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Abstract. This paper presents the analysis of the global bifurcations and chaotic dynamics for the nonlinear nonplanar oscillations
of a cantilever beam subjected to a harmonic axial excitation and transverse excitations at the free end. The governing nonlinear
equations of nonplanar motion with parametric and external excitations are obtained. The Galerkin procedure is applied to the
partial differential governing equation to obtain a two-degree-of-freedom nonlinear system with parametric and forcing excitations.
The resonant case considered here is 2:1 internal resonance, principal parametric resonance-1/2 subharmonic resonance for the
in-plane mode and fundamental parametric resonance–primary resonance for the out-of-plane mode. The parametrically and
externally excited system is transformed to the averaged equations by using the method of multiple scales. From the averaged
equation obtained here, the theory of normal form is applied to find the explicit formulas of normal forms associated with a double
zero and a pair of pure imaginary eigenvalues. Based on the normal form obtained above, a global perturbation method is utilized
to analyze the global bifurcations and chaotic dynamics in the nonlinear nonplanar oscillations of the cantilever beam. The global
bifurcation analysis indicates that there exist the heteroclinic bifurcations and the Silnikov type single-pulse homoclinic orbit in
the averaged equation for the nonlinear nonplanar oscillations of the cantilever beam. These results show that the chaotic motions
can occur in the nonlinear nonplanar oscillations of the cantilever beam. Numerical simulations verify the analytical predictions.
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1. Introduction

It is well known that the nonlinear nonplanar dynamics of the cantilever beams are the subjects of
interest because of their importance in many applications to spacecraft station, satellite antenna and
flexible manipulator. Therefore, research on the nonlinear nonplanar dynamics of the cantilever beams
has received considerable attention. As the development of the theory of nonlinear dynamics, predictions
and understanding become possible for more complicated nonlinear phenomena in flexible cantilever
beams, such as the global bifurcations and Silnikov type chaotic dynamics.

Since the work given by Crespo da Silva and Glynn [1], the nonlinear nonplanar dynamics and
response of flexible cantilever beams have been investigated by several researchers. Crespo da Silva and
Glynn [1, 2] formulated a set of integral–partial differential governing equations of motion describing the
nonlinear nonplanar oscillations of an inextensional cantilever beam and utilized the method of multiple
scales to analyze forced resonant oscillations of the cantilever beam. Crespo da Silva and Glynn [3]
investigated the nonlinear nonplanar, flexural–torsional oscillations of a clamped–clamped/sliding beam
under a planar distributed harmonic excitation. In another paper [4], the nonlinear nonplanar oscillations
and response of a cantilever beam with asymmetric support conditions were studied by Crespo da Silva
and Glynn. Zaretzky and Crespo da Silva [5] gave an experimental investigation for the nonlinear
nonplanar motion of the cantilever beams excited by a periodic transverse base vibration.
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Besides the above researches on the nonlinear nonplanar dynamics and response of flexible cantilever
beams given by Crespo da Silva et al., there are also other researches worth mentioning. Nayfeh and Pai
[6] used the Galerkin procedure and the method of multiple scales to investigate the nonlinear planar
and nonplanar responses of the inextensional cantilever beams and found that the nonlinear geometric
terms produce a hardening effect and dominate the nonplanar responses for all modes. The nonplanar
responses of a cantilevered beam subject to lateral harmonic base-excitation were also analyzed by Pai
and Nayfeh [7] using two nonlinear coupled integro-differential equations of motion. Cusumano and
Moon [8, 9] presented results for an externally excited thin elastica. Anderson et al. [10] analytically
and experimentally investigated the response of the cantilever beam with widely separated natural
frequencies and observed that the responses consist of the first, third, and fourth modes. Arafat et al.
[11] studied the nonlinear nonplanar response of cantilever inextensional metallic beams to a principal
parametric excitation and found that there exist the bifurcations and chaotic motion. Esmailzadeh and
Nakhaie-Jazar [12] investigated the nonlinear parametric vibration of a massless cantilever beam with
a lumped mass attached to its free end while being excited harmonically at the base. Hamdan et al.
[13] analyzed the second order approximations of the nonlinear planar responses and the steady-state
principal parametric resonance response of a vertically mounted flexible cantilever beam subjected to
a vertical harmonic base motion. Siddiqui et al. [14] analyzed large amplitude motion of a cantilever
beam carrying a moving spring-mass and obtained the nonlinear responses. Malatkar and Nayfeh [15]
gave experimental and theoretical study of the nonlinear response of a flexible cantilever beam to an
external harmonic excitation. Their results demonstrated the energy transfer from the third mode to
the first mode. Young and Juan [16] studied the nonlinear response of a fluttered, cantilevered beam
subjected to a random follower force at the free end.

The global bifurcations and chaotic dynamics of high-dimensional nonlinear systems have been at the
forefront of nonlinear dynamics for the last two decades. The global bifurcations and chaotic dynamics
for high-dimensional nonlinear systems are an important theoretical problem in science and engineering
applications as they can reveal the instabilities of motion and complicated dynamical behaviors in high-
dimensional nonlinear systems. However, due to lack of analytical tools to study global bifurcations
and chaotic dynamics for high-dimensional nonlinear systems, it is extremely challenging to develop
the theories of global bifurcations and chaotic dynamics for high-dimensional nonlinear systems and to
give systematic applications to engineering problems. Despite the challenge, certain progress has been
achieved in this field in the past two decades.

Wiggins [17] divided four-dimensional perturbed Hamiltonian systems into three types and utilized
the Melnikov method to investigate the global bifurcations and chaotic dynamics for these three basic
systems. Based on study given by Wiggins [17], Kovacic and Wiggins [18] developed a new global
perturbation techniques which may be used to detect the Silnikov type single-pulse homoclinic and hete-
roclinic orbits in four-dimensional autonomous ordinary differential equations. Using this method, they
gave an application to the forced and damped sine-Gordon equation. Later on, Kovacic and Wettergren
[19] employed a modified Melnikov method to study the existence of multi-pulse jumping of homoclinic
orbits and chaotic dynamics in resonantly forced coupled pendula. Furthermore, Kaper and Kovacic
[20] investigated the existence of several types of multi-bump homoclinic orbits to resonance bands
for completely integral Hamiltonian systems subjected to small amplitude Hamiltonian and damped
perturbations. Camassa et al. [21] extended the Melnikov method to investigate multi-pulse jumping of
homoclinic and heteroclinic orbits in a class of perturbed Hamiltonian systems. In the meantime, the
energy-phase method was first presented by Haller and Wiggins [22] where single-pulse homoclinic
orbits to a resonance in the Hamiltonian case were studied. Subsequently, Haller and Wiggins [23, 24]
further developed the energy-phase method and used it to study the existence of multi-pulse jumping
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of homoclinic orbits in the damped-forced nonlinear Schrodinger equation and perturbed Hamiltonian
systems. Recently, Haller [25] summarized the energy-phase method and presented a detailed procedure
of application to the problems in mechanics and engineering.

