,
a’(—a+3b+c) a
2_ 2abc . — b*(Ba —b —c)
—a+b+c’ a*(—a+3b+c)

which, in turn, are equivalent to

2ab
a—b—c<0, wzziac ,
—a+b+c

. b*Ba—b —c)
a’(—a+3b+c)

It is then easy to verify that when

b 0 b*Ba—b —c)
— —Cc < T =
“ ’ a*(—a+3b+c)

the three roots of Equation (4) are s = +i~/2abc/
vJ—a+b+cands=a—-b—c.

The proposition is thus proved. t
Now, denote

wa, b, c) = b —a)Ba* —16a°b + 184*b> — 16ab’
+3b* — 10a’c 4 18abc — 18ab*c
+10b°c + 124°¢? — 8abc? 4 12b°¢?
—6ac’ + 6bc* + c4). 5)

Theorem 1. If (a, b, c, ) € Y, then the equilibrium
(0,0,0) of system (3) possesses a I-dimensional lo-
cal stable manifold and a 2-dimensional local cen-
ter manifold. Moreover; for the flow restricted to the
2-dimensional local center manifold, (0,0, 0) is an
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unstable focus when u(a, b, ¢) < 0 and a stable focus
when u(a, b, c) > 0.

Proof: Under the condition (a, b, c, t) € X, it fol-
lows from Proposition 3 that the eigenvalues of A
are s = +iv/2abc/~/—a +b+cand s =a —b —c;
so (0, 0, 0) is a degenerate critical point of system (3),
possessing a 1-dimensional local stable manifold and
a 2-dimensional local center manifold.

Next, it is to prove that the point (0, 0, 0) is a focus
for the flow restricted to the 2-dimensional local center
manifold.

Denote

v 2abc
J=a+b+c
Va+b)(—a+b+c)

a~/c(—a +3b + ¢)

A=a—-b—c, w=

and let
X iy U U3 3
Y | = uan uxn us )
zZ 0 o o
where
w* — ab + b? a
uy|=—-— uUp=-—,
U @+ @—02" T ot (a—by
a—c w*+a*—ab
Ui = , U=
BT T T (@ + (a— b))
b b+c
Uy = ————————— 1 Uy3 = — )
= w? + (a — b)? > cA
Then
£ Vi V2 U3 X
n|=1va vn v Y 1,
¢ V31 U3 U3 VA
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where
o((b + c)w? + acla — b) + bA?)
vy = — ,
" (a + b)(@? + 32)
w((a — ¢)w?* + be(a — b) + ar?)
Ui = — )
(a + b)(w? + A?)
cw cM(@? + a* — ab)
V3 = ————, RV G N
B~ (@01 Do (@ + b)(@* + 22
ch(w? — ab + b?) w* + (a — b)A
v = 5 v = T 5 i
2T b+ 7T (@0t Ao

ch(@? + a* — ab)

BT G bY@ + A
cM(@? — ab + b?)
Vp=———,
2T T a4 bY@ + A2)
cA
V33 =

(@ + A0
System (3) becomes

£ = on+ané? + apnén + ann’ + a3
+ o3¢ + a338?

N = —wt + P11E> + Prén + Pun® + Bi3éS
+B23n¢ + B33t?

=2 +yuEr+ynén+ yon® + visél
+ysng + i,

(6)

where
ayp = (U — ua) + tuz)vis,
oy = (U1 — uxn)y + tuz)viz + (U — uzr)

X (=0 (Vi1 + vi2) + (12 + TUR)V13),
axp = (u12 — up)(—o (i + vi2) + (U2 + TUR)V13),
a3 = (u13 — u)(uiy + tuz)viz + (U — uay)

X (=0 (vi1 + vi2) + (u13 + TU23)V13),
a3 = (u13 — un)(—o i +vi2) + (12 + Tuxn)viz)

+(u12 — un)(—o (v + vi2) + (U13 + TU3)V13),

a3z = (13 — u23)(—o (Vi1 + vi2) + (413 + TU23)V13),
Bi1r = (w1 — u2)(wry + tuz)v3,
Bio = (w12 — upn)(uyy + tus)vaz + (U — uzy)

X (=0 (v21 + v2) + (12 + TU2)IV23),
B2 = (u12 — u2)(—o(v21 + v2) + (U2 + TU2)V23),
Bz = (w13 — u23)(u11 + tuz)vs + (U1 — uay)

