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Abstract. This paper investigates multiple modeling choices for analyzing the rich and complex dynamics of high-speed milling
processes. Various models are introduced to capture the effects of asymmetric structural modes and the influence of nonlinear
regeneration in a discontinuous cutting force model. Stability is determined from the development of a dynamic map for the
resulting variational system. The general case of asymmetric structural elements is investigated with a fixed frame and rotating
frame model to show differences in the predicted unstable regions due to parametric excitation. Analytical and numerical
investigations are confirmed through a series of experimental cutting tests. The principal results are additional unstable regions,
hysteresis in the bifurcation diagrams, and the presence of coexisting periodic and quasiperiodic attractors which is confirmed
through experimentation.
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1. Introduction

A current trend within major manufacturing industries is the rapid adoption of high-speed milling.
For instance, recent improvements by machine tool builders have enabled a paradigm shift within
the aerospace community. The new design methodology replaces many labor-intensive sheet metal
assemblies with monolithic aluminum components. However, the opportunity to capture substantial
cost savings typically requires accurate predictive analysis tools to avoid unstable oscillations, meet
dimensional requirements, and to take full advantage of a machining center’s capabilities.

A primary limiting factor in material removal applications is the relative oscillations between a
cutting tool and workpiece system [1, 2]. More specifically, cutting force models become nonideal
energy sources that must capture force modulations created from relative motions between the cutting
tool and workpiece system [1, 3]. The most common approach is to prescribe a cutting force model that
is a function of the uncut chip area [1, 2, 4]. This type of model connects the relative system oscillations
to the cutting forces and chip load variations; these motions can cause dynamic cutting forces and self-
excitation of the machine–tool structural modes that lead to instability. Unless avoided, these unstable
regions may cause large dynamic loads on the machine spindle and table structure, damage to the cutting
tool, and a poor surface finish [1, 2, 5, 6]. Therefore, a key strategy is to apply analytical and numerical
methods to predict parameter domains where instabilities exist.

The explanation for machine–tool chatter was first given by Tlusty [7], Tobias [8], and Merritt [9]
as “regeneration of waviness.” Their research provided the development of stability lobe diagrams that
compactly represent the stability information as a function of the control parameters (i.e., spindle speed
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Figure 1. Schematic diagram showing the milling process is an interrupted cutting process.

and depth of cut). An important result from these analyses was the ability to identify stable cutting
regions in which larger metal removal rates could be obtained by cutting at higher spindle speeds.

Stability predictions from many early analysis are only approximate for the case of milling, because
they rely on the fundamental assumption of continuous cutting. In milling, the cutting forces change
direction with tool rotation and cutting is interrupted as each tooth enters and exits the workpiece
(see Figure 1). This leads to cutting force coefficients which change from zero (when the tool is free)
to large numbers (when the tool is cutting). While numerical simulation can be used to capture the
interrupted nature of the milling process [1, 10, 11], the exploration of parameter space by time domain
simulation is clearly inefficient.

The focus of many recent investigations has been the occurrence of new bifurcation phenomena in
interrupted cutting processes. In addition to Neimark–Sacker or secondary Hopf bifurcations, period-
doubling bifurcations have been analytically predicted in references [12–18] and confirmed experimen-
tally in references [5, 12–14, 19–23]. Other investigations have shown additional physical mechanisms
which may influence the relative oscillations between the tool and the workpiece [25]. For instance,
thermoplastic behavior in chip formation have been reported in reference [26] and frictional effects at
the tool–chip interface have been examined in the reference [27].

The original goal of this experimental study was to apply a new analytical approach to a multiple
degree-of-freedom system and validate the most common modeling practices. However, initial investi-
gations of the common modeling practices showed strong disagreement with the detailed experimental
study. This launched an investigation on the influence of asymmetric structural elements and a further
review of the independent cutting tests that were performed to calibrate the unknown parameters of the
cutting force model. The outcome of these investigations is much in better agreement, but not perfect
agreement, with experiments when certain common modeling practices are not applied. For instance,
the presence of asymmetric structural elements and a nonlinear cutting force model show additional
unstable parameter domains. A variational equation is formulated to determine the local stability of the
nonlinear, nonhomogeneous, delay-differential system from a temporal finite element analysis method.
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Experimental and numerical investigations show hysteresis in bifurcation diagrams and the presence of
coexisting periodic and quasiperiodic attractors.

