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Abstract. Ordinary differential equations (ODEs) with fractional order derivatives are infinite dimensional systems and nonlocal
in time: the history of the state variable is needed to calculate the instantaneous rate of change. This nonlocal nature leads to
expensive long-time computations (O(t2) computations for solution up to time t). A finite dimensional approximation of the
fractional order derivative can alleviate this problem. We present one such approximation using a Galerkin projection. The
original infinite dimensional system is replaced with an equivalent infinite dimensional system involving a partial differential
equation (PDE). The Galerkin projection reduces the PDE to a finite system of ODEs. These ODEs can be solved cheaply (O(t)
computations). The shape functions used for the Galerkin projection are important, and given attention. The approximation
obtained is specific to the fractional order of the derivative; but can be used in any system with a derivative of that order.
Calculations with both global shape functions as well as finite elements are presented. The discretization strategy is improved
in a few steps until, finally, very good performance is obtained over a user-specifiable frequency range (not including zero).
In particular, numerical examples are presented showing good performance for frequencies varying over more than 7 orders of
magnitude. For any discretization held fixed, however, errors will be significant at sufficiently low or high frequencies. We discuss
why such asymptotics may not significantly impact the engineering utility of the method.
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1. Introduction

Ordinary differential equations (ODEs) involving fractional order derivatives are used to model a variety
of systems, of which an important engineering application lies in viscoelastic damping [1–4]. Another
important application of fractional derivatives lies in control theory (see, e.g., [5–8]). Linear ODEs with
fractional order derivatives or differintegrals are studied using Laplace [1, 2] and Fourier transforms
[3]. Linear systems with half order derivatives have also been solved using an eigenvector expansion
[9].

Nonlinear ODEs involving fractional order derivatives can be solved numerically. But the infinite di-
mensional nature of these systems leads to high computation cost for simulation of long-time behaviors,
as we will discuss later.

In this paper, we present a numerical technique to solve ODEs with fractional order derivatives using
a Galerkin projection for reducing the infinite dimensional system to a finite dimensional one. The
approximation obtained is specific to the fractional order of the derivative of interest; but it can be used
without further change in any system where a derivative of that order appears. This novel method is
easy to apply and is computationally more efficient than direct integration-based numerical methods for
long-time simulations. Both global shape functions as well as finite elements are used for the Galerkin
projections. The discretization strategy is refined in a few steps to provide motivation for the final strategy
adopted. For that final strategy, numerical accuracy obtained is excellent. The method is expected to
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be most useful for nonlinear ODEs with fractional order derivatives, but can, of course, be used for
linear systems as well. The principal advantage offered by our method, while providing demonstrated
accuracy, lies in time savings relative to straightforward numerical integration. Other finite dimensional
approximations, as in [10, 11], will give similar time savings. However, the conceptual basis of our
approximation is different and, in our opinion, simpler.

2. Background

A fractional derivative of order n + q is given, using the Riemann–Louville definition [12], as

Dn+q
b [x(t)] ≡ dn+q x(t)

[d(t − b)]n+q
= 1

�(−q)

dn

dtn

[ ∫ t

b

x(τ )

(t − τ )1+q
dτ

]
, (1)

where −1 < q < 0 and n is a positive integer. For many practical problems it is assumed that the
system starts from rest, so that x(t) ≡ 0 for t ≤ 0. In such cases Dn+q

b becomes Dn+q
0 , and we will

henceforth drop the b subscript assuming that the system starts at b = 0. Hence the fractional derivative
of Equation (1) becomes

Dn+q [x(t)] = 1

�(−q)

dn

dtn

[ ∫ t

0

x(τ )

(t − τ )1+q
dτ

]
.

For many practical problems in dynamics, the order of the fractional derivative lies between 0 and 1,
and we will consider fractional values restricted between these limits as well. Accordingly, substituting
n = 1 in the above, we get

D1+q [x(t)] = 1

�(−q)

d
dt

[ ∫ t

0

x(τ )

(t − τ )1+q
dτ

]
,

which in turn can be rewritten as

Dα[x(t)] = 1

�(1 − α)

d
dt

[ ∫ t

0

x(τ )

(t − τ )α
dτ

]
,

where 0 < α < 1. Two equivalent forms of the above are given as

Dα[x(t)] = 1

�(1 − α)

[
x(0)

tα
+

∫ t

0

ẋ(τ )

(t − τ )α
dτ

]
= 1

�(1 − α)

[
x(0)

tα
+

∫ t

0

ẋ(t − τ )

τα
dτ

]
. (2)

In each equivalent expression of Equation (2), the first term has a singularity at t = 0 but disappears if
x(0) = 0 (as in, e.g., [13]; we assume the same here), giving

Dα[x(t)] = 1

�(1 − α)

∫ t

0

ẋ(t − τ )

τα
dτ. (3)
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The above integral involves a singular kernel. We mention in passing that substituting τ̄ = τ (1−α) gives

Dα[x(t)] = 1

�(2 − α)

∫ t1−α

0
ẋ(t − τ̄ 1/(1−α)) d τ̄ . (4)

In this way, the singularities can be removed for easier computation; the price paid is that the history of
ẋ , which appears inside the integral, may need to be resampled (using, e.g., splines) before numerical
evaluation [14]. However, direct integration of the solution history at each time step is not the subject
of this paper; our aim is to avoid such integration.

