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Abstract. In this paper, we investigate the asymptotic stability of the zero solution and boundedness of all solutions of a certain

third order nonlinear ordinary vector differential equation. The results are proved using Lyapunov’s second (or direct method).

Our results include and improve some well known results existing in the literature.
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1. Introduction

From the relevant literature, it is well known that in a sequence of results the third order ordinary scalar

differential equations of the form

˙ẍ + a1 ẍ + a2 ẋ + a3x = p(t, x, ẋ, ẍ) (1)

in which a1, a2 and a3 are not necessarily constants, have been the object of much study by several authors

till now. In these works, the qualitative behaviors of solutions of third order nonlinear ordinary scalar

differential equations of the form (1), namely, stability of solutions, instability of solutions, boundedness

of solutions, existence of periodic solutions and boundary value problems have been studied extensively

by the authors. One may refer to [1], for a survey, as well as [2–15] and the references quoted therein

for some publications on these topics. However, according to our observations in the relevant literature,

only a few researches (see [16–25]), have been carried out about the stability, boundedness of solutions

and the existence of periodic solutions of third order nonlinear vector differential equations of the form

˙Ẍ + A1 Ẍ + A2 Ẋ + A3 X = P(t, X, Ẋ , Ẍ ) (2)

in which X ∈ �n , t ∈ [0, ∞), A1, A2 and A3 are not necessarily n × n-constant matrices and P: �+ ×
�n × �n × �n → �n . Now, some researches related to equations of the form (2) can be summarized

as follows: In 1975, Edziwy Spolhk [19] obtained sufficient conditions for global asymptotic stability

of the trivial solution of the third order linear vector differential equation

˙Ÿ + AŸ + BẎ + CY = 0,

where A, B and C are n × n-constant symmetric matrices. In 1966, 1983 and 1993, respectively, Ezeilo

and Tejumola [20], Afuwape [17] and Meng [23] studied the ultimately boundedness and existence of
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periodic solutions of the nonlinear vector differential equation

˙Ẍ + AẌ + B Ẋ + H (X ) = P(t, X, Ẋ , Ẍ ).

Later, in 1985, Afuwape [18] also considered the vector differential equation

˙Ẍ + AẌ + G(Ẋ ) + H (X ) = P(t, X, Ẋ , Ẍ )

and for the above equation the author gives ultimate boundedness results that are generalizations of some

earlier works exiting in the literature. Besides these works, in 1985, Abou-El-Ela [16] gave sufficient

conditions that ensure that all solutions of real vector differential equations of the form

˙Ẍ + F(X, Ẋ )Ẍ + G(Ẋ ) + H (X ) = P(t, X, Ẋ , Ẍ )

are ultimately bounded. Afterward, in 1995, Feng [21] established sufficient conditions under which

the nonlinear vector differential

˙Ẍ + A(t)Ẍ + B(t)Ẋ + H (X ) = P(t, X, Ẋ , Ẍ )

equation has at least unique periodic solution. Further, in 1999, Tiryaki [24] constituted similar results

for solutions of vector differential equations of the form

˙Ẍ + AẌ + G(Ẋ ) + H (X ) = P(t, X, Ẋ , Ẍ ),

and Tunç [25] also proved some results on the ultimate boundedness of solutions and the existence of

periodic solutions of vector differential equation

˙Ẍ + F(X, Ẋ )Ẍ + B Ẋ + H (X ) = P(t, X, Ẋ , Ẍ ).

It is worth mentioning that the first author of this paper (see [26, 27]), more recently, established some

similar results on the same topic for the third order nonlinear scalar differential equations as follows:

˙̈x + a(t) f (x, ẋ, ẍ)ẍ + b(t)g(x, ẋ) + c(t)h(x) = p(t)

and

˙̈x + a(t) f (x, ẋ, ẍ)ẍ + b(t)g(x, ẋ) + c(t)h(x) = p(t, x, ẋ, ẍ),

and

˙̈x + ψ(x, ẋ, ẍ)ẍ + f (x, ẋ) = p(t, x, ẋ, ẍ),

respectively.

This research is concerned with nonlinear vector differential equations of the form

˙Ẍ + F(X, Ẋ , Ẍ )Ẍ + B(t)Ẋ + H (X ) = P(t, X, Ẋ , Ẍ ), (3)

where X ∈ �n and t ∈ [0, ∞); F and B are n ×n-symmetric continuous matrix functions; H : �n → �n

and P: �+ × �n × �n × �n → �n , and H and P are continuous. Let

JH (X ) =
(

∂hi

∂x j

)
, Ḃ(t) = d

dt
(bi j (t)), (i, j = 1, 2, . . . , n),
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where (x1, x2, . . . , xn), (h1, h2, . . . , hn) and (bi j (t)) are the components of X, H and B, respectively. It

is also assumed, as basic throughout what follows, that the Jacobian matrices JH (X ) and Ḃ(t) exist and

are symmetric and continuous.