2. Model Development

Several alternatives exist for modeling the dynamic behavior of a typical milling process (see Figure 1).
For instance, this section develops two different lumped element models: (1) the most common model
applied in milling dynamics literature is first described. This model assumes non-rotating restoring and
damping forces and a negligible mass imbalance; and (2) the second model applies rotating damping
and restoring forces to show structural asymmetry will cause additional parametric excitation terms
to appear in the governing equations. In the event that the modal parameters are perfectly symmetric,
which is certainly not the case in general practice, the two models will become identical. A schematic
of each model considered is shown in Figure 2.

2.1. FIXED FRAME MODEL

The most common approach for investigating the dynamic behavior of the milling process, see references
[1, 2, 5, 15, 17, 18, 21, 22, 28], assumes a lumped element model with restoring an damping forces that
do not rotate with the cutting tool; this will be called a fixed frame model which typically assumes a
negligible mass imbalance. The result of these assumptions can be expressed in the following equation

Figure 2. Schematic of two different structural dynamics models: (a) rotating restoring and viscous damping forces; and (b)
stationary restoring and damping forces.
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form

[
m 0
0 m

] [
ẍ(t)
ÿ(t)

]
+

[
dx 0
0 dy

] [
ẋ(t)
ẏ(t)

]
+

[
kx 0
0 ky

] [
x(t)
y(t)

]
=

[
Fx (x, y, θ (t), τ )
Fy(x, y, θ (t), τ )

]
, (1)

where the terms m, dx,y , and kx,y are the modal mass, damping, and stiffness in the x- and y-directions of
the system. The cutting forces, which are further described in Section 2.3, are written as Fx (x, y, θ (t), τ )
and Fy(x, y, θ (t), τ ) to explicitly show their dependence upon the current tool position, the cutter rotation
angle, and the tool position in the previous tooth passage (i.e., this necessitates the use of a delayed
position variables x(t − τ ) and y(t − τ ), where τ is the time delay between consecutive tooth passages).
The generalized lumped element model for this system, which may include the influence of multiple
modes along the two orthogonal directions, can be written as

M �̈X + D �̇X + K �X = �Fc(x, y, θ (t), τ ) , (2)

where M, D, and K are the spatial mass, damping, and stiffness matrices associated with the fixed x-
and y-axes and �Fc(x, y, θ (t), τ ) is a vector describing the cutting forces.

2.2. ROTATING FRAME MODEL

This section derives a governing equation that includes structural asymmetry under the assumption
that the damping and restoring force will rotate with the tool; this model is presented to illustrate that
additional terms appear in the equation of motion. Since these terms result in a parametrically excited
system, which can often alter the stability characteristics of a system, the influence structural asymmetry
on stability can be examined. A top view of an end mill whirling at the spindle rotational frequency
is shown in Figure 2a. The elastic restoring forces, written as Fku and Fkv , are assumed to follow the
rotating coordinate frame (u, v). The relationship between the restoring forces in the fixed coordinate
frame (Fkx , Fky) and the rotating coordinate frame is

[
Fku

Fkv

]
= T (θ )

[
Fkx

Fky

]
. (3)

where θ (t), written as θ , is the cutter rotation angle and T (θ ) is a rotation matrix defined by

T (θ ) =
[

cos θ (t) − sin θ (t)
sin θ (t) cos θ (t)

]
. (4)

In a similar fashion, the relationship between the displacements in each coordinate system can be
written as

[
u
v

]
= T (θ )

[
x
y

]
. (5)

The influence of rotating asymmetric structural elements is investigated by assuming: (1) the
u-direction spring and damping coefficients are k − �k and d − �d; and (2) the spring and damping
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coefficients in the v-direction are k + �k and d + �d. Under the additional assumption of a constant
spindle speed, the resulting equation of motion is

[
m 0
0 m

] [
ẍ(t)
ÿ(t)

]
+

[
d − �d cos 2θ (t) �d sin 2θ (t)

�d sin 2θ (t) d + �d cos 2θ (t)

] [
ẋ(t)
ẏ(t)

]

+
[

k − �k cos 2θ (t) �k sin 2θ (t)
�k sin 2θ (t) k + �k cos 2θ (t)

] [
x(t)
y(t)

]
=

[
Fx (x, y, θ (t), τ )
Fy(x, y, θ (t), τ )

]
, (6)

where m, d ±�d , and k ±�k are the modal mass, damping, and stiffness terms identified from impact
test on a stationary tool. Note that Equation (1) and Equation (6) become identical when the modal
parameters are symmetric. A more generalized expression, which may include multiple modes acting
along the two orthogonal directions, is given by

M �̈X + D(θ ) �̇X + K(θ) �X = �Fc(x, y, θ (t), τ ). (7)

where �Fc(x, y, θ, τ ) is the cutting force vector, M, D(θ ), and K(θ ) are the spatial mass, damping, and
stiffness matrices of the rotating system.

