
Nonlinear Dynamics (2005) 42: 395–405 c© Springer 2005

Homotopy Solutions for a Generalized Second-Grade Fluid Past
a Porous Plate

TASAWAR HAYAT∗ and MASOOD KHAN
Department of Mathematics, Quaid-i-Azam University, 45320 Islamabad, Pakistan;
∗Author for correspondence (e-mail: t pensy@hotmail.com; fax: +92-51-9219888)

(Received: 18 November 2004; accepted: 5 May 2005)

Abstract. The flow of a second-grade fluid past a porous plate subject to either suction or blowing at the plate has been studied.
A modified model of second-grade fluid that has shear-dependent viscosity and can predict the normal stress difference is used.
The differential equations governing the flow are solved using homotopy analysis method (HAM). Expressions for the velocity
have been constructed and discussed with the help of graphs. Analysis of the obtained results showed that the flow is appreciably
influenced by the material and normal stress coefficient. Several results of interest are deduced as the particular cases of the
presented analysis.
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1. Introduction

The governing equations that describe the flow of a Newtonian fluid are the Navier–Stokes equations.
There are many fluids (such as polymeric liquids, biological fluids, liquid crystals) that show viscoelastic
behaviour and cannot be described simply as Newtonian fluids. Interest in flows of non-Newtonian
fluids has increased substantially over the past decades because of wide use of these fluids in chemical
process industries, food and construction engineering, in petroleum production, in power engineering
and commercial applications. Moreover, the boundary layer concept of non-Newtonian fluids is of
special importance owing to its application to many engineering problems, among which we cite the
possibility of reducing frictional drag on the hulls of ships and submarines.

Due to the complexity of fluids, many constitutive equations have been proposed. Amongst the many
models that have been used to describe the non-Newtonian behaviour exhibited by certain fluids, the
fluids of differential type have acquired special status. The non-linear response of such fluids constitute
an important area of mathematical modelling. The equation of motion are highly non-linear and finding
analytic solutions is not easy. Although the power-law model [1, 2] is mostly used in engineering but it
cannot capture the normal stress differences or yield stresses. One particular class of differential type
fluids for which one can reasonably hope to derive analytic solutions is class of second-grade fluids.
Also, second-grade fluid model can predict the normal stress effects (which could lead to phenomena
such as ‘die swell’ and ‘rod-climbing’). Dunn and Fosdick [3], Dunn and Rajagopal [4], and Fosdick
and Rajagopal [5] have performed complete thermodynamic analysis of second-grade fluids. Important
theoretical studies of such fluids have been made by Rajagopal [6–8], Hayat et al. [9–12], Benharbit
and Siddiqui [13], Rajagopal and Gupta [14], Bandelli and Rajagopal [15], Bendelli [16], Fetecau and
Zierep [17], and Fetecau et al. [18].

It is worth mentioning that the departure of viscoelastic behaviour of non-Newtonain fluids from the
Navier–Stokes equations manifests itself in a variety of ways: non-Newtonian viscosity (shear thinning
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or shear thickening), stress relaxation, non-linear creeping, development of normal stress differences and
yield stress. The interesting case of non-linearity is the generalized second-grade fluid which results from
a modification of constitutive equation incorporating a shear–rate-dependent viscosity. The generalized
second-grade fluid model is not only capable of predicting normal stress differences but it can also be
used for shear thinning and shear thickening also. Valuable contributions in this direction have been
made by Man [19], Massoudi and Phuoc [20], and Straughan [21, 22]. Gupta and Massoudi [23], and
Franchi and Straughan [24] also examined the second-grade models when viscosity is a function of
temperature.

In this work, we analyse the flow of a generalized second-grade fluid past a porous plate. In the
constitutive equation, the viscosity depends on the shear rate. The layout of the paper is as follows. In
Section 2, the formulation of the problem is given and basic notation is introduced. In Section 3, the
solutions for velocity are given using homotopy analysis method (HAM) [25–35]. Section 4 deals with
the discussion of the results. Finally, conclusions are given in Section 5.