In what follows it will be convenient to use the equivalent differential system:

Ẋ = Y,

Ẏ = Z ,

Ż = −F(X, Y, Z )Z − B(t)Y − H (X ) + P(t, X, Y, Z ),

(4)

obtained from (3) by setting Ẋ = Y , Ẍ = Z . The symbol 〈X, Y 〉 corresponding to any pair X, Y in

�n stands for the usual scalar product
∑n

i=1 xi yi , and λi (A)(i = 1, 2, . . . , n) are the eigenvalues of

n × n-matrix.

The motivation for the present investigation has come from the papers mentioned above. It should be

also noted that the equation studied here is different than that considered in the earlier papers [7, 16–21,

24, 25].

2. Stability and Boundedness of Solutions

In the case P ≡ 0 the following result is established.

Theorem 1. In addition to the fundamental assumptions on F, B and H, suppose that:
(i) There exists an n × n-real continuous operator A(X, Y ) for any vectors X, Y in �n such that

H (X ) = H (Y ) + A(X, Y )(X − Y ), (H (0) = 0),
whose eigenvalues λi (A(X, Y )), (i = 1, 2, . . . , n), satisfy

0 < δh ≤ λi (A(X, Y )) ≤ �h

for fixed constants δh and �h;
(ii) There exists a real n × n-constant symmetric matrix A such that the matrices

A, B(t), Ḃ(t), (F(X, Y, Z ) − A) have positive eigenvalues and pair wise commute with themselves
as well as with the operator A(X, Y ) for any X, Y in �n, and that

δa = min
1≤i≤n

{λi (A), λi (F(X, Y, Z ))}, �a = max
1≤i≤n

{λi (A), λi (F(X, Y, Z ))},
δb = min

1≤i≤n,t∈[0,ω]
(λi (B(t))), �b = max

1≤i≤n,t∈[0,ω]
(λi (B(t))),

�h ≤ kδaδb(where k is positive constant to be determined later in the proof),

0 ≤ λi (F(X, Y, Z ) − A) ≤
√

ε

2
and ε = max |λi (Ḃ(t))| (i = 1, 2, . . . , n),

where

ε ≤ 1

2
min

{(
δbδh

4�b + 4

)2

,

(
δaδb

6�a + 7

)2

,
δ2

a

4
, 1

}
.

Then, the zero solution of system (4) is asymptotically stable.

In the case P �= 0 we have the following result.

Theorem 2. Let all the conditions of Theorem 1 be satisfied, and in addition we assume that there
exist a finite constant K > 0 and a non-negative and continuous function θ = θ (t) such that the vector
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P satisfies

‖P(t, X, Y, Z )‖ ≤ θ (t) + θ (t)(‖X‖ + ‖Y‖ + ‖Z‖),

where
∫ t

0
θ (s)ds ≤ K < ∞ for all t ≥ 0. Then there exists a constant D > 0 such that any solution

(X (t), Y (t), Z (t)) of (4) determined by

X (0) = X0, Y (0) = Y0, Z (0) = Z0

satisfies

‖X (t)‖ ≤ D, ‖Y (t)‖ ≤ D, ‖Z (t)‖ ≤ D

for all t ≥ 0.

Remark. This study has indicated that Feng’s result could also be achieved without his assumption

ε = max|λi ( Ȧ(t))| and ε ≤ 1

2
min

{(
δbδh

4�b + 4

)2

,

(
δaδb

6�a + 7

)2

,
δ2

a

4
, 1

}
established in [21]. Thus, our results improve and include the result in [21].

Our main tool, in the proofs of the theorems, is the function Lapunov’s V = V (t, X, Y, Z ) defined

by

2V = 1

4
〈B X, B X〉 + 3

2
〈BY, Y 〉 + 〈Z , Z〉 +

〈
Z + AY + 1

2
B X, Z + AY + 1

2
B X

〉
, (5)

where A is an n × n-constant matrix and B = B(t) is an n × n-matrix function.

Now, we dispose of some well known algebraic results which will be required in the proofs. The first

of these is quite standard one:

Lemma 1. Let D be a real symmetric n × n matrix. Then for any X ∈ �n

δd‖X‖2 ≤ 〈DX, X〉 ≤ �d‖X‖2,

where δd and �d are, respectively, the least and greatest eigenvalues of the matrix D.

Proof. See [17].

Next, we require the following lemma.