2.3. CUTTING FORCE MODEL

The cutting forces in a milling operation change direction with tool rotation and cutting is interrupted
as each tooth enters and leaves the workpiece (see Figure 1). This leads to cutting force coefficients
which change from zero (when the tool is free) to large numbers (when the tool is cutting). The total
cutting force in each direction can be written as the summation over the total number of cutting teeth
N ,

[
Fx (x, y, θ (t), τ )
Fy(x, y, θ (t), τ )

]
=

N∑
p=1

gp(t)T (θ )−1

[ −Ftp(x, y, θ (t), τ )
−Fr p(x, y, θ (t), τ )

]
. (8)

where gp(t) is a square wave function that provides a discontinuity in the cutting force by assuming a
value of one when the p-th tooth is active and zero when this tooth is not cutting. At this point, one
could argue that the time intervals for the switching function, gp(t), could actually depend upon the
tool motion. However, it is believed that the application of a constant entry and exit angle does provide
a reasonable first approximation that will be further verified with simulation. The tangential and radial
cutting force components, Ftp(t) and Fr p(t) respectively, are considered to be a function of cutting
pressures Kt and Kr [1, 2], the axial depth of cut b, and the instantaneous chip thickness wp(t),

Ftp(t) = Kt b wp(t)γ , (9)

Fr p(t) = Kr b wp(t)γ , (10)

where wp(t) depends upon the feed per tooth, h, the cutter rotation angle θp(t), and regeneration in the
compliant tool directions. Here, a nonlinear relationship is obtained between the chip thickness and the
cutting forces when γ �= 1. An approximate expression for the instantaneous chip thickness is

wp(t) ≈ h sin θp(t) + [x(t) − x(t − τ )] sin θp(t) + [y(t) − y(t − τ )] cos θp(t). (11)
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Figure 3. Measured vs. estimated y-direction cutting forces for three consecutive tooth passages made at a depth of cut (b = 2
mm) and spindle speed (� = 900 rpm) for a two flute 19.05 mm tool. Two comparisons are shown: (c) linear force model (dotted
line) vs. measured cutting force data (solid line); and (d) nonlinear force model (dashed line) vs. measured cutting force data
(solid line).

where the time delay between consecutive tooth passages is taken to be τ = 2π/N� [s]. Although the
relationship shown in Equations (9) and (10) differs from those defined in references [29, 30], similar
relationships have been proposed by numerous researchers for turning and drilling studies [1, 31].
Additionally, these expressions provide a particularly convenient connection to the linear model for
regeneration – where the linear model, obtained when γ = 1, can be viewed as a special case of the
more general nonlinear relationship.

The proposed nonlinear relationship was investigated after obtaining unsatisfactory results between
a linear model and experimental data. For instance, Figure 3 shows a comparison between the proposed
force model and the measured cutting forces. Parameter estimates for a linear model only provide a
“locally” good fit throughout the cutter rotation (i.e., notice a good fit at cutter entry and a poor fit near
cutter exit in Figure 3). If an iterative approach is applied to refine the cutting coefficients, the result
is just a shift the location of a good and poor fit. The application the proposed nonlinear relationship,
results shown in Figure 3, clearly provides a better correlation to the experimentally observed values.
An additional observation that can be made in the graphs is a difference in slope between the analytical
cutting forces and the measured cutting forces at tool exit. However, the finite slope shown in the
measurement data can actually be attributed to a well-known effect – the discharge time constant of
a piezoelectric sensor. These sensors are utilized within the dynamometer to provide measurement
capability. Parameters for the nonlinear force model, where both cutting forces and tool displacements
were measured for a 19.05-mm diameter tool and aluminum (7050-T7451) workpiece, were estimated



Milling Nonlinear Regeneration 325

to be γ = 0.94, Kt = 7.0 × 108 [N/m(1+γ )], Kn = 2.1 × 108 [N/m(1+γ )]. Cutting force measurements
were obtained using a Kistler1 Model 9255B rigid dynamometer and tool displacements were measured
with a Lion Precision capacitance probe system.