2. Development of the Flow

Let us consider the flow of a generalized second-grade fluid (in the region 0 ≤ y < ∞) past a porous
plate at y = 0. The flow far away from the plate is uniform. A coordinate system is chosen in which x-axis
is parallel to the plate and the y-axis perpendicular to the plate. u and v denote the velocity components
in the x- and y-directions, respectively. The incompressible flow is governed by the continuity, linear
momentum:

div V = 0. (1)

ρ
dV
dt

= div T+ρb. (2)

In previous equations V is the velocity vector, t the time, ρ the density, b the body force and d/dt the
material time derivative.

The Cauchy stress tensor T for generalized second-grade fluid is given by [19]

T = −pI + µ�m/2A1 + α1A2 + α2A2
1, (3)

where I is the identity tensor, p the pressure, µ the viscosity coefficient, α1 and α2 the normal stress
coefficients, m the material parameter and

� = 1

2
trA2

1 (4)

is the second invariant of the symmetric part of the velocity gradient. The kinematical tensors A1 and
A2 are defined through [36]

A1 = L + L�, (5)

A2 = dA1

dt
+ A1L + L�A1, (6)

where
L = grad V.
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It is worth mentioning here that power-law fluid has a shear-dependent viscosity but which can exhibit
no normal stress differences. The generalized second-grade fluid, which has been used successfully in
modelling the flow of icy mesh [37], exhibits both shear thinning and normal stress differences.

It should be noted that for m = 0, the model defined by Equation (3) reduces to that considered by
Rajagopal [6–8], Rajagopal and Gupta [14], Hayat et al. [9–12], and Siddiqui et al. [38]. If α1 = α2 = 0,
on the other hand, the power-law model [1] is recovered from Equation (3). Moreover, if α1 = α2 = 0
and m = 0 we are left with the classical model of Navier and Stokes.

For the problem in question, let us seek velocity field of the following form

V = u(y)î + v(y) ĵ, (7)

where î and ĵ are the unit vectors in the x- and y-directions. It follows from Equation (1) that

v(y) = −V0 = constant (8)

in which V0 > 0 is a scale of suction velocity and V0 < 0 is blowing at the plate.
Using Equations (7) and (8) and employing the same arguments as in Rajagopal and Gupta [14],

Equation (2) in absence of body forces gives

d

dy

{
µ

[∣∣∣∣du

dy

∣∣∣∣
2]m/2 du

dy

}
+ ρV0

du

dy
− α1V0

d3u

dy3
= 0. (9)

The boundary conditions are

u(0) = 0,

u → U∞ as y → ∞. (10)

Since Equation (9) is a third order ordinary differential equation, we thus have one boundary condition
less than that necessary to solve Equation (9). While it is possible to augment the boundary conditions
based on the asymptotic structures for the velocity field or the stress. We thus have

du

dy
→ 0 as y → ∞ (11)

as there is no shear in the free stream.
Let us introduce the following non-dimensional parameters

y∗ = yU∞
ν

, u∗ = u

U∞
, V ∗

0 = V0

U∞
, µ∗ = µ

µ0
. (12)

Equation (9) and boundary conditions (10) and (11) after dropping asterisks take the following form

αV0
d3u

dy3
− V0

du

dy
− µ�

d

dy

{[∣∣∣∣du

dy

∣∣∣∣
2]m/2 du

dy

}
= 0, (13)

u(0) = 0,

u → 1 as y → ∞,
(14)

du

dy
→ 0 as y → ∞,
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where

α = α1U 2
∞

ρν2
, �m = µ0

ρU 2∞

(
U 2

∞
ν

)m+1

. (15)

3. Analytic Solutions for Integer Material Parameter (m)

Here, we seek solutions with du/dy > 0, α1 > 0 and consider the case that m is a positive integer.
When m = 1, Equation (13) becomes