Besides the aforementioned researches on the theories of global bifurcations and chaotic dynamics in
high-dimensional nonlinear systems, it is worth mentioning researches on applying the developed theo-
ries to engineering applications. Feng and Wiggins [26] employed the global perturbation techniques to
investigate the global bifurcations and chaotic dynamics for parametrically excited mechanical systems
with O(2) and Z2 ⊕ Z2 symmetries. Feng and Sethna [27] made use of a global perturbation method
to study the global bifurcations and chaotic dynamics of thin plate under parametric excitation and
obtained the conditions in which the Silnikov type homoclinic orbits and chaos can occur. Feng and
Liew [28] analyzed the existence of the Silnikov homoclinic orbits in the averaged equations which
represent the modal interactions between two modes with zero-to-one internal resonance and influence
of the fast mode on the slow mode. The global dynamics of parametrically excited nonlinear reversible
systems with non-semisimple 1:1 resonance was also considered by Malhotra and Sri Namachchivaya
[29]. Malhotra and Sri Namachchivaya [30] used the averaging method and the Melnikov technique to
study local, global bifurcations and chaos of a two-degree-of-freedom shallow arch subjected to simple
harmonic excitation for case of internal resonance. Recently, Malhotra et al. [31] used the energy-phase
method to investigate multi-pulse homoclinic orbits and chaotic dynamics in the motion of flexible
spinning discs. The extended subharmonic Melnikov method and the modified homoclinic Melnikov
method were employed by Yagasaki [32] to analyze periodic orbits and homoclinic motions in peri-
odically forced, weakly coupled oscillators with the perturbations. The global bifurcations and chaotic
dynamics were investigated by Zhang et al. [33] and Zhang [34] for both parametrically externally
excited and parametrically excited simply supported rectangular thin plates. Furthermore, Zhang and
Li [35] employed the global perturbation approach to investigate the global bifurcations and chaotic
dynamics for a two-degree-of-freedom nonlinear vibration absorber. Recently, Zhang and Tang [36]
studied the global bifurcations and chaotic dynamics of the suspended elastic cable to small tangential
vibration of one support which causes simultaneously the parametric excitation of out-of-plane motion
and the parametric and external excitations of in-plane motion.

This paper aims at studying the global bifurcations and chaotic dynamics for the nonlinear nonplanar
oscillations of a cantilever beam subjected to a harmonic axial excitation and transverse excitations at
the free end. The work is focused on the case of 2:1 internal resonance, principal parametric resonance-
1/2 subharmonic resonance for the in-plane mode and fundamental parametric resonance–primary
resonance for the out-of-plane mode. First, the governing nonlinear equation of nonplanar motion with
parametric excitation is obtained. The Galerkin procedure is applied to the partial governing equation to
obtain a two-degree-of-freedom nonlinear system under combined parametric and forcing excitations.
Then, using the method of multiple scales, the parametrically and externally excited two-degree-of-
freedom nonlinear system is transformed to the averaged equations. From the averaged equation, the
theory of normal form is applied to find the explicit formulas of normal form associated with a double
zero and a pair of pure imaginary eigenvalues. Finally, a global perturbation method presented by
Kovacic and Wiggins [18] is employed to analyze the global bifurcations and chaotic dynamics for
the nonlinear nonplanar oscillations of the cantilever beam subjected to a harmonic axial excitation
and transverse excitations at the free end. The global bifurcation analysis indicates that there exist the
heteroclinic bifurcations and the Silnikov type single-pulse homoclinic orbit in the averaged equation.
The results obtained by using numerical simulation also show that the chaotic motion can occur in the
nonlinear nonplanar oscillations of the cantilever beam subjected to a harmonic axial excitation and
transverse excitations at the free end, which verifies the analytical prediction.
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Figure 1. The model of a cantilever beam with length L, mass m per unit length and subjected to a harmonic axial excitation and
transverse excitations at the free end, (a) the model; (b) a segment.

2. Equations of Motion and Perturbation Analysis

We consider a cantilever beam with length L, mass m per unit length and subjected to a harmonic axial
excitation and transverse excitations at the free end, as shown in Figure 1(a). Assume that the beam
considered here is the Euler–Bernoulli beam. A Cartesian coordinate system, Oxyz, is adopted which
is located in the symmetric plane of the cantilever beam. The s denotes the curve coordinate along
the elastic axis before deformation. The ξ , η and ζ are the principal axes of the cross section for the
cantilever beam at position s. The symbols v(s, t) and w(s, t) denote the displacements of a point in
the middle line of the cantilever beam in the y and z directions, respectively, as shown in Figure 1(b).
The harmonic axial excitation may be expressed in the form 2F1 cos �1t . The transverse excitations in
the y and z directions are represented in the forms 2F2(s) cos �2t and 2F3(s) cos �2t , respectively. The
non-dimensional governing equations of the nonlinear nonplanar motion for the cantilever beam under
combined parametric and forcing excitations are of the following form [37]

v̈ + c̄v̇ + βyv
iv + F1 cos(�1t)v′′ = (1 − βy)

[
w′′

∫ s

1
v′′w′′ds − w′′′

∫ s

0
v′′w′ds

]′

− 1

βγ

(1 − βy)2

[
w′′

∫ s

0

∫ s

1
v′′w′′dsds

]′′
− βy[v′(v′v′′ + w′w′′)′]′

− 1

2

[
v′

∫ s

1

d2

dt2

{∫ s

0
(v′2 + w′2)ds

}
ds

]′
− F1 cos(�1t)[v′(v′2 + w′2)]′ + F2(s) cos(�2t), (1a)
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ẅ + c̄ẇ + wiv + F1 cos(�1t)w′′ = −(1 − βy)

[
v′′

∫ s

1
v′′w′′ds − v′′′

∫ s

0
w′′v′ds

]′

− 1

βγ

(
1 − βy

)2[
v′′

∫ s

0

∫ s

1
v′′w′′dsds

]′′
− [w′(v′v′′ + w′w′′)′]′

− 1

2

[
w′

∫ s

1

d2

dt2

{∫ s

0
(v′2 + w′2)ds

}
ds

]′
− F1 cos(�1t)[w′(v′2 + w′2)]′ + F3(s) cos(�2t), (1b)

where the dots and primes, respectively, represent partial differentiation with respect to t and x, c̄ is
the damping coefficient, and β y is the ratio between the in-plane and out-of-plane principal flexural
stiffnesses, that is, βy = Dς/Dη.

The boundary conditions are

v(0, t) = w(0, t) = v′(0, t) = w′(0, t) = 0, (2a)

v′′(1, t) = w′′(1, t) = v′′′(1, t) = w′′′(1, t) = 0. (2b)

In the following analysis, we apply the Galerkin procedure to Equation (1) to obtain a two-degree-of-
freedom nonlinear system under combined parametric and forcing excitations. The planar and nonplanar
flexural modes for the cantilever beam are considered as

v(s, t) = y(t)G(s), (3a)

w(s, t) = z(t)G(s), (3b)

where the function G(s) is a linear mode of transverse free vibration for the cantilever beam and is of
the following form

G(s) = cosh(rs) − cos(rs) − [(cosh(r ) + cos(r ))/(sinh(r ) + sin(r ))][sinh(rs) − sin(rs)]. (4)

The linear mode G(s) satisfies ordinary differential equation

G ′′′′ − r4G = 0, (5)

and

G(0) = G ′(0) = G ′′(1) = G ′′′(1) = 0. (6)

The r in Equation (5) is determined by the characteristic equation

cosh(r ) cos(r ) + 1 = 0. (7)

Introduce the time variable t̂ = r2t . For convenience of the following analysis, we drop the hat.
Substituting Equation (3) into Equation (1), multiplying Equation (1) by G(s) and integrating to s from
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0 to 1, a two-degree-of-freedom nonlinear system under combined parametric and forcing excitations
is obtained as

