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Abstract. A variety of methods have been proposed to calculate the dynamic response caused by a railway vehicle affected by

a wheelflat. Most of the sophisticated procedures evaluate the elastic properties of the wheel-rail contact by means of the Hertz

model. However, the hypotheses that must be satisfied in order to apply the Hertzian contact model are not fulfilled when the

wheel-rail contact occurs in the area of wheel affected by the flat. This gives rise to deviations in the results of the dynamic model

compared to the real situation. With the objective of analysing the influence of the elastic wheel-rail contact model, a procedure

was developed to determine the dynamic response caused by a geometric irregularity (in rail or wheel) by means of Hertzian

and non-Hertzian contact models. Results of the wheelflat impact simulations given by both types of contact model have been

compared in this work.
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1. Introduction

There have been a considerable number of defects in wheels whose results and (occasionally) causes

are related to a dynamically coupled process between the track and the railway vehicle. This type of

defects correspond to deviations in the geometry of the wheel tread from its original circular shape, also

known as Out-of-Round (OOR). OOR is catalogued by the UIC in [1] and has been extensively studied

by Nielsen and Johansson in [2, 3]. In [3] flats are given as the cause of the increased force transmitted

from wheel to rail in the OOR wheels analyzed in the field studies. The consequences of crack growth

in rails caused by the impact of a wheelflat are analyzed in [4].

Various models for calculating the dynamic coupling between railway vehicle and track allow to

obtain the force response caused by a wheelflat. There are a number of initial hypotheses that are

common to most of the proposed methodologies. Thus, it is frequent to consider only the unsprung

masses of the vehicle, since the primary suspension filters the high frequency vibration originated in

the wheel-rail contact; only the vertical dynamics are considered since there generally exists a weak

coupling of the lateral and vertical dynamics; symmetry is established with respect to the track axis,

since the flats appear symmetrically on both wheels.

Nevertheless, there can be found highly sophisticated models such as [5], which realistically considers

the track-vehicle system in all its complexity as a three dimensional problem. Other models, such as

[6], establish a set of basic hypotheses that give industrially useful results with a low computational

cost. However, practically all the models determine the wheel-rail contact forces by means of the Hertz

formula, which relates the normal transmitted force Fc with the approach between bodies δ according

to the equation

Fc = K Hδ1.5 (1)
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where K H is a constant that depends on the mechanical properties of the materials and on the ge-

ometry of non-deformed bodies in contact. More sophisticated non-Hertzian contact models have

been used to calculate rail corrugation in [7] and vehicle dynamics in the low-frequency range in

[8].

The initial fundamental hypotheses of the Hertzian contact model are given in Reference [9]. They

include the geometric requirement by which the non-deformed surfaces of the bodies in contact should

be elliptic paraboloids. This requirement is not satisfied when the rail-wheel contact coincides with,

or is near to, the flat. This makes it necessary to evaluate the limitations of using the Hertzian contact

model by means of Equation (1).

The main objective of this paper is to analyze the effects of improvements in the wheel-rail contact

model on the response produced by a wheelflat. The basic idea is to evaluate the tendency to deviate

from the real situation when Hertzian contact models are used to simulate the dynamics produced by a

flat. With this objective, we will compare the theoretical results derived from a Hertzian contact model

with those from a non-Hertzian model, in which the elastic contact characteristics in the area around

the flat are determined with greater precision. The non-Hertzian model chosen was proposed by Kalker

in [10]. In Section 4 a description of the characteristics of this model and the reasons for which it was

selected is given. The simulation model had previously been presented in Reference [11]. Its basic

characteristics are described in Section 2.

2. Dynamic Simulation Model

The model presented in [11] allows to calculate the coupled dynamics between the vehicle and the track.

This is a hybrid model that combines physical and modal coordinates, in which the response is obtained

in time domain by means of numerical integration. The vertical dynamics of the system are considered,

as well as the possibility of the existence of asymmetric behaviour with respect to the axis of the track.

The proposed model considers the global system formed by three types of substructures: rails, sleepers

and the vehicle. Each of these elements by itself has characteristics that could be considered as linear.

The non-linear characteristics are located in the elements that connect the substructures to each other:

the wheel-rail contact, ballast and railpads.

Rails and sleepers are continuous elements that are considered through a modal approach. Their modal

properties can be calculated from a Timoshenko beam model, examining each element individually.