αV0
d3u

dy3
− V0

du

dy
− 2µ�1

du

dy

d2u

dy2
= 0, (16)

When m = 2, Equation (13) is

αV0
d3u

dy3
− V0

du

dy
− 3µ�2

(
du

dy

)2 d2u

dy2
= 0, (17)

and when m = 3,

αV0
d3u

dy3
− V0

du

dy
− 4µ�3

(
du

dy

)3 d2u

dy2
= 0, (18)

in which �1, �2 and �3 can be taken from Equation (15).
Now to solve the non-linear differential equations (16)–(18) subject to boundary conditions (14), we

apply HAM to give an explicit, uniformly valid and totally analytic solutions.

3.1. THE ZERO-ORDER DEFORMATION EQUATION

Due to the boundary conditions (14) and governing Equation (13), it is straightforward to choose

u0 (y) = (
1 − e− y√

α

)
, (19)

as the initial guess of u(y) and

L[ū(y; p)] =
(

αV0
∂3

∂y3
− V0

∂

∂y

)
ū(y; p) (20)

as the auxiliary linear operator, respectively.
Furthermore, we define using Equation (13) the non-linear operator

N [ū(y; p)] = αV0
∂3ū(y; p)

∂y3
− V0

∂ ū(y; p)

∂y
− µ�m

∂

∂y

{[(
∂ ū(y; p)

∂y

)2]m/2
∂ ū(y; p)

∂y

}
. (21)

Then, we construct the so-called zero-order deformation equation

(1 − p)L[ū(y; p) − u0(y)] = ph̄ N [ū(y; p)], (22)
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subject to the boundary conditions

ū(0; p) = 0,

ū(y; p) → 1 as y → ∞,
(23)

∂ ū(y; p)

∂y
→ 0 as y → ∞,

where p is an embedding parameter and h̄ is a non-zero auxiliary parameter.
When p = 0, the solution of Equations (22) and (23) is

ū(y; 0) = u0(y). (24)

When p = 1, Equations (22) and (23) are equivalent to Equations (13) and (14), provided

ū(y; 1) = u(y). (25)

Thus, as p increases from 0 to 1, ū(y; p) varies from the initial approximation u0(y) to the exact solution
u(y) governed by Equations (13) and (14). Note that we have great freedom to choose the auxiliary
parameter h̄ . Assume that h̄ is properly chosen so that the zero-order deformation equations (22) and
(23) have solutions for all p ∈ [0, 1] and thus the term

uk(y) = 1

k!

∂k ū(y; p)

∂pk

∣∣∣∣
p=0

, (26)

exists for k ≥ 1. Then, by Taylor’s theorem and using Equation (24), we can expand ū(y; p) in power
series of p as follows

ū(y; p) = u0(y) +
+∞∑
k=1

uk(y)pk . (27)

Furthermore, assuming that h̄ is so properly chosen that the power series (27) is convergent at p = 1,
we have from Equation (25) the solution series

u(y) = u0(y) +
+∞∑
k=1

uk(y). (28)

3.2. THE HIGH-ORDER DEFORMATION EQUATION

For brevity, define the vectors

uk = {u0(y), u1(y), u2(y), . . . , uk(y)}. (29)

Differentiating the zero-order deformation equations (22) and (23) k times with respect to p and then
dividing them by k! and finally setting p = 0, we have the high-order deformation equation

L[uk(y) − χkuk−1(y)] = h̄ Rk(uk−1), k ≥ 1 (30)
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subject to the boundary conditions

uk(0) = 0,

uk → 0 as y → ∞,
(31)

duk

dy
→ 0 as y → ∞,

in which

Rk(uk−1) = 1

(k − 1)!

∂k−1N [ū(y; p)]

∂pk−1

∣∣∣∣
p=0

,

(32)

χk =
{

1, k > 1,

0, k = 1.