X (=0 (v21 + v22) + (U13 + TU3)V23),
B2z = (u13 — u23)(—0(v21 + v2) + (U2 + TU2)V23)

+(u12 — un)(—o(vay + v2) + (U13 + TU3)V23),

B3z = (u13 — uxz)(—o(v21 + v22) + (u13 + TU23)V23),
yii = (i — u21)(un + tu)vss,

vio = (1o — upn)(ui + tus)vsz + (Ui — uzp)

X (=0 (v31 + v32) + (12 + TuU22)v33),
Vo = (12 — ux)(—o(v31 + v32) + (U2 + TU22)V33),
vi3 = (13 — u23)(wn + tup)vsz + (U1 — u2y)

X (=0 (V31 4+ v32) + (13 + TU3)V33),
v23 = (u13 — u3)(—o(v31 + v32) + (U2 + TU2)V33)

+(u12 — un)(—o(va1 + v32) + (u13 + TU23)V33),

v33 = (w13 — u23)(—o(va1 + v32) + (u13 + TU23)V33).

Denote by Wi _(0,) the local center manifold of system
(6) near the origin:

Wioe(01) = {(&,n, 01 ¢ = h(E, n),
&1+ In] < 1, h(0,0) = 3:h(0, 0)
= 0,h(0,0)=0}.

Substituting ¢ = h(&, n) into (6) yields the vector field
restricted to the center manifold, as

E=wn+eé&, n

. (N
n=—wE+YE n,

where

e, ) = an&? + anén +ann?® +aiéh
+axsnh + azzh?,

V(& ) = Bug® + Prén + Pun® + Piséh + Puanh
+ Bash?,

in which /4 satisfies

dh & + 9,h 1 = Ah + y11&2 + yion + yon?
+y136h + y3nh + yish?;

that is,

3 h (wn + o182 + @pén + ann? + azéh
+axnh + anh’) + 8,h (—wk + 11§’
+B12EN + Buan® + Bi3€h + Baanh + Brh’)
= A h+yn€” + y€n + yon® + viskh
+ya3nh + yssh® . 3

To this end, assume that 4 has the form
h(g, ) = hn&* + hién + hon® +-- - .
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Then, substituting it into (8) and then equating coeffi-
cients of £€”'n", m 4+ n > 2, on both sides, one obtains

_ (A2 4+ 20H)y11 — roy + 2070

hy = ,
" A2 + 40?)

e = _ 20yt Ay — 20yn
12 = )\(2 + 4(1)2 El

A 20711 + Aoy + (A + 20)yn
»n=- ,

A2 + 4w?)

The polar coordinates & = rcos6, n =rsin6 trans-
form system (7) into

{r’ = R(r,0) o)

6 =—w+ 00,
where
R(r,0) = ¢(r cos 8, r sinf) cos 0
4+ (rcos, rsinf)sin6,

o(r,0) = l(1ﬁ(r cos @, rsinf)cosé
r

—@(rcos@, rsinf)sinb).

Denote by P(r) the Poincaré map of the following
system:

dr R(r, 0)

e (10)
do ~ —w+ 0(r,6)

along the ray 6 = 0, and denote by d(r) the succession
function

diry=P@r)—r.
Then, some tedious calculations yield

d(r)=

b (a +b)4 cm pla, b, c)
Lad (—a+3b+0)? 02 & (@ +(a—b)?) (@ + 1) Ew? +12)

4+ oeh.

an

@ Springer

One can easily check that

ba+bten

— 0.
A ad (—a+3b+c)? o? @ (@ + (a—D)?) (0?4 12)4w? + A2) g

(12)
The theorem is thus proved. O

Corollary 1. If a < b +c¢, © = b*(Ba — b —¢)/ (a?
(—a 4+ 3b + ¢)), then the equilibrium (0, 0, 0) of system
(3) is unstable when ju(a, b, c) < 0 and asymptotically
stable when u(a, b, ¢) > 0.

3. Bifurcation of periodic orbits

In this section, consider the periodic orbit from bifur-
cation of system (1) at S, and S_.

Owing to the invariance of system (1) under
the transformation (x, y, z) — (—x, —y, z), one only
needs to study the bifurcation at S .