3. Stability from Solution Perturbation

The models derived in the previous sections illustrate the governing equations for the milling process
are discontinuous and contain both periodic coefficients and a time delay. A variational approach is
applied here to determine local stability by applying a perturbation, written as �ξ (t) = [

ξx (t) ξy(t)
]T

,
about the desired τ -periodic motion

�X (t) = �X p(t) + �ξ (t) (12)

where �X p(t) = [
x p(t) yp(t)

]T
is the τ -periodic solution. Expanding the nonlinear forces from Equation

(8) about the desired periodic motion provides the following after substitution into Equation (5),

M �̈X p + D(θ ) �̇X p + K(θ ) �X p + M�̈ξ + D(θ )�̇ξ + K(θ )�ξ = b �fo(θ ) + bKc(θ )[�ξ (t) − �ξ (t − τ )] , (13)

where Kc(θ ) and �f o(θ ) are compact notation for

Kc(θ ) =
N∑

p=1

γ gp(t)(h sin θp(t))γ−1

[−Kt sc − Kr s2 −Kt c2 − Kr sc
Kt s2 − Kr sc Kt sc − Kr c2

]
, (14)

�f o(θ ) =
N∑

p=1

gp(t)(h sin θp(t))γ
[−Kt c − Kr s

Kt s − Kr c

]
, (15)

with s = sin θp(t) and c = cos θp(t).
While perturbation growth will result in an unstable solution, perturbation decay (i.e., �ξ (t) = 0) will

yield a stable periodic solution to the following equation

M �̈X p + D(θ ) �̇X p + K(θ ) �X p = b �f o(θ ). (16)

Equation (16) describes a linear system with a τ -periodic excitation term and a τ -periodic solution.
Subtracting Equation (16) from Equation (13) results in an equation for the perturbed motion

M�̈ξ (t) + D(θ )�̇ξ (t) + K(θ )�ξ (t) = bKc(θ )[�ξ (t) − �ξ (t − τ )]. (17)

3.1. DISCRETE MAP DEVELOPMENT

This section describes the development of a discrete map for the resulting variational system given by
Equation (17). The most general case of a low radial immersion process, where the radial immersion

1 Commercial equipment is identified for completeness and does not imply endorsement by the authors.
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is defined as the radial engagement divided by the tool diameter, is handled by a temporal finite el-
ement approach to match solutions between cutting and non-cutting regimes. The previous work for
applications to fixed-frame systems with linear force models is described in references [5, 18, 23, 24].

When the tool is out of contact with the workpiece, the system is governed by the equation for free
vibration

M�̈ξ (t) + D(θ )�̇ξ (t) + K(θ )�ξ (t) = 0. (18)

This equation can be rearranged into state-space form

[ �̇ξ (tf)

�̈ξ (tf)

]
= �(tf, 0)

[ �ξ (0)

�̇ξ (0)

]
, (19)

where tf is the duration for free vibration and Φ(t f , 0) is a state transition matrix that relates the
states of the perturbation at the beginning of free vibration to the perturbed states at the end of free
vibration.

During the cutting process, there is no exact solution for the perturbed motion. However, we can
divide the cutting time into elements and approximate the perturbation as a linear combination of
polynomials

�ξ (t) =
4∑

i=1

�an
jiφi (σ j (t)) (20)

Here σ j (t) = t − nτ − ∑ j−1
k=1 tk is the “local” time within the j-th element of the n-th period, the time

span for the k-th element is tk and the trial functions or polynomial are written as φi (σ j (t)).
Substitution of the assumed solution (Equation (20)) into the variational equation leads to a non-zero

error. The error from the assumed solution is “weighted” by multiplying by a set of test functions and
setting the integral of the weighted error to zero to obtain two equations per element [32, 33],

∫ t j

0

[
M

(
4∑

i=1

an
ji φ̈i (σ j )ψr (σ j )

)
+ D(σ j )

(
4∑

i=1

an
ji φ̇i (σ j )ψr (σ j )

)

+ (K(σ j ) − bKc(σ j ))

(
4∑

i=1

an
jiφi (σ j )ψr (σ j )

)

+ bKc(σ j )

(
4∑

i=1

an−1
j i φi (σ j )ψr (σ j )

)]
dσ j = 0, r = 1, 2, (21)