Note that Rk(uk−1) is dependent on the integer material parameter m. When m = 1, we have

Rk(uk−1) = αV0u′′′
k−1 − V0u′

k−1 − 2µ�1

k−1∑
n=0

u′
k−1−nu′′

n, (33)

when m = 2

Rk(uk−1) = αV0u′′′
k−1 − V0u′

k−1 − 3µ�2

k−1∑
n=0

u′
k−1−n

n∑
i=0

u′
n−i u

′′
i , (34)

when m = 3

Rk(uk−1) = αV0u′′′
k−1 − V0u′

k−1 − 4µ�3

k−1∑
n=0

u′
k−1−n

n∑
i=0

u′
n−i

i∑
j=0

u′
i− j u

′′
j , (35)

where primes denote the derivative with respect to y.

3.3. SOLUTION EXPRESSIONS WHEN m IS POSITIVE INTEGER

Now, it is easy to solve the linear kth-order deformation equations (30) subject to boundary conditions
(31). Solving Equation (30) subject to boundary conditions (31) upto third-order of approximations,
we obtain the four-term solution consisting of equation (13) and boundary conditions (14). Hence, the
four-term solution of Equations (13) and (14) can be expressed as

u(y) = u0(y) + u1(y) + u2(y) + u3(y), (36)

where u0(y) is given by Equation (19) and when m = 1

u1(y) = h̄ µ�1

3αV0

(
1 − e− y√

α

)
e− y√

α , (37)

u2(y) = h̄ µ�1

18α2V 2
0

[
6αV0(1 + h̄ ) − h̄ µ�1

(
1 − 3e− y√

α

)](
1 − e− y√

α

)
e− y√

α . (38)
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u3(y) = h̄ µ�1e− y√
α

270α3V 3
0

[
26h̄ 2�2

1µ
2
(
1 − e− 3y√

α

) − 45h̄ µ�1{h̄ µ�1 − 2(1 + h̄ )V0α}(1 − e− 2y√
α

)
+ 10

{
9(1 + h̄ )2V 2

0 α2 − 12h̄ (1 + h̄ )V0αµ�1 + 2h̄ 2�2
1µ

2
}(

1 − e− y√
α

)
]

,

(39)

For m = 2

u1(y) = h̄ µ�2

8α3/2V0

(
1 − e− 2y√

α

)
e− y√

α , (40)

u2(y) = h̄ µ�2

64α3V 2
0

[
8α3/2V0(1 + h̄ ) + 3h̄ µe− 2y√

α

](
1 − e− 2y√

α

)
e− y√

α , (41)

u3(y) = h̄ µ�2e− y√
α

35840α9/2V 3
0




351h̄ 2�2
2µ

2
(
1 − e− 6y√

α

) + 576h̄ 2�2µ
2
(
1 − e− 5y√

α

)
− 210h̄ 2�2(3 + 2�2)µ2

(
1 − e− 4y√

α

)
+ 112h̄ (1 + h̄ )(15 + 16�2)µα3/2V0

(
1 − e− 3y√

α

)
− 210h̄ µ{8(1 + h̄ )(1 + �2)α3/2V0 − h̄ �2

2µ}(1 − e− 2y√
α

)
+ 4480(1 + h̄ )2α3V 2

0

(
1 − e− y√

α

)




, (42)

and when m = 3

u1(y) = h̄ µ�3

15α2V0

(
1 − e− 3y√

α

)
e− y√

α , (43)

u2(y) = h̄ µ�3

225α4V 2
0

[
15α2V0(1 + h̄ ) + h̄ µ�3

(
1 + 5e− 3y√

α

)](
1 − e− 3y√

α

)
e− y√

α , (44)

u3(y) = h̄ µ�3e− y√
α

111375α6V 3
0




1180h̄ 2�2
3µ

2
(
1 − e− 9y√

α

) + 165h̄ µ�3{30(1 + h̄ )α2V0

−7h̄ µ�3}
(
1 − e− 6y√

α

) + 33
{
225(1 + h̄ )2α4V 2

0

−120h̄ (1 + h̄ )α2V0µ�3 + 2h̄ 2�2
3µ

2
}(

1 − e− 3y√
α

)


 . (45)

4. Discussion of Results

In this section, we present various results obtained from the flow analysed in this investigation. The
velocity profiles are plotted in Figures 1–6 for various values of the normal stress coefficient α and
porosity parameter V0 for the three cases when m = 1, 2 and 3. Figures 1 and 2 are prepared when
m = 1, Figures 3 and 4 for m = 2 and Figures 5 and 6 for m = 3.