Thus, if φi
m is the m-th vibration mode normalized with regard to the mass of the substructure i (rail or

sleeper), the vertical displacement of a point located through the longitudinal coordinate x at an instant

of time t is

vi (x, t) =
Ni∑
m

φi
m
(x) qi

m(t) (2)

where qi
m(t) constitute a set of modal coordinates defined for each substructure. It should be noted that

in the previous equation a modal truncation was performed when a finite number of Ni vibration modes

was considered for each substructure.

The foregoing coordinates are augmented to a greater set from which it is possible to define a phase

space [12]. The set of phase coordinates is defined by qi
m(t) and pi

m(t), for each substructure i (rail
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or sleeper), where m varies from 1 to the number of modes Ni . These coordinates define the modal

movement equations through the following expressions

q̇ i
m(t) = −2 ζ i

m ωi
m qi

m(t) + pi
m(t)

ṗi
m(t) = −(

ωi
m

)2
qi

m(t) + f i
m(t) (3)

where ζ i
m is the modal damping ratio, ωi

m is the non-damped natural frequency and f i
m(t) is the modal

force of mode m in the substructure i . ṗi
m(t) is zero if the response associated to the mode is quasistatic,

and consequently this variable could be used for estimating the dynamical influence of the mode m on

the global system response.

The modal force f i
m(t) is calculated through modal transformation from the forces applied to each

substructure. These are the forces transmitted through the wheel-rail contact and rail pads. The forces

are calculated by means of the relative displacements and velocities of the points that they join. For

example, in the specific case of the Hertzian model, Equation (1) will be used, while for more complex

models a non-analytical relationship may be used, as is explained in Section 4.

Considering the vehicle as a multi-body system formed by axles and frames, the equations that

determine its dynamics for small displacements can be expressed as the classic vibration equation

(lumped mass and stiffness) given by

M ẅ + D ẇ + K w = Fext (4)

where in w the singular point coordinates corresponding to the vehicle are considered, M, D and

K are, respectively, the matrices of mass, viscous damping and stiffness, and in F the forces

external to the vehicle are stored (basically weight forces and forces involved in the wheel-rail

contact).

The set of differential equations given for each sleeper and rail by (3) and for the vehicle by (4) is

coupled by the formulae associated with the forces transmitted between substructures. The set of ODEs

is integrated by a standard Runge-Kutta type numerical procedure carried out on a NAGTM library

program. The advantage of the proposed method lies on its low computational cost, as only a small

number of coordinates have to be considered, and on the simplicity with which complex models of

wheel-rail contact, rail pads and ballast can be introduced.

3. Geometry of Wheel-Rail Contact

In the literature concerning the study of the impact effect of flats, two kinds of flat geometry are

considered (see Figure 1): firstly, the fresh flat, or the newly formed flat in the instant that it appears as a

result of wheel-locking due to brake action. The second is the rounded flat associated with the geometry

into which the fresh flat rapidly degenerates by the wear on its vertices. The fresh flat is characterized by

its length Lo and by its depth d , both parameters being related by means of the chord equation according

to

Lo =
√

8 R d − 4 d2 (5)
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Figure 1. Geometry of fresh and rounded flats.

R being the wheel radius. The equation that defines the perimeter of the wheel containing the fresh flat

is

zF (ξ ) =
{

R −
√

R2 − ξ 2 |ξ | ≥ Lo/2

d |ξ | < Lo/2
(6)

where ξ is the coordinate according to the direction of the rail that defines the position of the point of

the wheel under consideration.

The shape of the rounded flat in general is not sufficiently well-defined and ought to be made a subject

of investigation. In the literature on this subject, a rounded flat is frequently given the same depth as

the fresh but a greater length. The references often includes definitions of rounded flats by means of

simple analytic functions [6]. A theoretical approximation to the rounded form of the flat can be made

by means of the function

zR(ξ ) =

⎧⎪⎨⎪⎩
R −

√
R2 − ξ 2 |ξ | ≥ L

2

R −
√

R2 − ξ 2 + L2

4Rπ2

(
1 + cos

2πξ

L

)
|ξ | ≤ L

2

(7)

where L is the length of the rounded flat. The minimum value of L that guarantees the convex form of

the perimeter of the wheel by means of Equation (7) is L = 4
√

R d .