Equation (4) shows that the fractional order derivative is nonlocal. It requires the history of ẋ(τ ) from
τ = 0 to τ = t . Any ODE involving such a fractional derivative is therefore infinite dimensional.

While numerically solving an ODE with such a fractional derivative through direct evaluation of the
integral of Equation (4), we face the following problem. Assuming time steps of length �t , the integral
evaluated at instant t = k �t requires O(k) arithmetic operations. To reach the instant t = k �t ,
therefore, we need

O
(

k∑
i=1

i

)
= O(k2)

operations. In other words, for a simulation time duration t , we need O(t2) calculations. For long times,
this is prohibitively high. Yet long times may be unavoidable for, e.g., studying the steady state dynamics
of lightly damped or chaotic systems, or nonlinear systems under random forcing using Monte Carlo
methods (see, e.g., [15]).

An approximation scheme that does not suffer from this O(t2) requirement, but can instead com-
pute solutions in O(t) time, would be useful. Such schemes may involve finite dimensional and local
approximations for the fractional order derivative (the scheme we present here does).

Our scheme is comparable with that of [16] which, though not identical, is quite similar in spirit to
ours. In this paper, however, we go beyond the treatment of [16] and develop a Galerkin projection as
well as finite elements for the dimensional reduction; in this way, we are able to provide a clearer picture
of the performance and accuracy of the method. We also mention the work of [17], where there is no finite
dimensional approximation per se, but the integral required for evaluating the fractional derivative is
numerically approximated after subdividing the interval (0, t) into a number of exponentially decreasing
contiguous subintervals: the net result is something like O(t ln t) time, which is almost as good as
O(t). Unlike [17], our approach a priori approximates the fractional derivative operator itself, rather
than making approximations while computing the value of the fractional order derivative. Finally, we
mention a paper by Schmidt and Gaul [18], which critiques [16] and points out asymptotic aspects of
the approximation: in particular, short time and high frequency asymptotic behavior are not captured
by Yuan and Agrawal’s approximation. Our scheme, too, has this apparent flaw. This flaw may be
important from a restricted mathematical viewpoint. However, as we discuss at the end of this paper, it
is insignificant from at least some engineering perspectives.

3. Transfer Functions and Padé Approximants

A way to obtain finite dimensional approximations might be to directly approximate the transfer function
(see, e.g., [19]) of the fractional derivative by a rational function, which can then be converted into an
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equivalent set of ODEs. Considering half-order derivatives, for example, the transfer function of interest
is

√
s.

A well-known method of obtaining rational approximations is that of Padé approximants, which are
rational functions that match the Taylor series expansion of the original function up to a given number
of terms. Unfortunately, we have found that Padé approximants for

√
s give unstable transfer functions.

Thus, approximating the transfer function directly is nontrivial. Note that considerations of transfer
functions can indeed be used to construct very good finite dimensional approximations (see [11] and
references therein).

In this paper, we do not attempt to directly approximate the transfer function. Following an indi-
rect route, we convert the given infinite dimensional system involving a fractional order derivative
into a different infinite dimensional system involving a partial differential equation (PDE) in which
α, the fractional order of the derivative (assumed to lie between 0 and 1), appears as a free pa-
rameter. We then approximate solutions of the PDE using a Galerkin projection and, finally finite
elements.

4. An Infinite Dimensional System

Consider the PDE (which could also be viewed as an ODE in t with a free parameter ξ )

∂

∂t
u(ξ, t) + ξ (1/α)u(ξ, t) = δ(t), u(ξ, 0−) ≡ 0, (5)

where α > 0 and δ(t) is the Dirac delta function. The solution is

u(ξ, t) = h(ξ, t) = exp(−ξ 1/αt), (6)

where the notation h(ξ, t) is used to denote “impulse response function.” On integrating h with respect
to ξ between 0 and ∞ we get a function only of t , given by

g(t) =
∫ ∞

0
h(ξ, t) dξ = �(1 + α)

tα
. (7)

Abstractly, g(t) is simply the impulse response of a linear, constant coefficient system starting from
rest.

Now if we replace the forcing δ(t) in Equation (5) with some sufficiently well-behaved function ẋ(t),
then the corresponding response r (t) of the same system, again starting from rest at t = 0, is (the last
two expressions are equivalent)

r (t) =
∫ t

0
g(t − τ )ẋ(τ ) dτ = �(1 + α)

∫ t

0

ẋ(τ )

(t − τ )α
dτ = �(1 + α)

∫ t

0

ẋ(t − τ )

τα
dτ.