The test functions are chosen to be: ψ1(σ j ) = 1 (constant) and ψ2(σ j ) = σ j/t j − 1/2 (linear). The
integrals, shown in Equation (21), are taken over the time for each element, t j = tc/E , thereby dividing
the time in the cut tc into E elements. The terms D(σ j ), K(σ j ), and Kc(σ j ) have been used in place
of the previously defined D(θ ), K(θ ), and Kc(θ ) to explicitly show their dependence on the local time
within each element. The state transition matrix and the equations for each element, Equation (21),
can be arranged into a global matrix relating the coefficients of the states in the current period to the
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coefficients of the states in previous period. The following expression is for the case when the number
of elements is three




I 0 0 0
N1

1 N1
2 0 0

0 N2
1 N2

2 0
0 0 N3

1 N3
2







�a11

�a12

�a21

�a22

�a31

�a32

�a33

�a34




n

=




0 0 0 Φ
P1

1 P1
2 0 0

0 P2
1 P2

2 0
0 0 P3

1 P3
2







�a11

�a12

�a21

�a22

�a31

�a32

�a33

�a34




n−1

, (22)

where the sub-matrices and elements of the sub-matrices for the j-th element are

N j
1 =

[
N j

11 N j
12

N j
21 N j

22

]
, N j

2 =
[

N j
13 N j

14

N j
23 N j

24

]
, (23)

P j
1 =

[
P j

11 P j
12

P j
21 P j

22

]
, P j

2 =
[

P j
13 P j

14

P j
23 P j

24

]
, (24)

N j
ri =

∫ t j

0

[
Mφ̈i (σ j ) + D(σ j )φ̇i (σ j ) + (K(σ j ) − bKc(σ j ))φi (σ j )

]
ψr (σ j ) dσ j , (25)

P j
ri =

∫ t j

0
−bKc(σ j )φi (σ j )ψr (σ j ) dσ j . (26)

Equation (22) describes a discrete dynamical system, or map, that can be written as

A�an = B�an−1, or �an = Q�an−1. (27)

where the transition matrix is given by Q = A−1B. Since this result depends upon the inversion of A,
we have performed numerical investigations that show this matrix is invertible unless very large values
of b are examined – such as 1 (m). However, it would be physically impossible to cut at such depths
with present day machines and cutting tool materials.

3.2. STABILITY PREDICTION

The eigenvalues of the transition matrix, Q, are the dynamic map characteristic multipliers (CMs) that
contain local stability information [34]. The condition for stability requires the CM magnitudes to be
in a modulus of less than one for a given spindle speed (�) and depth of cut (b) for an asymptotically
stable milling process. Figure 4 shows the boundaries between stable and unstable cutting as a function
of spindle speed and depth of cut.

Two distinct types of instabilities are illustrated by CM trajectories in the complex plane: (1) a
flip bifurcation or period doubling phenomena occurs when a negative real CM passes through the
unit circle; and (2) a Neimark–Sacker or secondary Hopf bifurcation occurs when a complex CM
obtains a magnitude greater than one. These routes to instability are illustrated in the bottom graphs
of Figure 4 with the corresponding speed and depth of cut points shown in the top stability chart.
One particularly interesting result from this diagram is an abrupt jump in the largest eigenvalue just
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Figure 4. Stability is predicted from characteristic multiplier magnitudes. Unstable parameter combinations penetrate the unit
circle in the complex plane: (e) down-milling stability predictions; and (f) characteristic multiplier trajectories for a discontinuous
Hopf bifurcation (� = 5505 rpm, b = 0–4 mm); and (g) characteristic multiplier trajectories for a flip bifurcation (� = 7105 rpm,
b = 0–4 mm). Modal parameters for this system are listed in Table 1.

prior to the occurrence of a secondary Hopf bifurcation. This type of eigenvalue discontinuity is of-
ten problematic when attempting to optimize parameter selection and can be attributed to the fact
that Q is asymmetric [36]. The first two modes of vibration in the x- and y-direction of Figure 1,
identified from impact test on a cutting tool, were used to construct this stability chart. The modal
parameters, listed in Table 1, were assumed identical (symmetric) in each direction of the tool for the
presented results; this corresponds to the fixed frame model, given by Equation (7), with four degrees of
freedom.

As a second example, the model presented in Equation (6) is used to study the role of structural
asymmetry; these results are shown in Figure 5. To create the stability lobes shown in this graph, the
modal parameters listed in Table 2 were utilized and the value of stiffness asymmetry, given by �k, was

Table 1. Single direction structural modes.