The methodology followed for analysing the geometric problem is the Improved Model developed

by Tunna in [13]. The irregularity function is defined as the vertical displacement of the wheel from a

reference position for bringing wheel and rail in contact. The reference position is chosen in such way

that the irregularity function is zero if the wheel is perfectly rounded. The perimeter geometry allows

the irregularity function to be calculated. Two examples of the irregularity function, deduced from the

defect geometries considered in Equations (6) and (7), are shown in Figure 2. The irregularity function

and the displacements in the wheel and the rail in the contact point are used to obtain the approach and

the contact force (see Chapter 4).

In the model constructed for this study, the contact geometry must also be taken into account for

the calculation of the elastic properties of rail-wheel contact. It is therefore necessary to make a spatial

description of the contact geometry. With the objective of determining the elastic contact properties,

the geometry of the rail profile was modeled in the form of a cylinder, and that of the wheel in the form

of a conical surface. Thus, for a GV40 wheel profile on a UIC60 rail, the cylinder representing the rail

has a radius of 300 mm, while the cone corresponding to the wheel has a slope of 1:40. The surface of

the fresh flat on the wheel is a cylindrical surface, corresponding to the shape of the rail on which it was

produced (see the sketch in Figure 3). The profiles of the wheel sections perpendicular to the wheelset
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Figure 2. Irregularity functions calculated from Equations (6) and (7). The initial flat length Lo is equal to 50 mm in a wheel of

1000 mm diameter.

Figure 3. Simplified geometry of rail and wheel.

axle are similar to that shown in Figure 1. These profiles can be obtained through Equation (6). The

d and Lo parameters that must be included in Equation (6) are functions of the section studied. There

exists a distribution d(η) as a function of the coordinate η, where η defines the lateral position with

respect to the theoretical wheel rail-contact point. The d(η) distribution is obtained from the wheel and

rail geometry and the flat depth or d(0). For each plane perpendicular to the wheelset axle defined by η

could be obtained a wheel perimeter through Equations (6) and (7), and consequently the wheel tread

geometry can be determined.

4. Elastic Model of Wheel-Rail Contact

The geometries of bodies in contact defined in Chapter 3 are characterized for having curvature radii

much greater than the dimensions of the contact area and the length of the flat. The vertex of the fresh flat

is an exception to this hypothesis. This is a single point at which the contact traction present are so high

that it causes the material to yield so that the initial geometry rapidly becomes rounded. Nevertheless,

taking into account the dimensions of the flat in relation to the wheel diameter, the vertex of the flat has

a very obtuse angle, so that its singularity has very small effect on the contact stiffness. If this factor

is neglected, it is possible to establish the non-conformal contact hypothesis in the elastic problem

(according to the definition of non-conformal contact in [14]).

The proposed methodology for considering non-Hertzian models requires a table to be drawn up in

which, for a set of combinations of transmitted force and different positions of flat with respect to the
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Figure 4. Definition of the potential contact area.

contact, the approach between bodies δ can be determined. The calculation of the contact problem is

based on the method developed by Kalker for non-conformal non-Hertzian normal contact modeling. The

complete description of this method may be found in reference [10], but the process can be summarized

as follows.

The potential contact area (PCA) is arbitrarily defined in such way that it contains every point of

the contact area. In order to keep the method simple, the PCA is rectangular. A discretization of the

PCA is established in equal rectangular elements within which the magnitudes to be defined in each

element are considered to be constant (see Figure 4). For the J-th element, these magnitudes are the

displacement associated with the elastic deformations u J , the normal traction pJ and the distance

between the non-deformed surfaces of wheel and rail h J .

Defining the elements that belong to the area of contact, the contact problem is solved by means of

the following set of algebraic equations

0 = δ + h J +
∑

I

DJI pI if J ∈ Contact area

0 = pJ if J /∈ Contact area

⎫⎬⎭ (8a)

0 = Fc − S
∑

J

pJ (8b)

where S is the area of each element and AJI corresponds to the displacement in element J when a

unit load is applied in I . The coefficients AJI can be calculated analytically, supposing that the bodies

behave elastically as an infinite half-space. In this case, can be deduced from the expression that relates

the displacement at a point (ξ, η) when a normal traction p is applied within a rectangle measuring

2a × 2b centered on the origin. This displacement, according to the Young’s modulus E and Poisson

ratio ν, was calculated by Love in [15]

u(ξ, η) = p (1 − ν2)

π E

[
(ξ + a) log

(
(η + b)

√
(ξ + a) + (η + b)

(η − b)
√

(ξ + a) + (η − b)

)
+ (η + b) log

(
(ξ + a)

√
(ξ + a) + (η + b)