ÿ + cẏ + βy y − 2α1 F1 cos(�1t)y + α2 y(y ÿ + ẏ2 + zz̈ + ż2) + α3βy y3

+
[
βyα3 + (1 − βy)α4 − 1

βy
(1 − βy)2α5

]
yz2 − 2F̄1 cos(�1t)(y3 + yz2) = f1 cos �2t, (8a)

z̈ + cż + z − 2α1 F1 cos(�1t)z + α2z(y ÿ + ẏ2 + zz̈ + ż2) + α3z3

−
[

(1 − βy)α4 + 1

βy
(1 − βy)2α5 − βyα3

]
zy2 − 2F̄1 cos(�1t)(z3 + zy2) = f2 cos �2t, (8b)

where the dots denote partial differentiation with respect to t̂ , and

c = c̄

r2
, α1 = − 1

r4

∫ 1

0
GG ′′ds, α2 =

∫ 1

0
G

[
G ′

∫ s

1

∫ s

0
G ′2dsds

]′
ds,

α3 = 1

r4

∫ 1

0
G[G ′(G ′G ′′)′]′ds, α4 = − 1

r4

∫ 1

0
G

[
G ′′

∫ s

1
G ′′2ds − G ′′′

∫ s

0
G ′G ′′ds

]′
ds,

α5 = − 1

r4

∫ 1

0
G

[
G ′′

∫ s

0

∫ s

1
G ′′2dsds

]′′
ds, F̄1 = − F1

2r4

∫ 1

0
G(G ′3)′ds,

f1 = 1

r4

∫ 1

0
G F2ds, f2 = 1

r4

∫ 1

0
G F3ds. (9)

To obtain a system which is suitable for the application of the method of multiple scales [38], the
scale transformations may be introduced as

α2 → εα2, α3 → εα3, α4 → εα4, α5 → εα5,

F1 → εF1, F̄1 → ε2 F̄1, c → εc, f1 → ε f1, f2 → ε f2, (10)

where ε is a small perturbation parameter.
Substituting Equation (10) into Equation (8), we obtain the following dimensionless two-degree-of-

freedom nonlinear system under combined parametric and forcing excitations

ÿ + εcẏ + βy y − 2εα1 F1 cos(�1t)y + εα2 y(y ÿ + ẏ2 + zz̈ + ż2) + εα3βy y3

+ ε

[
βyα3 + (1 − βy)α4 − 1

βy
(1 − βy)2α5

]
yz2 − 2ε2 F̄1 cos(�1t)(y3 + yz2) = ε f1 cos �2t, (11a)

z̈ + εcż + z − 2εα1 F1 cos(�1t)z + εα2z(y ÿ + ẏ2 + zz̈ + ż2) + εα3z3

+ ε

[
βyα3 − (1 − βy)α4 − 1

βy
(1 − βy)2α5

]
zy2 − 2ε2 F̄1 cos(�1t)(z3 + zy2) = ε f2 cos �2t, (11b)

The above equations, which include the parametric and forcing excitations, describe the planar and
nonplanar flexural nonlinear oscillation of the cantilever beam. In the following analysis, we will use
the method of multiple scales to obtain the averaged equations.

We use the method of multiple scales [38] to find the uniform solutions of Equations (11) in the
following form

y(t, ε) = y0(T0, T1) + εy1(T0, T1) + · · · , (12a)

z(t, ε) = z0(T0, T1) + εz1(T0, T1) + · · · , (12b)

where T0 = t , T1 = εt .
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Then, we have the differential operators

d

dt
= ∂

∂T0

∂T0

∂t
+ ∂

∂T1

∂T1

∂t
+ · · · = D0 + εD1 + · · · , (13)

d2

dt2
= (D0 + εD1 + · · ·)2 = D2

0 + 2εD0 D1 + · · · , (14)

where Dk = ∂
∂Tk

, k = 0, 1.
We investigate the case of the ratio βy = ω2

1 ≈ 1/4. In this case, there is the relation of 2:1 internal
resonance for Equation (11). In addition, principal parametric resonance-1/2 subharmonic resonance
for the in-plane mode and fundamental parametric resonance–primary resonance for the out-of-plane
mode are considered. The resonant relations are represented as

�1 = �2, ω2
1 = βy = 1

4
�2

1 + εσ1, 1 = ω2
2 = �2

1 + εσ2, (15)

where σ 1 and σ 2 are two detuning parameters. For convenience of the following analysis, let �1 = 1.
Substituting Equations (12)–(15) into Equation (11) and balancing the coefficients of like power of

ε yield the following differential equations
order ε0

D2
0 y0 + 1

4
y0 = 0, (16a)

D2
0 z0 + z0 = 0, (16b)

order ε1

D2
0 y1 + 1

4
y1 = −2D0 D1 y0 − cD0 y0 − σ1 y0 + α1 F1

(
eiT0 + e−iT0

)
y0

− α2 y0
[
y0 D2

0 y0 + (D0 y0)2 + z0 D2
0 z0 + (D0z0)2

] − 1

4
α3 y3

0

−
(

1

4
α3 + 3

4
α4 − 9

4
α5

)
y0z2

0 + 1

2
f1

(
eiT0 + e−iT0

)
, (17a)

D2
0 z1 + z1 = −2D0 D1z0 − cD0z0 − σ2z0 + α1 F1

(
eiT0 + e−iT0

)
z0

− α2z0
[
y0 D2

0 y0 + (D0 y0)2 + z0 D2
0 z0 + (D0z0)2

] − α3z3
0

−
(

α3 − 3

4
α4 − 9

4
α5

)
z0 y2

0 + 1

2
f2

(
eiT0 + e−iT0

)
. (17b)

The solutions of Equations (16) in the complex form can be expressed as

y0 = A(T1)ei 1
2 T0 + Ā(T1)e−i 1

2 T0 , (18a)

z0 = B(T1)eiT0 + B(T1)e−iT0 , (18b)

where Ā and B̄ are the parts of the complex conjugate of A and B.
Substituting Equations (18) into Equation (17) yields

D2
0 y1 + 1

4
y1 =

[
−i D1 A − i

1

2
cA − σ1 A + α1 F1 Ā + 1

2

(
α2 − 3

2
α3

)
A2 Ā

− 1

2
(α3 + 3α4 − 9α5) AB B̄

]
ei 1

2 T0 + cc + NST, (19a)
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D2
0 z1 + z1 = [−2i D1 B − icB − σ2 B + (2α2 − 3α3) B2 B̄

− 2

(
α3 − 3

4
α4 − 9

4
α5

)
B AĀ + 1

2
f2

]
eiT0 + cc + NST, (19b)

where symbol cc and NST, respectively, denote the parts of the complex conjugate of the functions on
the right-hand side of Equations (19) and the non-secular terms.

Eliminating the terms that produce secular terms from Equations (19), we obtain the averaged
equations in the complex form

D1 A = −1

2
cA + iσ1 A − iα1 F1 Ā − i

1

2

(
α2 − 3

2
α3

)
A2 Ā + i

1

2
(α3 + 3α4 − 9α5) AB B̄, (20a)

D1 B = −1

2
cB + i

1

2
σ2 B − i

(
α2 − 3

2
α3

)
B2 B̄ + i

(
α3 − 3

4
α4 − 9

4
α5

)
B AĀ − i

1

4
f2. (20b)

The functions A and B may be denoted in the Cartesian form

A(T1) = 1

2
[x1(T1) + i x2(T1)] , (21a)

B(T1) = 1

2
[x3(T1) + i x4(T1)] , (21b)

where the variables xn (n = 1, 2, 3, 4) are the real functions with respect to T1. Substituting Equations (21)
into Equation (20), separating the real and imaginary parts, and solving for dxn

dT1
(n = 1, 2, 3, 4) from

the resulting equations, the averaged equations in the Cartesian form are obtained as follows

ẋ1 = −1

2
cx1 − (σ1 + α1 F1) x2 + 1

16
(2α2 − 3α3) x2

(
x2

1 + x2
2

) − β1x2
(
x2

3 + x2
4

)
, (22a)

ẋ2 = (σ1 − α1 F1) x1 − 1

2
cx2 − 1

16
(2α2 − 3α3) x1

(
x2

1 + x2
2

) + β1x1
(
x2

3 + x2
4

)
, (22b)

ẋ3 = −1

2
cx3 − 1

2
σ2x4 + 1

8
(2α2 − 3α3) x4

(
x2

3 + x2
4

) − β2x4
(
x2

1 + x2
2

)
, (22c)

ẋ4 = −1

2
f2 + 1

2
σ2x3 − 1

2
cx4 − 1

8
(2α2 − 3α3) x3

(
x2

3 + x2
4

) + β2x3
(
x2

1 + x2
2

)
, (22d)

where β1 = 1
8 (α3 + 3α4 − 9α5), β2 = 1

16 (4α3 − 3α4 − 9α5).
In the next section, we will use the Maple program given by Zhang et al. [39] to obtain normal form of

averaged Equations (22) for the nonlinear nonplanar oscillations of the cantilever beam under combined
parametric and forcing excitations.