Diameter (mm) M (kg) D (Ns/m) K (N/m)×106

19.05 0.6519 0.000 36.87 0.000 0. 8783 0.000

0.000 0.2242 0.000 43.67 0.0000 2.1987

Table 2. Modal parameters for asymmetry study.

Diameter (mm) m (kg) d (Ns/m) k (N/m)

19.05 0.061 4.092 1.668×106
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Figure 5. Nonlinear regeneration model stability boundaries for three different magnitudes of asymmetry in the modal stiffness
(�k). The various levels of asymmetry are denoted by: (1) dashed line is �k = 0; (2) solid line is �k = 0.05k; and (3) dotted
line is �k = 0.10k. The radial immersion was set to 5% and modal parameters for this system are listed in Table 2.

varied while taking the value of �d to be zero. An important observation from this graph is the additional
unstable regions that occur due with an increase in the cutting tool asymmetry. The explanation for the
added unstable regions lies in the introduction of the asymmetric modal parameters, captured by �k in
Equation (6), which provide a parametric excitation to couple the motions in the x- and y-directions of
the system [35].

Since the results presented within this section do not account for a loss of contact between the cutting
tool and workpiece, it is relevant to examine the behavior of the milling process through simulation.
The next section provides a discussion of loss of contact and describes how the resulting behavior is
investigated.

3.3. BIFURCATION AND HYSTERESIS

Relative oscillations between the cutting tool and workpiece system will initially grow in an unstable
cutting process. As the relative oscillations build, cutting forces will also grow until the tool jumps out
of the cut. As the tool jumps out of the cut, the cutting forces become zero and free vibrations occur
until the tool re-enters the cut. The result of this nonlinearity is bounded post-bifurcation behavior that
occurs as the tool continues to reenter and jump out of the cut [5]. This basic nonlinearity, associated
with the tool jumping out of the cut, is not captured by the equations defined earlier. However, this
post-bifurcation behavior can be captured in numerical integration by: (1) setting the cutting forces to
zero when negative values of the radial chip thickness wp(t) arise; and (2) updating the delayed position
of the tool, defined earlier as the displacement of the tool from the previous tooth passage, to be a value
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Figure 6. Numerical integration bifurcation diagrams for the experimental system described in Table 3. Results show τ -periodic
samples of y-direction displacements, labeled as yn , for a cutting speed of � = 35, 000 rpm. The nonlinear force model shows
hysteresis in the bifurcation diagrams when comparing the: (h) forward sweep; and (i) reverse sweep cases.

from the last revolution where cutting occurred at the specific angular position of interest. Another
alternative for capturing the post-bifurcation behavior is to re-mesh the time domain (i.e., truncate the
temporal elements with discontinuities) while using the same criteria for negative wp(t) values and the
values of the previously machined surface [5].

Figure 6 shows a forward and reverse sweep bifurcation diagram for the experimental system studied
in Section 5. This graph was created by varying a control parameter, the depth of cut b, during numerical
integration of Equation (4) while capturing τ -periodic samples of the y-direction displacements. An
interesting result from the nonlinear force model is the presence of hysteresis in these graphs; this gives
a clear indication that multiple attractors can coexist for certain parameter combinations. The numerical
settings used for the simulation were 1000 time steps per revolution, 100,000 cutter revolutions, and
the depth of cut was varied linearly.

4. Equilibria Solutions

Parameter selection based entirely upon stability considerations is often inadequate for the production
of precision components. Specifically, certain stable parameter combinations can still result in an in-
accurately machined surface. This can occur because the amplitude and phasing of cutter oscillations
is dependent upon the cutting process parameters (i.e., spindle speed (�), axial depth of cut (b), and
tool feed (h)). Another possible reason to further study the predicted stable solutions, which is not fur-
ther explored here, is the presence of a small-amplitude repelling limit cycle around the stable cutting
solutions. The intent of this section is to describe an approach for equilibria solution prediction from
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the formulation of a dynamic map – the additional decision making information necessary for a priori
parameter selection.