Theorem 2. If (a,b,c,7)€ ), L:e(lg] < 1)~
(j (&), k(e), p(e), q(e)) € RY x R is a smooth curve
transversal to Y at (a,b, c,t) when ¢ =0, which
means that (j(0), k(0), p(0), q(0)) = (a, b, c, T) and

# 0,

e=0

[ k*(e)(3j(e) — k(e) — p(&))

then system (1) with the parameters (j(e), k(g),
p(e), q(€)):

X=jEe)x—(x—y)xz
y=—k(e)y —(x —y)z (13)
z=—pE)z+x —y)x +q(e)y),

has a Hopf bifurcation at S as ¢ passes 0. Moreover,

(i) the bifurcating periodic solutions are unstable
when p(a,b,c) <0 and asymptotically stable
when u(a, b, c) > 0;

(ii) the direction of bifurcation is ¢ < O when

k*(e)(3j(e) — k() — p(e))
j2e)(—j(e) + 3k(e) + p(e))

mla, b, c) [

<0,
e=0

—q(e)}
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and & > 0 when

k*(e)(3j(e) — k(&) — p(e))
J2(e)(—j(e) + 3k(e) + p(e))

u(a, b, c) [

> 0.
=0

—q(S))]

Proof: Let

. k(e)/j(e)k(e)p(e)
(Jj(&) + k(e)Vk(e) — j(&)g(e)’
_ J(@NJ(@©k(e)p(e)
(j(&) + k(&) Vk(e) — j(e)q(e)’
J(&)k(e)
Jj(e) +k(e)’

and

Ay(e) =

J(e)

(k)
JE)+kE)

J(e)+k(e)

J(e)k(e)
J(e)+k(e)

(©)+2k(e)—j(e)g(e)/j(€)k(e)p(e)
(i (&) +k(e)VE(e)—j(e)g(e)

)
(&) +k(e)

(—k(e)+2) () (6)+h()g ()  TERE) p(e)
Gie)+hE)VAE)—j©)q(E)

Then, system (13) becomes

AG) J(e)k(e)
@) +ke)T o)+ k()
_ «/j(S)k(te)p(S) Z-(X-1)zZ
Vk(g) — j(e)q(e)
CJ@kE K
J(©) + k() J() + k()
Vj©k(e)pe)

P 74 (Y —X)Z
Vk(e) — j(e)q(e) ( )

P (j(&) + 2k(e) — j(e)q(e))/ j(e)k(e) p(e)
(j (&) + k(e)k(e) — j(e)q(e)

i@k ple)
Vk(e)—j(e)q(e)

_ Ni@kepE | .
V@)= j(e)q(€)

—p(e)

(—k(e) +2j(e)q(e) + k(e)q(e)/ j(e)k(e) p(e) v

(j(&) + k(e)/k(e) — j(e)q(e)
—pE)Z + (X = Y)(X +q(e)Y),

and the characteristic equation of A (¢) is

57 + (= ji(e) + k(e) + p(e))s*

pe)(k(e) + jz(a)q(e))s
k(e) — j(e)q(e)
+2j(e)k(e)p(e) =0.

It follows from Proposition 3 that when ¢ = 0, (15)
has one pair of purely imaginary conjugate roots,
+iv/2abc/~/—a + b + c, and a negative root,a — b —
c.

Denote by s(¢) the branch of the solution of (15)
with s(0) = i\/2abc/\/—a + b + c¢. Then

s'(e)
(—J(6) + k(o) + ple))'s(e) + (UAEETEHOD  5(6) + 2(j (e k(&) p(e))

2 . PENK ()] (e)g(2))
352(e) + 2(=j(e) + k(e) + ple))s(e) + P50

(16)

which implies that
be(3a? + 3b2 + 4be + ¢* — 6ab — 3ac) (0)
@ +b)Qabe+ (—a+b+op)
ac(3a* — 6ab + 3b* — 4ac + 3bc + ¢?)
(a + b)2abc + (—a + b + ¢)?)

abc
_ (0
2abc+(—a+b+c)3p( )

R(s(0) =

K'(0)

a*c(—a +3b + ¢)?
2b(a + b)(2abc + (—a + b + ¢)?)

q'(0)
_ a’c(—a +3b+c)?
" 2b(a + b)2abce + (—a + b + ¢)?)