3. Computation of Normal Form

In order to conveniently analyze the global bifurcations and chaotic dynamics for the nonlinear nonplanar
oscillations of the cantilever beam subjected to a harmonic axial excitation and transverse excitations at
the free end, we need to reduce averaged Equations (22) to a simpler normal form. It is seen that there
are Z2 ⊕ Z2 and D4 symmetries in averaged Equations (22) without the parameters. Therefore, these
symmetries are also held in normal form.
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Take into account the exciting amplitude f2 as a perturbation parameter. Amplitude f2 can be considered
as an unfolding parameter when the global bifurcations are investigated. Obviously, when we do not
consider the perturbation parameter, Equations (22) becomes

ẋ1 = −1

2
cx1 − (σ1 + α1 F1)x2 + 1

16
(2α2 − 3α3) x2

(
x2

1 + x2
2

) − β1x2
(
x2

3 + x2
4

)
, (23a)

ẋ2 = (σ1 − α1 F1)x1 − 1

2
cx2 − 1

16
(2α2 − 3α3) x1

(
x2

1 + x2
2

) + β1x1
(
x2

3 + x2
4

)
, (23b)

ẋ3 = −1

2
cx3 − 1

2
σ2x4 + 1

8
(2α2 − 3α3) x4

(
x2

4 + x2
3

) − β2x4
(
x2

1 + x2
2

)
, (23c)

ẋ4 = 1

2
σ2x3 − 1

2
cx4 − 1

8
(2α2 − 3α3) x3

(
x2

3 + x2
4

) + β2x3
(
x2

1 + x2
2

)
. (23d)

It is obviously known that Equations (23) has a trivial zero solution (x1, x2, x3, x4) = (0, 0, 0, 0) at
which the Jacobi matrix can be written as

J = Dx X =




− 1
2 c − (σ1 + f0) 0 0

(σ1 − f0) − 1
2 c 0 0

0 0 − 1
2 c − 1

2σ2

0 0 1
2σ2 − 1

2 c


 . (24)

where f0 = α1 F1.
The characteristic equation corresponding to the trivial zero solution is of the form

(
λ2 + cλ + 1

4
c2 + σ 2

1 − f 2
0

) (
λ2 + cλ + 1

4
c2 + 1

4
σ 2

2

)
= 0. (25)

Let

�1 = 1

4
c2 + σ 2

1 − f 2
0 , �2 = 1

4

(
c2 + σ 2

2

)
. (26)

When c = 0 and �1 = σ 2
1 − f 2

0 = 0 are simultaneously satisfied, system (23) has a double zero and a
pair of pure imaginary eigenvalues

λ1,2 = 0, λ3,4 = ±iω̄2, (27)

where ω̄2
2 = σ 2

2 /4.
Let σ1 = f0 + σ̄1 as well as set f0 = −1. Considering σ̄1, c and f2 as the perturbation parameters,

then, averaged Equations (23) without the perturbation parameters is changed to the following form

ẋ1 = x2 + 1

16
(2α2 − 3α3) x2

(
x2

1 + x2
2

) − β1x2
(
x2

3 + x2
4

)
, (28a)

ẋ2 = − 1

16
(2α2 − 3α3) x1

(
x2

1 + x2
2

) + β1x1
(
x2

3 + x2
4

)
, (28b)

ẋ3 = −1

2
σ2x4 + 1

8
(2α2 − 3α3) x4

(
x2

3 + x2
4

) − β2x4
(
x2

1 + x2
2

)
, (28c)

ẋ4 = 1

2
σ2x3 − 1

8
(2α2 − 3α3) x3

(
x2

3 + x2
4

) + β2x3
(
x2

1 + x2
2

)
. (28d)
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In the case considered here, we have

A =




0 1 0 0

0 0 0 0

0 0 0 − 1
2σ2

0 0 1
2σ2 0


 . (29)

Executing the Maple program given by Zhang et al. [39], the three-order normal form of system (28)
is obtained as

ẏ1 = y2, (30a)

ẏ2 = −
(

1

8
α2 − 3

16
α3

)
y3

1 + β1 y1 y2
3 + β1 y1 y2

4 , (30b)

ẏ3 = −1

2
σ2 y4 +

(
1

4
α2 − 3

8
α3

)
y3

4 − β2 y2
1 y4 +

(
1

4
α2 − 3

8
α3

)
y2

3 y4, (30c)

ẏ4 = 1

2
σ2 y3 −

(
1

4
α2 − 3

8
α3

)
y3

3 + β2 y2
1 y3 −

(
1

4
α2 − 3

8
α3

)
y3 y2

4 . (30d)

The nonlinear transformation used here is given as follows

x1 = y1 +
(

1

48
α2 − 1

32
α3

)
y3

1 +
(

1

8
α2 − 3

16
α3

)
y1 y2

2 − β1 y1 y2
3 − β1 y1 y2

4 , (31a)

x2 = y2 −
(

1

16
α2 − 3

32
α3

)
y1 y2

2 , (31b)

x3 = y3 − β2 y1 y2 y4, (31c)

x4 = y4 + β2 y1 y2 y3. (31d)

The normal form with parameters can be written as

ẏ1 = −µ̄y1 + (1 − σ1)y2, (32a)

ẏ2 = σ̄1 y1 − µ̄y2 −
(

1

8
α2 − 3

16
α3

)
y3

1 + β1 y1 y2
3 + β1 y1 y2

4 , (32b)

ẏ3 = −µ̄y3 − σ̄2 y4 +
(

1

4
α2 − 3

8
α3

)
y3

4 − β2 y2
1 y4 +

(
1

4
α2 − 3

8
α3

)
y2

3 y4, (32c)

ẏ4 = − f̄ 2 + σ̄2 y3 − µ̄y4 −
(

1

4
α2 − 3

8
α3

)
y3

3 + β2 y2
1 y3 −

(
1

4
α2 − 3

8
α3

)
y3 y2

4 , (32d)

where µ̄ = 1
2 c, σ̄2 = 1

2σ2 and f̄ 2 = 1
2 f2.

The results obtained above completely agree with those presented by using the direct method devel-
oped in [40].