(ξ − a)
√

(ξ − a) + (η + b)

)
+(ξ − a) log

(
(η − b)

√
(ξ − a) + (η − b)

(η + b)
√

(ξ − a) + (η + b)

)
+(η − b) log

(
(ξ − a)

√
(ξ − a) + (η − b)

(ξ + a)
√

(ξ + a) + (η − b)

)]
(9)

where log is the natural logarithm function.
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5. Calculation of the Elastic Properties of Contact

The model presented in Chapter 4 provides a method for determining the elastic properties of contact

and makes it possible to establish a more precise model than that given by Equation (1). The wheel and

rail geometry determines the non-deformed distances between bodies h J used in Equation (8a), and

consequently the value of δ according to the normal force transmitted. Figure 5 shows the influence

of the wheelflat geometry by showing the value of the approach δ calculated for a normal load of 100

kN. The result is obtained according to the position of the flat with respect to the wheel-rail contact,

given by means of the longitudinal displacement x of the wheel (for x = 0 there is full contact of the

flat with the rail). The calculation was performed for the geometries of a fresh flat, a rounded flat, and

also for the intermediate geometry given by their mean. The graph also shows the approach calculated

by the Hertzian model. The divergence of the non-Hertzian model with respect to the Hertz model

will significantly affect the results presented in Chapter 6, corresponding to the dynamic simulation

model.

The approach calculation for a given value of the normal force involves a high computational cost

when solved simultaneously with the ODEs associated to the dynamics. For this reason, the proposed

methodology requires (previous to the integration of the ODEs) a sufficiently refined table in which the

value of δ is determined according to the normal force and the position of the flat with respect to the

contact. Figure 6 shows the result of this calculation for a fresh flat and Figure 7 that of the corresponding

rounded geometry. The PCA discretization was performed on a grid of 50 × 50 elements fitted to the

contact area.

For each position of the flat with regard to the contact, the relationship between force and displacement

can be fitted by a function type

Fc = K δa (10)

The K and a parameters are determined for a set of positions of the wheel in relation to the flat,

calculated by least square fitting. Parameter a has the value of 1.5 for wheel positions that place the
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Figure 5. Results of the contact problem for a flat of initial length Lo = 50 mm (length of rounded flat L = 70.7 mm) on a wheel

of 1000 mm diameter on an UIC60 rail. Calculated for a normal force of 100 kN and three different flat geometries.
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Figure 6. Result of the calculation of the contact problem for a fresh flat of Lo = 50 mm on a 1000 mm diameter wheel on a

UIC60 rail.

0
10

20
30

40
50

0

50

100

150

200
0

0.05

0.1

0.15

0.2

Wheel displacement  x  (mm)

Norm
al force  F

c   (kN)

A
p
p
ro

a
ch

  
δ 

 (
m

m
)

Figure 7. Result of the calculation of the contact problem for a rounded flat of Lo = 50 mm (length L = 70.7 mm) on a 1000 mm

diameter wheel on a UIC60 rail.

flat out of contact, which coincides with the exact solution given by the Hertz model. When the flat

is positioned on the rail, a tends to unity, especially for fresh flats. This is due to the fact that when

contact occurs in the flat, the contact area has practically no dependence on the load (‘complete contact’

according to Hills and Nowell’s definition in [14]).

6. Results of the Dynamic Simulation

The differences detected in the contact problem have a significant influence on the dynamic response

of the system. This effect can be appreciated in Figure 8 in three calculations corresponding to a fresh

flat, a rounded flat and an intermediate geometry, all calculated from the data obtained from a non-

Hertzian contact model. The calculations were carried out for two practical cases (Cases A and B)

whose parameters are given in Table 1. The parameters corresponding to these cases are based on those

presented in [16, 17]. Case A corresponds to a track model with higher eigenvalues (the ballast is stiffer
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Figure 8. Contact force caused by a flat of initial length Lo = 50 mm on a wheel of 1000 mm diameter on an UIC60 rail for

various flat geometries. Vehicle speed 50 km/h.

and the wooden sleepers are lighter) than those of case B (the ballast is softer and the concrete sleepers

are heavier). With the aim of exciting all the modes of the rail, complete flat-rail contact occurs in a

sleeper bay at a distance from the sleeper equal to 1/
√

2 times the length of the sleeper bay. The flat

length used in the calculations is Lo = 50 mm, the limit imposed by RENFE (the Spanish National

Railways) for the repair of a wheel. The flat depth is 625 μm. In the calculations, the rounded flat has

the same flat depth as the fresh flat.