On comparison with Equation (3), we find that

r (t) ≡ �(1 + α)�(1 − α)Dα[x(t)],

provided x(t) ≡ 0 for t ≤ 0, and 0 < α < 1.
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In this way, we have replaced an α order derivative by the following operations:

1. Solve

∂

∂t
u(ξ, t) + ξ (1/α)u(ξ, t) = ẋ(t), u(ξ, 0−) ≡ 0. (8)

2. Then integrate to find

Dαx(t) = 1

�(1 − α)�(1 + α)

∫ ∞

0
u(ξ, t) dξ. (9)

There is no approximation so far. The system chosen above was prompted by Chatterjee [20].
Equation (8) represents an infinite dimensional system, and so we have replaced one infinite dimen-

sional system (fractional derivative) with another. The advantage gained is that we can use a Galerkin
projection to reduce Equation (8) to a finite dimensional system of ODEs. In this way, a fractional
derivative will be replaced by a finite number of ODEs, and numerical solution up to time t will require
O(t) operations.

5. Galerkin Projection

For the Galerkin projection, we assume that Equation (8) is satisfied by

u(ξ, t) ≈
n∑

i=1

ai (t)φi (ξ ),

where n is finite, the φi are to be chosen by us, and the ai are to be solved for. The φi are called shape
functions. The choice of shape functions will be discussed in the next section. Now we outline the
Galerkin procedure for Equation (8).

Substituting the approximation for u(ξ, t) in Equation (8), we define

R(ξ, t) =
n∑

i=1

{
ȧi (t)φi (ξ ) + ξ (1/α)ai (t)φi (ξ )

} − ẋ(t),

where R(ξ, t) is called the residual. This residual is made orthogonal to the shape functions, yielding n
equations:∫ ∞

0
R(ξ, t)φm(ξ ) dξ = 0, m = 1, 2, . . . , n. (10)

The integrals above need to exist; this will influence the choice of φi in the next section. Equations (10)
constitute n ODEs, which can be written in the form

Aȧ + Ba = cẋ(t), (11)

where A and B are n × n matrices, a is an n × 1 vector containing ai s, and c is an n × 1 vector. The
entries of A, B, and c are

Ami =
∫ ∞

0
φm(ξ )φi (ξ ) dξ, Bmi =

∫ ∞

0
ξ (1/α)φm(ξ )φi (ξ ) dξ, cm =

∫ ∞

0
φm(ξ ) dξ. (12)
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In this paper, we assume that the shape functions are always chosen such that the above integrals exist.
The choices of shape functions may therefore depend on α. In all numerical examples that follow, we
have used shape functions for which the above integrals are finite.

During numerical solution of (say) a second order system including both ẍ as well as Dα[x(t)], we
will use the quantities x and ẋ as parts of the state vector, along with the ai above. Having access to ẋ
at each instant, therefore, we can solve Equation (11) numerically to obtain the ai . Finally

Dα[x(t)] ≈ 1

�(1 + α)�(1 − α)
cTa, (13)

where the T superscript denotes matrix transpose.
Advantages of the approximation proposed here, as we will demonstrate with examples, are that (i) by

suitable choice of shape functions we can hope to obtain somewhat uniform performance over a given
frequency range, (ii) systematic refinement of the approximation involves straightforward calculations,
and (iii) the approximation depends on α, the fractional order of the derivative, but not on the system
where this derivative appears.

6. Choice of Shape Functions

The shape functions are chosen keeping in mind that high frequency behavior (on short time scales)
corresponds to large values of ξ , and low frequency behavior (on long time scales) to small values of
ξ , due to the role ξ plays in exp(−ξ (1/α)t) (see Equation (6)).

Since the shape functions need to be defined over an infinite domain, we introduce an auxiliary
variable z with a bounded domain as

z = ξ 2 + {ξ/(1 + ξ 2)}
1 + ξ 2

. (14)

A plot of z(ξ ) is given in Figure 1. The choice of z as a function of ξ is somewhat arbitrary. It is merely
one choice that satisfies the following conditions:

Figure 1. Plot of z versus ξ .
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1. z increases monotonically from 0 to 1 as ξ increases from 0 to ∞.
This condition is needed to inevitably map the infinite interval to the unit interval. Figure 1 verifies
this condition.

2. z is approximately linear in ξ for small ξ .
Figure 1 verifies this condition as well. This condition is useful for capturing reasonable variations
for small ξ , which gives good performance over long times (low frequencies) as mentioned above.
For the given choice of z(ξ ) and temporarily looking at α = 1/2 (we will consider other α values

later), we choose the following shape functions:

φ1(ξ ) = 1 − z and φi (ξ ) = sin ((i − 1)π z) , for i = 2, 3, . . . , n.

Again, there is arbitrariness in the choice of shape functions. If, for any i ,

lim
z→1

φi 	= 0, (15)

then not all integrals involved in the approximation remain bounded. Thus, we have assumed that the
function to be represented is arbitrary on the unit interval except that it is continuous, and zero at the
right endpoint. The above choice of shape functions can, for large enough n, accurately match any such
function. This is because any function f (z) which satisfies f (1) = 0, upon subtraction of (1 − z) f (0),
gives a function that is zero at both z = 0 as well as z = 1; and such functions can be represented using
Fourier sine series.