Further, we let

y3 = I cos γ and y4 = I sin γ. (33)
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Substituting Equation (33) into Equation (32) yields

ẏ1 = −µ̄y1 + (1 − σ̄1)y2, (34a)

ẏ2 = σ̄1 y1 − µ̄y2 −
(

1

8
α2 − 3

16
α3

)
y3

1 + β1 y1 I 2, (34b)

İ = −µ̄I − f̄ 2 sin γ, (34c)

I γ̇ = σ̄2 I −
(

1

4
α2 − 3

8
α3

)
I 3 + β2 I y2

1 − f̄ 2 cos γ. (34d)

In order to obtain the unfolding of Equations (34), a linear transformation is introduced as

[
y1

y2

]
=

√|β1|√|β2|
[

1 − σ̄1 0
µ̄ 1

] [
u1

u2

]
. (35)

Then, we have

[
u1

u2

]
=

√|β2|√|β1| (1 − σ̄1)

[
1 0

−µ̄ 1 − σ̄1

] [
y1

y2

]
. (36)

Substituting Equations (35) and (36) into Equation (34) and canceling the nonlinear terms which
include the parameter σ̄1 yield the unfolding as

u̇1 = u2, (37a)

u̇2 = −µ1u1 − µ2u2 + η1u3
1 + β1u1 I 2, (37b)

İ = −µ̄I − f̄ 2 sin γ, (37c)

I γ̇ = σ̄2 I − η2 I 3 + β1 I u2
1 − f̄ 2 cos γ, (37d)

where µ1 = µ̄2 − σ̄1(1 − σ̄1), µ2 = 2µ̄, η1 = |β1|
|β2| (

3
16α3 − 1

8α2) and η2 = ( 1
4α2 − 3

8α3).
The following scale transformations is introduced

µ2 → εµ2, µ̄ → εµ̄, f̄ 2 → ε f̄ 2, η1 → εη1, η2 → η2. (38)

Then, unfolding (37) can be rewritten as the Hamiltonian form with the perturbation

u̇1 = ∂ H

∂u2
+ εgu1 = u2, (39a)

u̇2 = − ∂ H

∂u1
+ εgu2 = −µ1u1 + η1u3

1 + β1u1 I 2 − εµ2u2, (39b)

İ = ∂ H

∂γ
+ εgI = −εµ̄I − ε f̄ 2 sin γ, (39c)

I γ̇ = −∂ H

∂ I
+ εgγ = σ̄2 I − η2 I 3 + β1 I u2

1 − ε f̄ 2 cos γ, (39d)

where the Hamiltonian function is of the form

H (u1, u2, I, γ ) = 1

2
u2

2 + 1

2
µ1u2

1 − 1

4
η1u4

1 − 1

2
β1 I 2u2

1 − 1

2
σ̄2 I 2 + 1

4
η2 I 4, (40)

and gu1 = 0, gu2 = −µ2u2, gI = −µ̄I − f̄ 2 sin γ , gγ = − f̄ 2 cos γ .
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4. Dynamics of the Decoupled System

When ε = 0, it is seen that system (39) is an uncoupled two-degree-of-freedom nonlinear system. The
variable I appears in components (u1, u2) of system (39) as a parameter since İ = 0. Consider the first
two decoupled equations with perturbation term

u̇1 = ∂ H

∂u2
+ εgu1 = u2, (41a)

u̇2 = − ∂ H

∂u1
+ εgu2 = −µ1u1 + η1u3

1 + β1u1 I 2 − εµ2u2. (41b)

Assuming η1 > 0, system (41) can exhibit the heteroclinic bifurcations in plane (u1, u2). It is easy
to see from Equation (41) that when β1 I 2 − µ1 > 0, the only solution of system (41) is the trivial zero
solution (u1, u2) = (0, 0) which is the saddle point. On the curve defined by µ1 = β1 I 2, that is,

µ̄2 = σ̄1(1 − σ̄1) + β1 I 2, (42)

or

I1,2 = ±
[
µ̄2 − σ̄1 (1 − σ̄1)

β1

]1/2

, (43)

the trivial zero solution may bifurcate into three solutions through a pitchfork bifurcation represented
by q0 = (0, 0) and q±(I ) = (B, 0), respectively, where

B = ±
{

1

η1
[µ̄2 − σ̄1(1 − σ̄1) − β1 I 2]

}1/2

. (44)

From the Jacobian matrix evaluated at the nonzero solutions q± (I ), it is found that the singular points
q± (I ) are the saddle points. On the line µ2 = 0, the Hopf bifurcation can occur from the trivial zero
solution. The simple analysis for the Hopf bifurcation indicates that when µ2 < 0, the limit cycle is
stable. The diagram of pitchfork bifurcation is shown in Figure 2.

It is observed that variables I and γ may actually represent the amplitude and phase of nonlinear
oscillations. Therefore, we may assume that variable I ≥ 0 and Equation (43) becomes

I1 = 0, I2 =
[
µ̄2 − σ̄1 (1 − σ̄1)

β1

]1/2

, (45)

Figure 2. Pitchfork bifurcation in Equation (41).
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such that for all I ∈ [I1, I2], system (41) has two hyperbolic saddle points, q±(I ), which are connected
by a pair of heteroclinic orbits, uh

±(T1, I ), that is, limT1→±∞ uh
± (T1, I ) = q± (I ). Therefore, in full

four-dimensional phase space the set defined by

M = {(u, I, γ ) | u = q±(I ), I1 ≤ I ≤ I2, 0 ≤ γ < 2π} (46)

is a two-dimensional invariant manifold. It is known that two-dimensional invariant manifold M is
normally hyperbolic. Two-dimensional, normally hyperbolic and invariant manifold M has three-
dimensional stable and unstable manifolds which are respectively expressed as W s(M) and W u(M). The
existence of the heteroclinic orbit of system (41) to the saddle points q±(I ) = (B, 0) indicates that the
stable and unstable manifolds W s(M) and W u(M) intersect nontransversally along a three-dimensional
heteroclinic manifold denoted by �, which can be written as

� =
{

(u, I, γ )

∣∣∣∣∣ u = uh
±(T1, I ), I1 < I < I2, γ =

∫ T1

0
DI H

(
uh

±(T1, I ), I
)

ds + γ0

}
. (47)

Now we analyze the dynamics of the unperturbed system of Equation (39) restricted to the manifold
M. Considering the unperturbed system of (39) restricted to the manifold M yields

İ = 0,

I γ̇ = DI H (q±(I ), I ), I1 ≤ I ≤ I2,
(48)

where

DI H (q±(I ), I ) = −∂ H (q±(I ), I )

∂ I
= σ̄2 I − η2 I 3 + β1 I q2

± (I ) . (49)

Based on the analysis given by Kovacic and Wiggins in [18], it is known that if the condition
DI H (q±(I ), I ) �= 0 is satisfied, I = constant is called as a periodic orbit and if the condition
DI H (q±(I ), I ) = 0 is satisfied, I = constant is called as a circle of the singular points. A value
of I ∈ [I1, I2] at which DI H (q±(I ), I ) = 0 is referred to as a resonant I value and these singular
points as the resonant singular points. We denote a resonant value by Ir so that

DI H (q±(I ), I ) = σ̄2 Ir − η2 I 3
r + β1 Ir

η1

[
µ̄2 − σ̄1 (1 − σ̄1) − β1 I 2

r

] = 0. (50)

Then, we obtain a resonant value

Ir = ±
{

η1σ̄2 + β1[µ̄2 − σ̄1 (1 − σ̄1)]

η1η2 + β2
1

}1/2

. (51)

The geometry structure of the stable and unstable manifolds of M in full four-dimensional phase
space for the unperturbed system of (39) is given in Figure 3. Because variable γ may represent the
phase of nonlinear oscillations, when I = Ir , the phase shift �γ of nonlinear oscillations is defined
as

�γ = γ (+∞, Ir ) − γ (−∞, Ir ). (52)



264 W. Zhang et al.

Figure 3. The geometric structure of manifolds M, W s (M) and W u (M) in full four-dimensional phase space.

The physical interpretation of the phase shift is the phase difference between the two end points of
the orbit. In (u1, u2) subspace, there exist a pair of the heteroclinic orbits connecting the two saddles.
Therefore, the homoclinic orbit in subspace (I, γ ) is of a heteroclinic connecting in full four-dimensional
phase space (u1, u2, I, γ ). The phase shift represents the difference of γ value as a trajectory leaves and
returns to the basin of attraction of the manifold M. We will use the phase shift in subsequent analysis
to obtain the condition for the existence of the Silnikov type single-pulse homoclinic orbit. The phase
shift will be calculated in the later analysis for the heteroclinic orbit.

Now we consider the heteroclinic bifurcations of Equation (41). Letting ε1 = µ1 −β1 I 2 and ε2 = µ2,
Equation (41) can be rewritten as

u̇1 = u2,

u̇2 = −ε1u1 + η1u3
1 − εε2u2.