The discrepancies between the simulation results for the different contact models can be seen in

Figures 9 and 10. Figure 9 shows the peak force in the contact with the Hertzian and non-Hertzian

model calculated for a range of speeds between 10 and 200 km/h. In Figure 10 the relative error ε

committed by computing the peak force in the contact with the Hertzian model F H
max was calculated. In

calculating the relative error, the peak value deduced from the non-Hertzian model F N H
max was taken as
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Table 1. Parameters used in the model.

CASE A CASE B

Sleeper spacing 790 mm 650 mm

Sleeper length 2360 mm 2360 mm

Young’s modulus of sleeper 109 N/m2 20 × 109 N/m2

Area of sleeper 15.73 × 10−3 m2 15.73 × 10−3 m2

Second moment of area of sleeper 11.8 × 10−6 m4 11.8 × 10−6 m4

Mass of sleeper 100 kg 250 kg

Sleeper foundation stiffness 26.78 × 106 (N/m)/m 25.84 × 106 (N/m)/m

Young’s modulus of rail 207 × 109 N/m2 210 × 109 N/m2

Area of rail 7.17 × 10−3 m2 7.69 × 10−3 m2

Second moment of area of rail 23.5 × 10−6 m4 30.5 × 10−6 m4

Rail mass per unit length 56 kg/m 59.98 kg/m

Shear modulus of rail 81 × 109 N/m2 81 × 109 N/m2

Timoshenko shear coefficient of rail 0.34 0.34

Pad stiffness 200 × 106 N/m 80 × 106 N/m

Pad damping 21.8 × 103 N s/m 15 × 103 N s/m

Ballast damping 21.8 × 103 N s/m 31 × 103 N s/m

Total number of axles 4 4

Mass of axle 1000 kg 1600 kg

Mass of bogie frame 3000 kg 3000 kg

Mass of truck frame 56892 kg 67600 kg

Stiffness of primary suspension 106 N/m 1.12 × 106 N/m

Stiffness of secondary suspension 4.3 × 105 N/m 4.3 × 105 N/m

Damping of primary suspension 2 × 104 N s/m 1.2 × 104 N s/m

Damping of secondary suspension 2 × 104 N s/m 2 × 104 N s/m

the reference value, that is

ε = F H
max − F N H

max

F N H
max

× 100 (11)

It can be seen that the peak force is overestimated in most of the calculations when the Hertzian model

is used. In the studied cases, only the calculations obtained from the rounded flat geometry parameters

of Case A give an interval of speeds where the peak force calculated by the non-Hertzian model is

slightly higher than that given by the Hertzian model. In most cases, the reduced stiffness of the real

contact in the flat vertex (where the impact occurs) gives lower contact force values than with the Hertz

model.

The graphs in Figure 11 give examples of the wheel-rail contact forces calculated from both contact

models. Results were obtained for a fresh and a rounded flat with the two cases presented in Table 1.

Vehicle speeds were selected that gave the greatest difference between the results for the two models:

40 km/h for the fresh flat and 70 km/h for the rounded. It can be observed that for the least dynamically

stiff track (Case B) the dynamic response obtained with both contact models was quite similar with the

exception of the interval of time where the impact occurs.
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Figure 9. Peak contact force calculated for a set of train speeds. The results have been obtained through the Hertzian and the

non-Hertzian contact model.
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Figure 11. Contact forces caused by a fresh flat and a rounded flat when the vehicle was running at 40 and 70 km/h calculated

by Hertzian and non-Hertzian contact models.

7. Conclusions

A methodology developed in a previous work to calculate the dynamic train-track response has been

adapted in order to include wheel-rail non-Hertzian contact models. Using this technique, the vibratory

response caused by a vehicle affected by a wheelflat was analyzed by both Hertzian and non-Hertzian

contact models. From the results obtained it can be observed that the peak value of the force transmitted

as calculated by the non-Hertzian model is significantly lower in most of the cases studied. In the

simulations performed, a deviation can be observed from the results of the Hertzian model that can

exceed 30% of the real peak value. On the other hand, the response outside the moment of impact is

not significantly influenced by the contact model, especially when the dynamic stiffness of the track

is low. These conclusions could contribute to explain the causes of the deviations detected with regard

to the theoretical simulation models and the impact detectors based on the peak value of the contact

force.
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