2b%(3a? 4 3b* + 4bc + ¢ — 6ab — 3ac)) .
x 3 3 J(0)
a’(—a+3b+c¢)

_ 2b(3a® — 6ab + 3b* — dac + 3bc + ¢?)
a*(—a +3b +c)?
20%(a + b)
T 50)— 40
az(—a+3b+c)2p( ) —q'( )]
a*c(—a +3b + ¢)?
2b(a + b)(2abc + (—a + b + ¢)?)
b*(Ba—b—c)
“a2(—a+3b+c)

K'(0)

J'(0)
14

b*Ba —b —c)
a*(—a +3b+c)
b*Ba —b—c¢)
a*(—a+3b+c)

K'(0)

b

+9, p'(0) — q’(O)]

_ a’c(—a +3b 4+ c)?
2b(a + b)(2abc + (—a + b + ¢)?)

[ K*(e)(3j(e) — k(s) — p(e))
J2E)(—j(e) + 3k(e) + p(e))

—q@ﬁ

e=0

a’c(—a+3b+c)?

Since 5 Gaber—atbron > 0 by (@, b,¢c, 1) € X,

one has

(15) RSO0 £0 (17)
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from the transversality condition. The claims thus fol-
low from the Hopf Bifurcation Theorem and Theorem
1 above, completing the proof of the theorem. U

Corollary 2. If(a, b, c, ) € Y, then system (13) with
(J(©), k(e), p(e), q(e)) =(a+¢e, b, c,T):

X=(@a+ex—(x—y)sz
y=-by—(x—-y)2z (18)
= —cz+(x —y)x+1Yy),

has a Hopf bifurcation at S as ¢ passes 0. Moreover,

(i) when u(a, b, c) < 0, the bifurcating periodic orbit
is unstable and the direction of bifurcation is & <
0,

(ii) when u(a, b, c) > 0, the bifurcating periodic orbit
is asymptotically stable and the direction of bifur-
cationis ¢ > 0.

Proof:

[ K*(e)(3j(e) — k(e) — p(e)) ]’
~ - —q(e)
(JH(e)(—j(e) + 3k(e) + p(e))
2b%(3a* + 3b* + 4bc + ¢* — 6ab — 3ac))
a*(—a+3b + c)?
B 1263 (b + ¢ — a)* + b*c(2b + 2¢ — 3a)* + 3a*b*c
2a3(b + ¢)(—a + 3b + ¢)?

e=0

> 0,

completing the proof of the corollary by Theorem 2.
O

Observe that

|: b*(Ba—b —(c +¢)) _.[i|
“la2(—a +3b+ (c + ¢)) =0
- 2b*(a + b)
- aZ(_a —+ 3b + C)2 ,
[M
& a2(_a + 3b + C)

— 1.
e=0

—(f+8)}

Therefore, Theorem 2 yields the following results.

Corollary 3. If(a, b, c, ) € Y, then system (13) with
(J (&), k(e), p(e), q(e)) = (a,b,c+e&,7):

@ Springer

X=ax —(x—y)z
y=-by—(x—y)z (19)
z=—(c+e)z+x—yx+71Yy),

has a Hopf bifurcation at Sy as € passes 0. Moreover,

(1) when u(a, b, c) < 0, the bifurcating periodic or-
bit is unstable and the direction of bifurcation is
e>0;

(2) when u(a, b, c) > 0, the bifurcating periodic orbit
is asymptotically stable and the direction of bifur-
cationis € < 0.

Corollary 4. If(a, b, ¢, t) € Y _, then system (13) with
(J(&), k(e), p(e), q(e)) = (a,b,c, T +¢):

X=ax —(x —y)z
y=-by—(x—-y)2z (20)
= —cz+ (x —y)x+(tr+e)y),

has a Hopf bifurcation at S, as ¢ passes 0. Moreover,

(1) when p(a,b,c) <0, the bifurcating periodic
orbit is unstable and the direction of bifurcation is
e>0;

(2) when u(a, b, c¢) > 0, the bifurcating periodic orbit
is asymptotically stable and the direction of bifur-
cationis ¢ < 0.

4. Conclusions

In this paper, Hopf bifurcation of the generalized
Lorenz canonical form (GLCF) has been investigated,
complementing the existing bifurcation analyses on the
classic Lorenz and the new Chen’s systems. Based on
rigorous mathematical analysis and symbolic computa-
tions, some conditions for stability and direction of the
periodic obits from the Hopf bifurcation of the GLCF
have been obtained. This investigation enhances our
understanding of the very large family of chaotic sys-
tems, the GLCEF.
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