An asymptotically stable cutting process results from perturbation decay. The remaining dynamical
system, described by Equation (16), now contains an ideal energy source. Discretizing this equation,
by following the approach outlined in Section 3, results in


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, (28)

where the sub-matrices and elements of the sub-matrices are given in Equations (23) and (25). The
remaining term required for equilibria solution prediction is

C j
p =

∫ t j

0
b �f o(σ j )ψp(σ j ) dσ j . (29)

Equation (28) can be written as

�an = Q�an−1 + �D , (30)

after multiplying by the inverse of the matrix on the left hand side. The coefficient vector �an identifies
the velocity and displacement at the beginning and end of each element. Surface location error is
given by the displacement coefficient value when the cutting tooth is normal to the surface. With the
assumption of no tool helix angle, this occurs at cutter entry into the cut for up-milling and cutter exit
for down-milling.

Stable milling processes have τ -periodic cutting forces and τ -periodic solutions. The steady state
coefficients are found from the fixed points (�a∗

n ) of the dynamic map

�an = �an−1 = �a∗
n . (31)

Substitution of Equation (31) into Equation (30) gives the fixed point map solution or steady-state
coefficient vector

�a∗
n = (I − Q)−1 �D. (32)

Since Q and �D can be computed exactly for each spindle speed and depth of cut, the fixed point
displacement solution can be found and used to specify surface location error as a function of machining
process parameters.
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5. Experimental Stability Test

A five-axis linear motor Ingersol machining center with a Fischer, 40,000 rpm and 40-kW spindle was
used to perform stability cutting tests with the two-flute, 19.05 mm diameter, 106 mm overhang, end
mill. Modal parameters for the experimental system were obtained from impact tests at the cutter tip (see
Table 3). An aluminum (7050-T7451) workpiece was down-milled at a 5% radial immersion and a fee-
drate of h = 0.178 (mm/tooth); the spindle speed (�) and depth of cut (b) were changed for each cutting
test to determine the onset of unstable vibrations. Since multiple cuts were performed on the same work-
piece, a clean-up pass was performed prior to every recorded cut to create a reliable reference surface.

Tool displacements, measured approximately 22 mm from the tool tip, were recorded at a rate of
25 KHz per channel using a laptop data acquisition system and Lion Precision capacitance probes
(see Figure 7). A once per revolution timing signal was measured, using a laser tachometer, to read a
barcode that was painted onto the non-fluted segment of the tool. Experimental stability results have
been superimposed onto the stability predictions for the fixed-axis model in Figure 8 and the rotational
dynamics model in Figure 9. Stability test, labeled as cases A–G, are further examined in Figures 10
and 11. However, before diverting the attention away from Figures 8 and 9, it is worthy to note that
there are several regions where the nonlinear model for regeneration provides a much better match with
experiment and the differences between fixed frame and rotating frame stability predictions are nearly
insignificant.

Raw displacement measurements were periodically sampled at the tooth passage frequency to cre-
ate 1/tooth passage displacement samples and Poincaré sections shown in displacement versus de-
layed displacement coordinates; these plots are also shown with the power spectral density (PSD) of
the continuously sampled displacement in Figure 10. Tests were declared stable if the 1/tooth pas-
sage sampled displacement, or τ -periodic samples, approached a fixed point value (see Figure 10,
case A).

Unstable behavior predicted by complex characteristic multipliers with a magnitude greater than one,
shown by case B, corresponds to Neimark–Sacker or secondary Hopf bifurcation. This post-bifurcation

Table 3. Modal parameters for experimental system.

Diameter (mm) m (Kg) d (Ns/m) �d (Ns/m) k (N/m) �k (N/m)

19.05 0.061 4.092 0.234 1.668×106 −1.223×103

Figure 7. Schematic diagram of test and measurement system used for milling experiments.
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Figure 8. Down-milling experimental results vs. fixed frame model stability predictions for the 19.05 mm tool described in
Table 3. Linear regeneration model stability boundaries are shown by a solid line and nonlinear regeneration model stability
boundaries are shown by a dotted line. Symbols in the above diagram are as follows: (1) (◦) is a clearly stable case; (2) (�) is an
unstable cutting test; and 3) + is a borderline unstable case (i.e., not clearly stable or unstable).