(53)

Setting ε = 0 in Equation (53), it is seen that Equation (53) is a Hamiltonian system with Hamiltonian
function

H (u1, u2) = 1

2
u2

2 + 1

2
ε1u2

1 − 1

4
η1u4

1. (54)
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When H = ε2
1/4η1, there exists a heteroclinic loop �0, which consists of the two hyperbolic saddles

q± and a pair of heteroclinic orbits u±(T1). The equations of a pair of heteroclinic orbits are obtained as

u1 (T1) = ±
√

ε1

η1
tanh

(√
2ε1

2
T1

)
,

(55)

u2 (T1) = ± ε1√
2η1

sech2

(√
2ε1

2
T1

)
.

The Melnikov function for the heteroclinic orbits is easily presented by

M (ε1, ε2, I ) =
∫ ∞

−∞
u2 (T1) [−ε2u2 (T1)]d T1 = −2

√
2ε

3/2
1 ε2

3η1
. (56)

To keep the heteroclinic loop preserved under a perturbation, it is necessary to require that
M(ε1, ε2, I ) = 0. Therefore, Equation (56) leads to ε1 = 0 or ε2 = 0. When we choose ε1 = 0,
that is, µ̄2 − σ̄1(1 − σ̄1) = β1 I 2, it is known from the aforementioned analysis that the curve
µ̄2 − σ̄1(1 − σ̄1) = β1 I 2 is a curve for the pitchfork bifurcation. There exist the two saddle points
q±(I ) = (B, 0) when the condition µ̄2 − σ̄1(1 − σ̄1) > β1 I 2 is only satisfied. Therefore, on the curve
ε1 = 0 the heteroclinic loop does not exist. Choosing ε2 = 0, a heteroclinic bifurcation curve is
obtained as

µ̄ = 0, µ̄2 − σ̄1(1 − σ̄1) > β1 I 2. (57)

Based on Equations (42) and (57), the bifurcation diagram of system (41) is given in Figure 4, and
the corresponding phase portraits are obtained in Figure 5. It is observed that the bifurcation set may
be divided into four different regions. When the parameters are located in the same region, the phase
portraits of system (41) are of the same topological structures.

Figure 4. The bifurcation set of system (41): (1) saddle point; (2) heteroclinic orbit and stable limit cycle; (3) heteroclinic loop;
(4) heteroclinic orbit and unstable limit cycle.
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Figure 5. The phase portraits in the different regions.

In the following study, the computation of the phase shift is considered. Substituting the first equation
of (55) into the fourth equation of the unperturbed system of Equation (39) yields

γ̇ = σ̄2 − η2 I 2 + ε1β1

η1
tanh2

(√
2ε1

2
T1

)
. (58)

Integrating Equation (58) yields

γ (T1) = ωr T1 − β1
√

2ε1

η1
tanh

(√
2ε1

2
T1

)
+ γ0, (59)

where

ωr = σ̄2 − η2 I 2 + ε1β1

η1
. (60)

At I = Ir , there is ωr ≡ 0. Therefore, the phase shift is expressed as

�γ =
[
−2β1

√
2ε1

η1

]
I=Ir

= −2β1

η1

√
2
[
µ̄2 − σ̄1 (1 − σ̄1) − β1 I 2

r

]
. (61)

5. Global Analysis of Perturbed System

In this section, the dynamics of the perturbed system and the effect of small perturbations on the manifold
M are analyzed. Based on the analysis in [17, 18], we know that the manifold M along with its stable and
unstable manifolds are invariant under small, sufficiently differentiable perturbations. It is noticed that
the singular points q± (I ) may persist under small perturbations, in particular, M → Mε. Therefore, we
obtain

M = Mε = {(u, I, γ ) | u = q±(I ), I1 ≤ I ≤ I2, 0 ≤ γ < 2π}. (62)
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Considering the later two equations of (39) yields

İ = −µ̄I − f̄ 2 I sin γ,

γ̇ = σ̄2 − η2 I 2 + β1u2
1 + f̄ 2

I
cos γ. (63)

It is known from the aforementioned analysis that there is a pair of pure imaginary eigenvalues in
Equation (63). Therefore, resonance can occur in system (63).

Also introduce the scale transformations

µ̄ → εµ̄, I = Ir + √
εh, f̄ 21 → ε f21, T1 → T1√

ε
. (64)

Substituting the above transformations into Equation (63) yields

ḣ = −µ̄Ir − f̄ 2 sin γ − √
εµ̄h,

γ̇ = −2δ

η1
Ir h − √

ε

(
f̄ 2

Ir
cos γ + δ

η1
h2

)
, (65)

where δ = η1η2 + β2
1 .

When ε = 0, Equation (65) becomes

ḣ = −µ̄Ir − f̄ 2 sin γ,
(66)

γ̇ = −2δ

η1
Ir h.

The unperturbed system (66) is a Hamiltonian system with Hamiltonian function

H (h, γ ) = −µ̄Irγ − f̄ 2 cos γ + δ

η1
Ir h2. (67)

The singular points of Equation (66) are given as

p0 = (0, γc) =
(

0, −arcsin
µ̄Ir

f̄ 2

)
and q0 = (0, γs) =

(
0, π − arcsin

µ̄Ir

f̄ 2

)
. (68)

Based on the characteristic equations evaluated at the two singular points p0 and q0, we can know
the stabilities of these singular points. The Jacobian matrix of Equation (66) is of the form

J =
[

0 − f̄ 2 cos γ

− 2δ
η1

Ir 0

]
. (69)

The characteristic equation corresponding to the singular point p0 is obtained as

λ2 − 2δ

η1
Ir f̄ 2 cos γc = 0. (70)

When the condition 2δ
η1

Ir f̄ 2 cos γc < 0 is satisfied, Equation (66) has a pair of pure imaginary
eigenvalues. Therefore, it is known that the singular point p0 is a center.
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Figure 6. Dynamics on the normally hyperbolic manifold; (a) the unperturbed case; (b) the perturbed case.

The characteristic equation corresponding to the singular point q0 is obtained as

λ2 − 2δ

η1
Ir f̄ 2 cos γs = 0. (71)

When the condition 2δ
η1

Ir f̄ 2 cos γs > 0 is satisfied, Equation (66) has two real, unequal and opposite
sign eigenvalues. So, the singular point q0 is a saddle, which is connected to itself by a homoclinic orbit.
The phase portrait of Equation (66) is given in Figure 6(a).

It is found that for sufficiently small ε, the singular point q0 remains a hyperbolic singular point qε

of saddle stability type. From Equation (65), it is known that the Jacobian matrix of the linearization of
Equation (65) is of the form

Jε =
[−√

εµ̄ − f2 cos γc

− 2δ
α1

Ir
√

ε
f2

Ir
sin γc

]
. (72)
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or

Jpε
=

[−√
εµ̄ − f2 cos γc

− 2δ
α1

Ir −√
εµ̄

]
. (73)

Based on Equation (73), we find that the leading order term of the trace in the linearization of
(65) is less than zero inside the homoclinic loop. Therefore, for the small perturbations, the singular
point p0 becomes a hyperbolic sink pε. The phase portrait of perturbed system (65) is also depicted in
Figure 6(b).