The shape functions chosen above are to be substituted in Equation (10), which still includes the
free parameter 0 < α < 1, to obtain matrices A, B, and c. Numerical evaluation of the integrals is
required.

The matrices A, B, and c computed for α = 1/2 and n = 7 are given in the appendix. Calculations
with α = 1/2 but other values of n were carried out as well, but only graphical results are presented in
Section 8 for those cases.

7. Accuracy

The approximation mentioned previously turns out to be reasonably good, but we will eventually do
much better (Section 12). For now, we check the above approximation by noting from Equations (11)
and (13) that

F(Dαx(t)) = 1

�(1 + α)�(1 − α)
cTF(a), when x(t) ≡ 0 for t ≤ 0,

where F(·) denotes the Fourier transform.
We choose α = 1/2 and n = 10 for examination. In Figure 2, in the first and third plot, we compare

the magnitude and phase of the frequency response function (FRF) obtained using the above expression
with that of (iω)1/2. The second plot presents relative error of the approximation. The approximation
is good for frequencies over about 3 orders of magnitude, and can be refined further. The error is not
uniform over the frequency range of interest, but can be made so with suitable choice of shape functions.
This will be demonstrated later using finite elements.
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Figure 2. Comparison between magnitude and phase of (iω)1/2, and approximated FRF using 10 mode Galerkin.

8. Numerical Examples

8.1. A LINEAR SYSTEM

Consider the system

D2x(t) + D1/2x(t) + x(t) = sin(2π t), (16)

with x(t) ≡ 0 for t ≤ 0 and ẋ(0) = 0.
Now we present the numerical results obtained using our method along with direct numerical solutions

where the fractional derivative was calculated by evaluating the integral of Equation (4) (this numerical
integration was also used in [14]).

For completeness, we outline the numerical procedure followed for n = 7. Combining Equations
(11), (13), and (16), we now write

ẍ + 2

π
cTa + x = sin(2π t), (17)

Aȧ + Ba = cẋ, (18)
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with initial conditions x(0) = 0, ẋ(0) = 0, and a(0) = 0, where matrices A, B, and c are eval-
uated by numerical integration as described earlier, and have been provided for reference in the
Appendix.

Results obtained using the Galerkin approximation for n = 3, 5, 7, and 10 are shown first in
Figure 3, where it is seen that the solutions for n = 3 and 5 show some small mismatch, but the
solutions for n = 7 and 10 are indistinguishable to plotting accuracy. Thus, satisfactory convergence is
obtained for reasonable n and α = 1/2.

In Figure 4 we compare our approximate solutions with direct numerical solutions of the original
system (using the technique used by Wahi and Chatterjee [14]). Both x(t) and ẋ(t) plots agree very
well with the direct numerical solution. As mentioned earlier, however, the present technique requires
O(t) computations for the solution up to time t , while the direct numerical technique requires O(t2)
computations.

8.2. A NONLINEAR SYSTEM

Consider

D2x(t) + D1/2x(t) − x(t) + x(t)3 = sin(2π t), (19)

with x(t) ≡ 0 for t ≤ 0 and ẋ(0) = 0.
In Figure 5 we compare our approximation with the direct numerical solution. Again, there is very

good agreement.
Having described the basic method and noted its apparently promising accuracy, we now move to

finite element approximations. The shape functions of Section 6 will be replaced with ones defined over

Figure 3. x(t) against time, for n = 3, 5, 7, and 10.
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Figure 4. x(t) and ẋ(t) against time, for Galerkin (n = 10) and direct numerical solution.

finite elements. We will use the two simplest choices of element basis functions: the piecewise constant
and the “hat” functions (the shape function for the last element will need to be different, as discussed
later). We will also eventually consider values of α other than 1/2.

9. Finite Element Formulation: Uniform Element Size

We first develop an approximation using finite elements of uniform length defined on the unit interval.
This will help clarify the need for nonuniform elements.

We define the following auxiliary variable η(ξ ) (note the change from the z used in Equation (14))

η(ξ ) = ξ

1 + ξ
, (20)

which maps the infinite domain to the unit interval [0, 1]. Comparing with Equation (14), we note that
now ξ can be easily solved for in terms of η. A minor price paid is that, for large ξ , η converges to 1
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Figure 5. Results for Equation (19).

more slowly than z. This affects the restrictions we must place on the shape function(s) used on last
element so as to ensure existence of all integrals involved in the approximation; we will use suitable
shape functions for that element later.

Here, again, we temporarily restrict attention to α = 1/2.