Lemma 2. Let Q, D be any two real n × n commuting symmetric matrices. Then
(i) The eigenvalues λi (Q D)(i = 1, 2, . . . , ) of the product matrix QD are real and satisfy

max
1≤ j,k≤n

λ j (Q)λk(D) ≥ λi (Q D) ≥ min
1≤ j,k≤n

λ j (Q)λk(D).
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(ii) The eigenvalues λi (Q + D)(i = 1, 2, . . . , ) of the sum of matrices Q and D are real and satisfy{
max

1≤ j≤n
λ j (Q) + max

1≤k≤n
λk(D)

}
≥ λi (Q + D) ≥

{
min

1≤ j≤n
λ j (Q) + min

1≤k≤n
λk(D)

}
,

where λ j (Q) and λk(D) are, respectively, the eigenvalues of Q and D.

Proof. See [17].

Now, the properties of the function V (t, X, Y, Z ) are summarized with Lemmas 3 and 4.

Lemma 3. If the conditions of Theorem 1 hold, then there exists a positive constant δ1 such that

V (t, X, Y, Z ) ≥ δ1(‖X‖2 + ‖Y‖2 + ‖Z‖2)

is valid for every solution of (4).

Proof. Now, V here is the same as the function V defined in [21], except the case A is an n ×n-constant

matrix. If we realize similar estimates as shown for V there, we easily obtain that

V (t, X, Y, Z ) ≥ δ1(‖X‖2 + ‖Y‖2 + ‖Z‖2). (6)

This completes the proof of the lemma.

Let (X (t), Y (t), Z (t)) be an arbitrary solution of (4). Define v(t) = V (t, X (t), Y (t), Z (t)). We can

easily prove the following lemma.

Lemma 4. Assume that all the conditions of Theorem 1 are satisfied. Then

v̇(t) ≤ 0 for all t ≥ 0 (7)

and especially

v̇(t) = d

dt
V (t, X, Y, Z ) < 0 provided ‖X‖2 + ‖Y‖2 + ‖Z‖2 > 0. (8)

Proof. A straightforward calculation from (5) and (4) yields that

ν̇ = d

dt
V (t, X (t), Y (t), Z (t)) = −V1 − V2 − V3,

where

V1 = 1

4
〈B X, H (X )〉 + 1

4
〈AY, BY 〉 + 1

2
〈F(X, Y, Z )Z , Z〉 − 1

2
〈B X, Ḃ X〉

− 1

2
〈Ḃ X, Z〉 − 3

4
〈ḂY, Y 〉 − 1

2
〈AY, Ḃ X〉 + 1

2
〈B X, (F(X, Y, Z ) − A)Z〉

+ 〈AY, (F(X, Y, Z ) − A)Z〉 + 〈(F(X, Y, Z ) − A)Z , Z〉,
V2 = 1

8
〈B X, H (X )〉 + 2〈H (X ), Z〉 + 1

2
〈F(X, Y, Z )Z , Z〉,

V3 = 1

8
〈B X, H (X )〉 + 〈H (X ), AY 〉 + 1

4
〈AY, BY 〉.
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In view of the assumptions of Theorem 1, it follows that

H (X ) = H (0) + A(X, 0)X = A(X, 0)X,

〈B X, H (X )〉 = 〈B X, A(X, 0)X〉 ≥ δbδh‖X‖2,

〈AY, BY )〉 ≥ δaδb‖Y‖2, 〈F(X, Y, Z )Z , Z〉 ≥ δa‖Z‖2, −〈B X, Ḃ X〉
≥ −�b

√
ε‖X‖2, −〈ḂY, Y 〉 ≥ −√

ε‖X‖2,

〈(F(X, Y, Z ) − A)Z , Z〉 ≥ 0.

Obviously, for some constants k1 > 0, k2 > 0 (which will be chosen later), we obtain

−1

2
〈AY, Ḃ X〉 = 1

4

∥∥k−1
1

√
AḂ X − k1

√
AḂY

∥∥2 − 1

4
k−2

1 〈AX, Ḃ X〉 − 1

4
k2

1〈AY, ḂY 〉

≥ −1

4
k−2

1 〈AX, Ḃ X〉 − 1

4
k2

1〈AY, ḂY 〉 ≥ −1

4
k−2

1

√
ε�a‖X‖2 − 1

4
k2

1

√
ε�a‖Y‖2.

Taking

k2
1 = min

{
2−1�a�

−1
b , 4−1

}
,

we get

−1

2
〈AY, Ḃ X〉 ≥ −1

2

√
ε�b‖X‖2 − 1

16

√
ε�a‖Y‖2.