At h = 0, the estimate of basin of attraction for γmin is obtained as

µ̄Irγmin + f̄ 2 cos γmin = µ̄Irγs + f̄ 2 cos γs (74)

Substituting γ s in Equation (68) into Equation (74) yields

γmin + f̄ 2

µ̄Ir
cos γmin = π − arcsin

µ̄Ir

f̄ 2
+

√
f̄ 2

2 − µ̄2 I 2
r

µ̄Ir
. (75)

Define an annulus Aε near I = Ir as

Aε = {(u1, u2, I, γ ) | u1 = B, u2 = 0, |I − Ir | <
√

εC, γ ∈ T 1} (76)

where C is a constant, which is chosen sufficient large so that the unperturbed homoclinic orbit is
enclosed within the annulus. It is noticed that three-dimensional stable and unstable manifolds of Aε,
denoted as W s(Aε) and W u(Aε), are subsets of W s(Mε) and W u(Mε), respectively. We will show that
for the perturbed system, the saddle focus pε on Aε has a homoclinic orbit which comes out of the
annulus Aε and can return to the annulus in full four-dimensional space, and eventually may give rise
to the Silnikov type homoclinic loop, as shown in Figure 7.

Figure 7. The Silnikov type single-pulse homoclinic orbit to saddle focus.
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6. Higher-Dimensional Melnikov Theory

There are two steps to determine the existence of the Silnikov type single-pulse homoclinic orbit. In
the first step, by using higher-dimensional Melnikov theory, the measure of the distance between one-
dimensional unstable manifold W u(pε) and three-dimensional stable manifold W s(Aε) may be obtained
to show that W u(pε) ⊂ W s(Aε) when the Melnikov function has a simple zero. In the second step, it
will be determined whether the orbit on W u(pε) comes back in the basin of attraction of Aε. If it dose,
the orbit will asymptote to Aε as t → ∞. If it does not, the orbit may escape from the annulus Aε by
crossing the boundary of the annulus.

Based on the results obtained in [18], higher-dimensional Melnikov function is given as follows

M
(
µ1, σ̄2, Ir , f̄ 2

) =
∫ +∞

−∞

[
∂ H

∂u1
gu1 + ∂ H

∂u2
gu2 + ∂ H

∂ I
gI + ∂ H

∂γ
gγ

]
dT1

=
∫ +∞

−∞

[−µ2u2
2 (T1) − (

σ̄2 Ir − η2 I 3
r + β1 Ir u2

1 (T1)
)

(µ̄Ir + f̄ 2 sin γ (T1))
]

dT1,

(77)

where u1(T1), u2(T1) and γ (T1) are respectively given in Equations (55) and (59).
From the aforementioned analysis, it is known that the first and second integrands are evaluated as

follows

∫ +∞

−∞
−µ2u2

2 (T1)dT1 = −2
√

2ε
3/2
1 µ2

3η1
, (78)

and

∫ +∞

−∞

[−µ̄Ir
(
σ̄2 Ir − η2 I 3

r + β1 Ir u2
1 (T1)

)]
dT1 = −µ̄I 2

r �γ . (79)

The third integral can be rewritten as

M1
(
µ1, σ̄2, Ir , f̄ 2

) = − f̄ 2 Ir

∫ +∞

−∞
sin γ (T1)

(
σ̄2 − η2 I 2

r + β1u2
1 (T1)

)
dT1

= − f̄ 2 Ir

∫ +∞

−∞
sin γ (T1) d (γ (T1)) = f̄ 2 Ir [cos γ (+∞) − cos γ (−∞)] (80)

Using �γ = γ (+∞) − γ (−∞) yields

M1(µ1, σ̄2, Ir , f̄ 2) = f̄ 2 Ir [cos γ (−∞)(cos �γ − 1) − sin γ (−∞) sin �γ ]. (81)

Based on Equation (68), we have

sin γ (−∞) = − µ̄Ir

f̄ 2
, cos γ (−∞) =

√
f̄ 2

2 − µ̄2 I 2
r

f̄ 2
. (82)
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Figure 8. The chaotic responses in the nonlinear nonplanar oscillations of the cantilever beam subjected to a harmonic axial
excitation and transverse excitations at the free end for F1 = 1.0, f2 = 38.8, c = 0.011, σ1 = 1.01, σ2 = 1.5, α1 = 1, α2 = 13.2,
α3 = 5.01, β1 = 1.01, β2 = 1.23, x10 = 5.055, x20 = −4.1385, x30 = 4.35, x40 = 3.18; (a) the phase portrait on plane (x1, x2);
(b) the waveform on plane (t, x1); (c) phase portrait on plane (x3, x4); (d) the waveform on plane (t, x3).

Substituting Equation (82) into Equation (81) yields

M1(µ1, σ̄2, Ir , f̄ 2) = Ir

[√
f̄ 2

2 − µ̄2 I 2
r (cos �γ − 1) + µ̄Ir sin �γ

]
. (83)

Therefore, the Melnikov function is represented as

M
(
µ1, σ̄2, Ir , f̄ 2

) = −4
√

2
[
µ̄2 − σ̄1 (1 − σ̄1) − β1 I 2

r

]3/2
µ̄

3η1
− µ̄I 2

r �γ

+ Ir

[√
f̄ 2

2 − µ̄2 I 2
r (cos �γ − 1) + µ̄Ir sin �γ

]
. (84)

In order to determine the existence of the Silnikov type single-pulse homoclinic orbit, we first
require that the Melnikov function must have a simple zero. Thus, the following expression is
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Figure 9. The chaotic responses in the nonlinear nonplanar oscillations of the cantilever beam for F1 = 1.0, f2 = 43.8, c = 0.011,
σ1 = 1.01, σ2 = 1.5, α1 = −1, α2 = 13.2, α3 = 5.01, β1 = 1.01, β2 = 1.23, x10 = 5.055, x20 = −4.1385, x30 = 4.35,
x40 = 3.18; (a) the phase portrait on plane (x1, x2); (b) the waveform on plane (t, x1); (c) phase portrait on plane (x3, x4); (d)
the waveform on plane (t, x3).

obtained

4
√

2
[
µ̄2 − σ̄1 (1 − σ̄1) − β1 I 2

r

]3/2
µ̄

3η1

+ µ̄I 2
r �γ − Ir

⌊√
f̄ 2

2 − µ̄2 I 2
r (cos �γ − 1) − µ̄Ir sin �γ

⌋ = 0. (85)

Next, we determine whether the orbit on W u(pε) returns to the basin of attraction of Aε. The condition
is given as

γmin < γc + �γ + mπ < γs, (86)

where m is an integer, �γ , γc, γs and γmin are respectively given by Equations (61), (68) and (75).
It indicates that W u(pε) ⊂ W s(Aε), that is, one-dimensional unstable manifold W u(pε) is a subset
of three-dimensional stable manifold W s(Aε). When the conditions (85) and (86) are simultaneously
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Figure 10. The chaotic responses in the nonlinear nonplanar oscillations of the cantilever beam for F1 = 49.7, f21 = 416.8,
c = 0.1, σ1 = 2.0, σ2 = 6.5, α1 = 1, α2 = −4.2, α3 = 0.01, β1 = −5.1, β2 = 0.23, x10 = 0.1385, x20 = 0.055, x30 = 0.35,
x40 = 0.18; (a) the phase portrait on plane (x1, x2); (b) the waveform on plane (t, x1); (c) phase portrait on plane (x3, x4); (d)
the waveform on plane (t, x3).

satisfied, it is shown that there exists the Silnikov type single-pulse chaos in system (39), that is, system
(39) may give rise to chaotic motions in the sense of the Smale horseshoes.

7. Numerical Simulation of Chaotic Motions

We choose averaged Equation (22) to do numerical simulations because the global perturbation method
given by Kovacic and Wiggins in [18] can be only used to analyze the autonomous systems but can
not be used to analyze the non-autonomous systems. In addition, it is not known up to now how to
express the phase portraits or the topological structures of higher dimensional non-autonomous systems
in high-dimensional space. In this section, numerical approach through a computer software Dynamics
[41] is utilized to explore the existence of the chaotic motions in the nonlinear nonplanar oscillations of
the cantilever beam subjected to a harmonic axial excitation and transverse excitations at the free end.