9.1. PIECEWISE CONSTANT CASE

For the piecewise constant case, the shape functions used are as follows (see Figure 6)

φi (η) =
{

1, pi−1 < η ≤ pi ,

0, elsewhere,
for i = 1, 2, . . . , n − 1,

φn(η) =

⎧⎪⎨⎪⎩
(

1 − η

1 − pn−1

)2

, pn−1 < η ≤ 1,

0, elsewhere,
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Figure 6. Piecewise constant shape functions. The solid and hollow circles at pn−1 are shown nearly coincident for visibility
alone; in reality, they coincide exactly. The shape function on the last element is chosen to ensure boundedness of integrals.

where the element nodal point p0 = 0, and pi − pi−1 = 1/n for each i . Notice that the shape function
on the nth subinterval is the only one that needs attention to ensure boundedness of integrals; this choice
works for α = 1/2.

Now a Galerkin projection similar to Section 5 is performed after changing the integration variable
to η, giving

∫ 1

0

(
n∑

i=1

{
ȧi (t)φi (η) +

(
η

1 − η

)(1/α)

ai (t)φi (η)

}
− ẋ(t)

)
φm(η)

1

(1 − η)2
dη = 0, (21)

for m = 1, 2, . . . , n. Equations (21) constitute n ODEs, which can be written in the form of Equations
(11). On combining them with the ODE at hand, we get an initial value problem which can be solved
numerically in O(t) time as before.

9.2. HAT FUNCTIONS

For better accuracy, we can increase the smoothness of the shape functions. Here, we use the “hat”
shape functions which are defined as follows (see Figure 7):

φ1(η) =

⎧⎪⎨⎪⎩
p1 − η

p1
, 0 ≤ η ≤ p1,

0, elsewhere,

Figure 7. Hat shape functions.
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φi+1(η) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

η − pi−1

pi − pi−1
, pi−1 ≤ η ≤ pi ,

pi+1 − η

pi+1 − pi
, pi ≤ η ≤ pi+1,

0, elsewhere,

for i = 1, 2, . . . , n − 2,

and

φn(η) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

η − pn−2

pn−1 − pn−2
, pn−2 ≤ η ≤ pn−1,(

1 − η

1 − pn−1

)2

, pn−1 ≤ η ≤ 1,

0, elsewhere,

(22)

where again p0 = 0, and pi − pi−1 = 1/n for each i .
Here, we have chosen the last shape function to be identical over the last subinterval to that used with

the piecewise constant shape functions (valid for α = 1/2). Once again, the Galerkin projection gives
n ODEs in the matrix form Equation (11), which on combining with the ODE at hand reduces to an
initial value problem which is solved numerically.

We now check accuracy by comparing FRFs, as described in Section 7 (some of these results are also
presented in [21]). The FRF for the less accurate piecewise constant case is calculated for 75 elements,
whereas only 15 elements are used for the case of hat functions. Results are shown in Figure 8. It is
clear that both approximations work well over a significant frequency range. Closer examination of

Figure 8. Piecewise constant versus hat function elements. Comparison between magnitude and phase of (iω)1/2, and approxi-
mated FRFs, using 15 hat functions and 75 piecewise constant functions.
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relative errors verified (plots not presented here) that the hat functions give superior accuracy within
some frequency range, even with far fewer elements.

10. Nonuniform Element Sizes

On using uniform element sizes, the relative error in the FRF of the approximation varies significantly
with frequency even over the range of good performance. This nonuniformity in the error can be reduced
by using nonuniform element sizes (which is the great strength of finite element approximations).

The larger relative error for very low as well as high frequencies is due to the lack of refinement
of elements for small and large values of η. The approximation can be improved by taking smaller
elements near 0 and 1 in the η domain. Here, for demonstration, we have used nodal points that are
equally spaced on a logarithmic scale in the ξ domain, as follows. We first define

y = logspace(−β1, β2, n − 1),

where “logspace” is shorthand for n − 1 points that are logarithmically equally spaced between 10−β1

and 10β2 . We then set

pi = yi

1 + yi
, i = 1, 2, . . . , n − 1 (23)

to get an (n − 1) × 1 array of nonuniformly spaced points in the interval (0, 1). We finally add two more
nodes, at 0 and 1, to get an (n + 1) × 1 array of nodal locations.

FRFs calculated using the above spacing are shown in Figure 9 for 50 piecewise constant and 15
hat functions. It is seen that the relative error is now more uniform over a user-definable frequency
range and the phase angle error is very small over that range as well. In particular, relative error in
magnitude is less than 1% for frequency varying by 7 orders of magnitude; and the phase error over
this range of frequencies is also quite small. This example demonstrates the potential for using finite
element approximations that can be systematically refined as far as desired in any frequency range of
interest (not including exactly zero) in a dynamic simulation. In many mechanical systems, the steady
state static behavior is in any case determined by stiffness and not damping, and so large relative errors
in approximating the low frequency behavior of the damping term may have negligible effects on
the computed response in any case. Similarly, for many mechanical systems, the very high frequency
behavior is dominated by inertia and not damping, with similar implications for approximation errors
at high frequency.