The flow dependence of a generalized second-grade fluid on the normal stress coefficient α can be
clearly seen from Figures 1, 3 and 5 for the three cases. From these figures, it is noted that the flow is
strongly influenced by α. It is found that with the increase in α the boundary layer thickness increases
near the plate, while the velocity decreases for both suction and blowing.

In order to illustrate the effect of suction and blowing, for fixed values of other parameters, Figures
2, 4 and 6 are plotted. It is seen that an increase in suction results in a decrease in boundary layer
thickness. This is in keeping with the expected fact that suction causes reduction in the boundary layer
thickness. For the case of blowing, it is well known that in the case of Newtonian fluids, there is no
solution to the Navier–Stokes equations for blowing. However, a solution to the equations of motion in
the case of fluid injected into the domain is possible in the case of non-Newtonian fluids and the results
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Figure 1. Profiles of velocity u(y) for various values of normal stress coefficient α for fixed h̄ = −0.5, µ = 1 and �1 = 1.

Figure 2. Profiles of velocity u(y) for various values of suction (panel a) and blowing (panel b) for fixed h̄ = −0.5, µ = 1, �1 = 1
and α = 1.

Figure 3. Profiles of velocity u(y) for various values of normal stress coefficient α for fixed h̄ = −0.5, µ = 1 and �2 = 1.5.

established here are in keeping with the results of Rajagopal and Gupat [14]. As expected, the blowing
causes thickening of the boundary layer and this boundary layer thickness is greater when compared to
the case of suction.

It is further seen that the velocities in the three cases of m have no much difference through the
variation of α. However, if we take the variation of V0 then the velocities are sensitive for the different
values of m which shows the shear-thickening effects of the examined non-Newtonian fluid. Thus, a
generalized second-grade fluid exhibits the shear-thinning and shear-thickening effects for m < 0 and
m > 0, respectively.
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Figure 4. Profiles of velocity u(y) for various values of suction (panel a) and blowing (panel b) for fixed h̄ = −0.5, µ = 1, �2 =
1.5 and α = 1.

Figure 5. Profiles of velocity u(y) for various values of normal stress coefficient α for fixed h̄ = −0.5, µ = 1 and �3 = 1.8.

Figure 6. Profiles of velocity u(y) for various values of suction (panel a) and blowing (panel b) for fixed h̄ = −0.5, µ = 1, �3 =
1.8 and α = 1.

5. Concluding Remarks

In this paper, HAM is employed to give analytic solutions of a generalized second-grade fluid past a
porous plate. For material parameter m = 1, 2 and 3 the explicit analytic solutions are given, which can
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be treated as the definition of the solution of the non-linear differential equations (16)–(18). From the
presented analysis, we have the following points:
• The considered model of generalized second-grade fluids exhibits both shear-thinning and shear-

thickening properties.
• Increase in the normal stress coefficient leads to an increase in the boundary layer thickness.
• Increasing the values of the suction velocity provides decrease in the boundary layer thickness.
• The increase in injection velocity increases the boundary layer thickness.
• The velocity profiles are not much sensitive to variations in α for various values of m.
• The convergence of the HAM solution series is dependent on the auxiliary (artificial) parameter h̄

[32]. In most cases, one can find a proper value of h̄ to ensure the convergence of the solution series,
even if the corresponding physical quantity is large. It is noted from the presented analysis that the
closer the value of h̄ to zero from left (i.e. −2 < h̄ < 0), the convergence region enlarges.
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