Figure 8 demonstrates the existence of the chaotic response in the nonlinear nonplanar oscillations of
the cantilever beam for the parametric excitation F1 = 1.0 and the forcing excitation f2 = 38.8. Other
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Figure 11. The chaotic responses in the nonlinear nonplanar oscillations of the cantilever beam for F1 = 61.7, f2 = 416.8,
c = 0.11, σ1 = 2.0, σ2 = 6.5, α1 = 1, α2 = −4.2, α3 = 0.01, β1 = −5.1, β2 = 0.23, x10 = 0.1385, x20 = 0.055, x30 = 0.35,
x40 = 0.18; (a) the phase portrait on plane (x1, x2); (b) the waveform on plane (t, x1); (c) phase portrait on plane (x3, x4); (d)
the waveform on plane (t, x3).

parameters and initial conditions are chosen as c = 0.011, σ1 = 1.01, σ2 = 1.5, α1 = 1, α2 = 13.2,
α3 = 5.01, β1 = 1.01, β2 = 1.23, x10 = 5.055, x20 = −4.1385, x30 = 4.35, x40 = 3.18, where c
is linear damping coefficient, σ1 and σ2 are two detuning parameters. Figure 8(a)–8(d), respectively,
represent the phase portraits on the planes (x1, x2), (x3, x4) and the waveforms on the planes (t, x1),
(t, x3). In Figure 9, the chaotic motion occurs when transverse excitation in the z-direction and parameter
α1, respectively, are f2 = 43.8 and α1 = −1.0. In this case, the chosen parameters and initial conditions
are the same as those in Figure 8. In the aforementioned two cases, it is found that there exists a
large difference between the phase portrait on the plane (x1, x2) and the phase portrait on the plane
(x3, x4).

Figure 10 indicates that the chaotic response of the cantilever beam occurs when the parametric
excitation, transverse excitation in the z-direction, parameters and initial conditions, respectively, are
F1 = 49.7, f2 = 416.8, c = 0.1, σ1 = 2.0, σ2 = 6.5, α1 = 1, α2 = −4.2, α3 = 0.01, β1 = −5.1,
β2 = 0.23, x10 = 0.1385, x20 = 0.055, x30 = 0.35, x40 = 0.18. When the parametric excitation and
damping coefficient simultaneously change to F1 = 61.7, c = 0.11, the chaotic motion of the cantilever
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Figure 12. The chaotic responses in the nonlinear nonplanar oscillations of the cantilever beam for F1 = 11.7, f2 = 36.8,
c = 0.011, σ1 = 2.0, σ2 = 2.5, α1 = 1, α2 = −4.2, α3 = 2.01, β1 = 3.1, β2 = −0.43, x10 = 0.185, x20 = 0.655, x30 = 0.35,
x40 = 0.18; (a) the phase portrait on plane (x1, x2); (b) the waveform on plane (t, x1); (c) phase portrait on plane (x3, x4); (d)
the waveform on plane (t, x3).

beam is shown in Figure 11. Other parameters including the transverse excitation in the z-direction and
initial conditions in Figure 11 are the same as those in Figure 10. We find that the forms of the chaotic
motions given by Figures 8 and 9 and Figures 10 and 11 are completely different.

When we respectively change the parametric excitation, transverse excitation in the z-direction,
parameters and initial conditions to F1 = 11.7, f2 = 36.8, c = 0.011, σ1 = 2.0, σ2 = 2.5,
α1 = 1, α2 = −4.2, α3 = 2.01, β1 = 3.1, β2 = −0.43, x10 = 0.185, x20 = 0.655, x30 = 0.35,
x40 = 0.18, another form of chaotic response in the nonlinear nonplanar oscillations of the can-
tilever beam is shown in Figure 12. Figure 13 gives the chaotic response of the cantilever beam
when the parameter β2 changes to β2 = −3.83. Other parameters including the parametric excita-
tion, transverse excitation in the z-direction and initial conditions in Figure 13 are the same as those in
Figure 12.

In Figure 14, the chaotic response of the cantilever beam is discovered when we choose the parametric
excitation, transverse excitation in the z-direction, parameters and initial conditions as F1 = 61.7,
f2 = 86.8, c = 0.11, σ1 = 2.0, σ2 = 6.5, α1 = 1, α2 = −4.2, α3 = 2.01, β1 = 5.1, β2 = −0.23,
x10 = 0.185, x20 = 0.655, x30 = 0.35, x40 = 0.18.
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Figure 13. The chaotic responses in the nonlinear nonplanar oscillations of the cantilever beam for F1 = 11.7, f2 = 36.8,
c = 0.011, σ1 = 2.0, σ2 = 2.5, α1 = 1, α2 = −4.2, α3 = 2.01, β1 = 3.1, β2 = −3.83, x10 = 0.185, x20 = 0.655, x30 = 0.35,
x40 = 0.18; (a) the phase portrait on plane (x1, x2); (b) the waveform on plane (t, x1); (c) phase portrait on plane (x3, x4); (d)
the waveform on plane (t, x3).

8. Conclusions

The global bifurcations and chaotic dynamics in the nonlinear nonplanar oscillations of the cantilever
beam subjected to a harmonic axial excitation and transverse excitations at the free end are investigated
for the first time by using the analytical and numerical approaches when the averaged equations have
one non-semisimple double zero and a pair of pure imaginary eigenvalues. The study is focused on
co-existence of 2:1 internal resonance, principal parametric resonance-1/2 subharmonic resonance for
the in-plane mode and fundamental parametric resonance–primary resonance for the out-of-plane mode
in Equation (11). It is found from the aforementioned analytical investigation that the cantilever beam
subjected to a harmonic axial excitation and transverse excitations at the free end can undergo the
pitchfork bifurcation, Hopf bifurcation, heteroclinic bifurcations and the Silnikov type single-pulse
homoclinic orbit to the saddle focus, which means that there exists the chaotic motion in full four-
dimensional averaged system. In order to illustrate the theoretical predictions, the Dynamics software is
used to perform numerical simulation. The numerical results also show the existence of chaotic motion
in the averaged equations. It is well known that the chaotic motions in the averaged equations can
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Figure 14. The chaotic responses in the nonlinear nonplanar oscillations of the cantilever beam for F1 = 61.7, f2 = 86.8,
c = 0.11, σ1 = 2.0, σ2 = 6.5, α1 = 1, α2 = −4.2, α3 = 2.01, β1 = 5.1, β2 = −0.23, x10 = 0.185, x20 = 0.655, x30 = 0.35,
x40 = 0.18; (a) the phase portrait on plane (x1, x2); (b) the waveform on plane (t, x1); (c) phase portrait on plane (x3, x4); (d)
the waveform on plane (t, x3).

lead to the amplitude modulated chaotic oscillations in the original system under certain conditions.
Therefore, it is demonstrated that there are the amplitude modulated chaotic motions of the Silnikov
type in the cantilever beam subjected to a harmonic axial excitation and transverse excitations at the free
end.

Numerical simulations obtained in this paper indicate that there exist different forms of the chaotic
responses in the nonlinear nonplanar oscillations of the cantilever beam under certain parametric excita-
tion, transverse excitation in the z-direction, parameters and initial conditions. It is found from numerical
simulations that the shape of the chaotic motions in the in-plane mode is completely different from that
in the out-of-plane mode. We also find that the parametric excitation F1, transverse excitation in the
z-direction f2, damping coefficient c and parameter β2 have important influence on the chaotic motions
in the nonlinear nonplanar oscillations of the cantilever beam subjected to a harmonic axial excitation
and transverse excitations at the free end. Moreover, the aforementioned analysis also illustrate that the
in-plane and out-of-plane nonlinear oscillations of the cantilever beam must be simultaneously consid-
ered when the in-plane and out-of-plane principal flexural stiffnesses are different, that is, βy = Dς/

Dη �= 1.
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