11. Calculations with α �= 1/2

If α = 2/3, say, then the shape functions used earlier for α = 1/2 continue to give bounded integrals.
However, if α = 1/3, say, then they do not. For this case, if we suitably change the shape function on
the last element (compare Equation (24) below with Equation (22); the exponent of 2 there is changed
to 3 below) then all integrals involved are bounded. This points to an issue which we have not really
addressed so far: what is the most suitable choice of shape function for the last element, for a given α?
What are the consequences of an inappropriate choice? These issues will be pre-empted by Section 12.
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Figure 9. Uniformly versus nonuniformly spaced elements. (a) and (b) Relative error and phase error (compared with (iω)1/2) in
FRFs using 50 elements (piecewise constant) with uniform element sizes and nonuniform elements with nodes at logspace(−2,
2). (c) and (d) Relative error and phase error (compared with (iω)1/2) in FRFs using 15 elements (hat functions) with uniform
element sizes and nonuniform elements with nodes at logspace(−2, 2).

The changed shape function is

φn(η) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

η − pn−2

pn−1 − pn−2
, pn−2 ≤ η ≤ pn−1,

(
1 − η

1 − pn−1

)3

, pn−1 ≤ η ≤ 1,

0, elsewhere.

(24)

In Figure 10, we present the comparisons in FRFs for α = 1/3 and α = 2/3. We used 15 uniform
finite elements and the same hat functions as before, except for the modification of Equation (24) in
place of (22) when α = 1/3. The comparison is good for α = 1/3. In contrast, the results obtained for
α = 2/3 are not good. However, on approximating the 2/3 order derivative using two successive 1/3
order derivatives, we obtain good results.

We mention that we obtained similar results with derivatives of order 0.4 and 0.8; of these, the
approximation for order 0.4 was much better than that for order 0.8, but the order 0.8 was satisfactorily



198 S. J. Singh and A. Chatterjee

Figure 10. Magnitude and phase angle comparison in FRFs. (a) and (b) 15 uniform hat elements and α = 1/3. (c) and (d) 15
uniform hat elements and α = 2/3. (e) and (f) 15 uniform hat elements and two successive derivatives of order 1/3 to achieve
α = 2/3.

approximated as two successive derivatives of order 0.4. Similar results, again, were obtained for orders
0.45 and 0.9. The approximations obtained for α = 0.2 and 0.25 were also good. All these calculations
were done using 15 uniform elements and hat functions. These results are not presented here for reasons
of space.

On the basis of these studies, it appears that α-order derivatives for relatively higher values of α are
not well approximated in the present scheme; but two successive α/2-order derivatives, using the same
scheme, give better results. The key to this puzzle lies in the α-independence of the mapping from ξ to
η in Equation (20).
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In what follows, we consider an α-dependent mapping. This gives the best performance so far, and
all previous calculations may be seen as motivating Section 12.

12. The Final Scheme: An α-Dependent Mapping

Here, we replace Equation (20) by the following

η(ξ ) = ξ (1/α)

1 + ξ (1/α)
(25)

which is again a monotonic mapping of [0, ∞] to [0, 1], but now it depends on the order of the
fractional derivative α. The advantage gained by using this mapping is that, now, we have more control
on the performance of the method for a given frequency range. This is because of the role that ξ and
t play in exp(−ξ (1/α)t). Here, we can consider T ∗ ≡ 1/ξ ∗(1/α) for some time T ∗. It suggests that
frequency

F∗ ≡ ξ ∗(1/α) = η∗

1 − η∗ . (26)

Thus, any frequency F∗ corresponds to an α-independent point η∗ on the unit interval. In other
words, a given frequency F∗ corresponds to a unique point η∗ on the unit interval, independent
of α.

We use hat function elements to perform the Galerkin projection (similar to Section 9). The only
difference in this case is that, the last shape function is also a hat function (compare with Equation (22);
the exponent of 2 there is changed to 1 here)

φn(η) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

η − pn−2

pn−1 − pn−2
, pn−2 ≤ η ≤ pn−1,

1 − η

1 − pn−1
, pn−1 ≤ η ≤ 1,

0, elsewhere.

With the above-mentioned mapping, for any value of α between 0 and 1, all the involved integrals
remain bounded for the last hat shape function element as well.

We directly use nonuniform size elements. To this end, we change Equation (23) to

pi = y(1/α)
i

1 + y(1/α)
i

, i = 1, 2, . . . , n − 1. (27)

to get an (n − 1) × 1 array of nonuniformly spaced points in the interval (0, 1); add two more nodes at
0 and 1; and get an (n + 1) × 1 array of nodal locations.

We now come to an interesting point regarding the choice of mesh points in the nonuniform finite
element discretization. While the map from ξ to η is now α-dependent, the choice of mesh points can
be made using

pi = y2
i

1 + y2
i

, i = 1, 2, . . . , n − 1
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with no negative consequences (see Equation (26) with α = 1/2). The advantage is that the frequency
range of interest can be specified easily in this way. We have used this in the numerical examples below.