Next, we have

1

2
〈B X, (F(X, Y, Z ) − A)Z〉 = 1

4

∥∥k−1
2

√
B

√
F(X, Y, Z ) − AX − k2

√
B

√
F(X, Y, Z ) − AZ

∥∥2

−1

4
k−2

2 〈B X, (F(X, Y, Z ) − A)X〉 − 1

4
k2

2〈B Z , (F(X, Y, Z ) − A)Z〉

≥ −1

4
k−2

2 〈B X, (F(X, Y, Z ) − A)X〉 − 1

4
k2

2〈B Z , (F(X, Y, Z ) − A)Z〉

≥ −1

8
k−2

2

√
ε�b‖X‖2 − 1

8
k2

2

√
ε�b‖Z‖2.

If we choose k2
2 = min{4−1�b, �

−1
b }, then

1

2
〈B X, (F(X, Y, Z ) − A)Z〉 ≥ −1

2

√
ε‖X‖2 − 1

8

√
ε‖Z‖2.

Finally, in similar way, we can easily obtain

〈AY, (F(X, Y, Z ) − A)Z〉 ≥ −1

4

√
ε�a‖Y‖2 − 5

8

√
ε‖Z‖2.

Thus, take into consideration the above discussion, it follows that

V1 ≥ [(1/4)δbδh − (�b + 1)
√

ε] · ‖X‖2 + [(1/4)δaδb − (1/4)(6�a + 7)
√

ε] · ‖Y‖2

+ [(1/2)δa − √
ε] · ‖Z‖2.
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Following the procedure indicated just above, we then conclude that

V2 ≥ 0, V3 ≥ 0.

Hence

ν̇ ≤ −[(1/4)δbδh − (�b + 1)
√

ε] · ‖X‖2 − [(1/4)δaδb − (1/4)(6�a + 7)
√

ε] · ‖Y‖2

− [(1/2)δa − √
ε] · ‖Z‖2

= −D1‖X‖2 − D2‖Y‖2 − D3‖Z‖2 < 0,

where

D1 = �(1/4)δbδh − (�b + 1)
√

ε� > 0, D2 = �(1/4)δaδb − (1/4)(6�a + 7)
√

ε� > 0,

D3 = �(1/2)δa − √
ε� > 0

because of assumption (ii) of Theorem 1.

This completes the proof.

Proof of Theorem 1. From Lemmas 3 and 4, we see that the function V (t, X, Y, Z ) is a Lyapunov

function of system (4). Hence, the zero solution of system (4) is asymptotically stable [1].

This completes the proof of the theorem.

Proof of Theorem 2. Consider the function V defined by (5). Then under the assumptions of

Theorem 2 the conclusion of Lemma 3 can be obtained, that is,

V ≥ δ1(‖X‖2 + ‖Y‖2 + ‖Z‖2) (9)

and since P(t, X, Y, Z ) �= 0, then the conclusion of Lemma 4 can be revised as follows

ν̇ = d

dt
V ≤ 〈(1/2)B X + AY + 2Z , P(t, X, Y, Z )〉.

Next, by noting the assumption of Theorem 2 on P(t, X, Y, Z ) and using Schwarz’s inequality, we

obtain

ν̇ ≤ ((1/2)‖B X‖ + ‖AY‖ + ‖2Z‖) × ‖P(t, X, Y, Z )‖
≤ ((1/2)�b‖X‖ + �a‖Y‖ + 2‖Z‖) × (θ (t) + θ (t)(‖X‖ + ‖Y‖ + ‖Z‖))

≤ D4(‖X‖ + ‖Y‖ + ‖Z‖) × (θ (t) + θ (t)(‖X‖ + ‖Y‖ + ‖Z‖)),

where D4 = max{(1/2)�b, �a, 2}.
Hence, by using the inequalities

‖X‖ ≤ 1 + ‖X‖2, ‖Y‖ ≤ 1 + ‖Y‖2, ‖Z‖ ≤ 1 + ‖Z‖2
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and (9), we obtain

ν̇ ≤ D5θ (t) + D6θ (t)ν, (10)

where D5 = 3D4 and D6 = 4D4δ
−1
1 .

Integrating both sides of between (10) from 0 to t(t ≥ 0), leads to the inequality

ν(t) − ν(0) ≤ D5

∫ t

0

θ (s) ds + D6

∫ t

0

ν(s)θ (s) ds.

On putting D7 = ν(0) + D5 K , it follows that

ν(t) ≤ D7 + D6

∫ t

0

ν(s)θ (s) ds.

Gronwall–Bellman inequality yields

ν(t) ≤ D7 exp

(
D6

∫ t

0

θ (s) ds

)
.

The proof of the theorem is now complete.
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