In Figure 11, we present the comparisons in FRFs for α = 1/3, α = 1/2, and α = 2/3. Fifteen
nonuniform finite elements were used. The performance is very good for all cases over a significant
frequency range. The percentage error in magnitude and phase angle for α = 1/3, α = 1/2, and
α = 2/3 are shown in Figure 12. The errors are below 1% for more than 7 orders of magnitude of
frequency. Calculations for other values of α were also done, and similar results were obtained (not
presented here). Similarly, we have also verified that taking more elements gives smaller errors over the
same frequency range.

Figure 11. Magnitude and phase angle comparison in FRFs. (a) and (b) 15 nonuniform hat elements and α = 1/3. (c) and (d) 15
nonuniform hat elements and α = 1/2. (e) and (f) 15 nonuniform hat elements and α = 2/3.
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Figure 12. Percent error in magnitude and phase angle for α = 1/3, α = 1/2, and α = 2/3.

For verification by readers who wish to implement this method, the system matrices for seven elements
are given in the Appendix.

13. Modeling Issues and Asymptotics

No matter how many elements we take in the FE mesh, the match in the FRF will be good only over some
nonzero finite range of frequencies. The very short time or very high frequency asymptotic behavior
may always be wrong. See, for example, the discussion of [16] in [18]. An anonymous reviewer of this
paper, who pointed us to these two papers, also raised similar concerns regarding this feature of our
approximation.

This unavoidable feature may, however, have acceptably small implications for engineering practice.
We do not suggest that Schmidt and Gaul lack understanding of engineering practice! Rather, their
paper is a mathematical one; it raises mathematical concerns and discusses mathematical issues. Here,
we present our views on what those issues might or might not imply for actual applications of fractional
order derivatives in numerical work with experimentally fitted models for the viscoelastic behavior
of physical materials tested in laboratories using imperfect machines with finite frequency ranges and
finite measurement precision.

Consider some real material whose experimentally observed damping behavior can be well approx-
imated using fractional order derivatives. We could, of course, also describe this behavior using a large
number of (integer order) spring-dashpot combinations (as pointed out by Schmidt and Gaul [18]). The
parameters of such integer order spring-dashpot combinations may be difficult to estimate robustly in
experiments, however. Why?
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As seen earlier, the Galerkin procedure gives very good approximations to fractional order derivatives
for many different choices of mesh points. In other words, the same approximately-fractional-order
behavior of the real material can be described by many different combinations of integer-order or
classical spring-dashpot combinations; these combinations will do an experimentally indistinguishable
job of capturing the experimental data, which will always span only a finite frequency range. In this
way, the classical integer-order approach requires identification of many parameters that cannot really
be uniquely determined. The parameter estimation problem is not only bigger, but more ill-posed. In
contrast, a model involving fractional order derivatives may match the data over the relevant frequency
range; and will also involve identification of fewer parameters in a better-posed problem. For this reason,
description of damping should be done, wherever indicated, using such fractional order derivatives. This
makes parameter identification easier for any individual experimenter; but, more importantly, it allows
different experimenters in different laboratories to obtain the same parameter estimates, without which
material behavior cannot be standardized for widespread engineering use.

However, once a suitable model with fractional order derivatives has been identified and standardized,
simulations using that model can use different approximation techniques; it matters little what the
approximation scheme is, provided it is good enough. The only issue for a given calculation is whether
the final computed results are accurate enough. But what is accuracy?

For the numerical analyst, accuracy means correspondence with the original and exact fractional
order derivative behavior. The approximation should be good over all frequencies and time scales that
are important in the calculation. If the results are not reliable for some very high frequencies, the analyst
notes it, but uses the reliable part of the results anyway. This is the same spirit in which reentrant corners
and cracks in elastic bodies are often modeled using ordinary finite element codes: the results are not
invalidated simply because even very small finite elements may not exactly capture the singularities in
the solution. Rather, a careful analyst keeps a watch on how far from the singularity one must go before
the numerical results are reliable.

For the engineer, in addition to the numerical issue, accuracy also means correspondence with the
behavior of the original real material we started with. Any difference between exact and approximate
mathematical solutions, in behavior regimes where there is no experimental data, are academic curiosi-
ties without practical implication in many cases. There is, in the end, no theorem which says that test
results for a given piece of rubber can be extrapolated outside the test range; whether we believe it or
not is a matter of individual academic taste.

Do our numerics limit the size of the allowable test range? We think not. As seen above, with merely
15 nonuniform hat function elements, we get errors less than 1% over a frequency range spanning more
than 7 orders of magnitude which in a real setup might correspond to a frequency range, e.g., from
0.01 Hz to 100 kHz, or from 0.0001 Hz to 1 kHz. Are there mechanical models for anything at all where
the range of validity exceeds this? If there are, we can take (say) 20 elements instead of 15. Note, also,
that errors less than 1% in estimating material constants are considered small; for example, the Young’s
modulus of steel is routinely specified as 210 GPa, i.e., to two significant digits only. But, if necessary,
the error in our approximation could be made less than 0.1% with more elements.

Finally, if the engineer believes (as discussed in [20]) that the fractional order derivative behavior
observed in experiments is actually an artifact of many complex internal dissipation mechanisms, each
without memory, then the very-low and very-high (outside the fitting range) frequency behavior of
the material may actually not match the fitted fractional order behavior. In other words, where the
approximation may not match the model, there the model does not match the material anyway.

It is with this viewpoint that we have presented the errors in our numerical approximations above
using the frequency domain. While it may well appear in nonlinear differential equations, the fractional
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derivative itself is very much linear. The error in the approximation of that derivative can therefore be
viewed usefully in the frequency domain. A post facto study of the spectrum of the computed solution
can show whether the solution was in fact confined within the frequency range where the approximation
is good; if not, as is clear from our numerical results, the approximation can be improved by the
analyst.

14. Conclusions

A problem with direct numerical simulation of fractionally damped systems is that simulations up to
time t require O(t2) computations. We have developed a novel Galerkin projection technique for reduc-
ing the infinite-dimensional systems associated with fractional order derivatives to finite dimensional
systems. The reduction to a finite dimensional system is accomplished by first transforming the infinite
dimensional, fractionally damped ODE to another infinite dimensional system consisting of an ODE
coupled with a PDE. The Galerkin projection is then performed on the PDE. The approximation ob-
tained is specific to α, the fractional order of the derivative; it can be used for any system where such a
derivative appears.

With the present finite dimensional approximation, simulations up to time t of fractionally damped
systems can now be done in O(t) time. It is emphasized that such time savings are only relative
to straightforward numerical integration. Other finite dimensional approximations, such as in [10] and
[11], will give similar time savings. However, the conceptual basis of our approximation is both different
as well as, in our opinion, simpler.

We have presented calculations with global shape functions, and then with finite elements as well.
Use of continuous, piecewise differentiable shape functions and finite elements of nonuniform size,
along with an α-dependent mapping of the half line to the unit interval, has been shown, for a relatively
small number of elements, to give excellent approximations with fairly uniform and small error over
a user-specified frequency range. The present approximation is expected to be useful for long-time
simulations of nonlinear dynamic systems with fractional order terms.

Appendix A: System Matrices

The matrices described in Section 5 are given here for n = 7. We present these for verification by
readers implementing the calculation, not direct use. Users are advised to calculate the elements of
these matrices to more digits of precision.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3836 0.5094 −0.1495 0.3400 −0.1403 0.2400 −0.1048

0.5094 1.0663 −0.8553 0.7806 −0.6667 0.5728 −0.4899

−0.1495 −0.8553 1.8469 −1.5220 1.3534 −1.1565 1.0063

0.3400 0.7806 −1.5220 2.4197 −2.0119 1.7869 −1.5487

−0.1403 −0.6667 1.3534 −2.0119 2.8532 −2.4040 2.1533

0.2400 0.5728 −1.1565 1.7869 −2.4040 3.2196 −2.7512

−0.1048 −0.4899 1.0063 −1.5487 2.1533 −2.7512 3.5533

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3836 1.1486 −2.0856 2.8635 −3.5233 4.0857 −4.5792

1.1486 3.4909 −6.4706 8.9340 −11.0176 12.7999 −14.3592

−2.0856 −6.4706 12.4249 −17.4881 21.7339 −25.3767 28.5574

2.8635 8.9340 −17.4881 25.2248 −31.8473 37.4914 −42.4180

−3.5233 −11.0176 21.7339 −31.8473 40.9823 −48.8886 55.7325

4.0857 12.7999 −25.3767 37.4914 −48.8886 59.2233 −68.2649

−4.5792 −14.3592 28.5574 −42.4180 55.7325 −68.2649 79.6822

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and

c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0708

2.4137

−3.1911

4.2328

−4.6777

5.3009

−5.6135

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The system matrices obtained using α-dependent mapping in Section 12 are as follows for n = 7.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.3822e−1 2.3129e−2 0 0 0 0 0

2.3129e−2 1.0951e−1 2.8911e−2 0 0 0 0

0 2.8911e−2 1.7846e−1 5.4390e−2 0 0 0

0 0 5.4390e−2 2.7544e−1 1.0044e−1 0 0

0 0 0 1.0044e−1 4.7224e−1 1.7158e−1 0

0 0 0 0 1.7158e−1 9.4760e−1 3.0324e−1

0 0 0 0 0 3.0324e−1 2.0920

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.3765e−4 9.2261e−5 0 0 0 0 0

9.2261e−5 1.8197e−3 9.6345e−4 0 0 0 0

0 9.6345e−4 1.8634e−2 1.1022e−2 0 0 0

0 0 1.1022e−2 1.5438e−1 1.1486e−1 0 0

0 0 0 1.1486e−1 1.3348 1.1040 0

0 0 0 0 1.1040 1.4873e1 1.1838e1

0 0 0 0 0 1.1838e1 3.0839e2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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and

c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.6135e−1

1.6155e−1

2.6176e−1

4.3027e−1

7.4426e−1

1.4224

3.7947

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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