Figure 9. Down-milling experimental results vs. rotating frame model stability predictions for the 19.05 mm tool described in
Table 3. Linear regeneration model stability boundaries are shown by a solid line and nonlinear regeneration model stability
boundaries are shown by a dotted line. Symbols in the above diagram are as follows: (1) (◦) is a clearly stable case; (2) (�) is an
unstable cutting test; and 3) + is a borderline unstable case (i.e., not clearly stable or unstable).
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Figure 10. Experimental down-milling measurement data for cases (A, B, C, and D) shown in Figures 8 and 9. Each row contains
a y-axis 1/tooth displacement plot, a Poincaré section shown in displacement (yn) vs. delayed displacement (yn2) coordinates, and
the tooth passing frequency is marked by (◦) on the power spectrum (PSD). A stable process is shown for Case A (� = 12285 rpm,
b = 2.0 mm). Unstable cutting processes are shown in Cases B (� = 15112 rpm, b = 3.6 mm), C (� = 16868 rpm, b = 2.5 mm),
and D (� = 18516 rpm, b = 3.6 mm). Cases B and D result from unstable Neimark–Sacker or secondary Hopf bifurcations and
Case D shows a flip bifurcation.

test result shows the 1/tooth-passage displacement samples are incommensurate with the tooth passage
frequency and quasiperiodic motions can be observed in the Poincaré sections. Due to static and dynamic
runout in the cutter teeth, multiple circular rings appear in the Poincaré sections – a separate circle
for each cutting tooth. Since the resulting sequential mapping from one cutting tooth to the next is
predicted to be uniform in the absence of cutter runout, these tests provide further insight about the
role of runout in the dynamic tool motions. Case D is particularly interesting since unstable behavior is
only predicted by the nonlinear regeneration model (γ �= 1). Additionally, the PSD frequency content
shows transitional behavior between the predicted Neimark–Sacker and period doubling bifurcation
regions (i.e., spectra peaks appear at both half intervals of the tooth passage frequency and at other
incommeasurate frequencies).

Unstable period-doubling behavior, commonly referred to as a flip bifurcation [5, 12, 19, 20, 22, 23],
is predicted when the dominant characteristic multiplier of the discrete map model is negative and real
with a magnitude greater than one. Experimental evidence of this type of post-bifurcation behavior is
shown by case C of Figure 10.

An example cutting test that does not agree with either model is shown by case E of Figure 11. The
experimental 1/tooth-passage displacement samples, Poincaré section, and PSD graph clearly indicates
post-bifurcation behavior – where both the linear and nonlinear models predict stable machining. Case F
confirms the predicted unstable region at the higher spindle range for both structural models. The cutting
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Figure 11. Experimental down-milling measurement data for cases (E, F, and G) shown in Figures 8 and 9. Each row contains a y-
axis 1/tooth displacement plot, a Poincaré section shown in displacement (yn) vs. delayed displacement (yn2) coordinates, and the
tooth passing frequency is marked by ◦ on the power spectrum (PSD). Quasiperiodic motions arise in the post-bifurcation behavior
of Cases E (� = 21439 rpm, b = 3.6 mm) and F (� = 27285 rpm, b = 3.6 mm). Repeated test for Case G (� = 26796 rpm,
b = 2.0 mm) provides experimental evidence of multiple attractors and a sensitivity to initial conditions.

test for the final example, represented by case G, were repeated four times with two stable and two
unstable outcomes (see examples in the bottom two graphs of Figure 11). These results provide experi-
mental evidence of a sensitivity to initial conditions and the coexistence of a periodic and quasiperiodic
attractor.

6. Conclusions

Several alternatives exist to model the complex dynamical behavior of a high-speed milling processes.
This paper investigates the choice between a typical fixed-axis model and a model for rotating structural
elements. A variational system is formulated from a nonlinear relationship observed during experimental
test that provides a general relationship between the tool feed rate and cutting forces. Stability is
determined for the time-varying system by expanding the perturbed periodic solution about the stable
periodic motion. This provides a suitable delay-differential equation for temporal finite element analysis.
The temporal finite element method forms an approximate solution by dividing the time in the cut into
a finite number of elements. The approximate solution is then matched with the exact solution for
free oscillations to obtain a discrete map. Stability is determined directly from the eigenvalues of map
characteristic multipliers. Since parameter selection based entirely upon stability considerations is often
inadequate in the production of precision components, an approach to determine equilibria solutions is
described.
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Initial investigations of the common modeling practices showed strong disagreement with the detailed
experimental study. This served as the motivation for the current study, the inclusion of a nonlinear
force model, which has provided much better agreement between experimentally observed behavior
and analytical predictions. It is additionally shown that asymmetric structural elements can cause added
unstable regions due to the coupling of parametric excitation terms in the rotating system, but only small
asymmetries are observed in the particular experimental system examined. Also, despite the many cases
that appear to be in direct agreement with predictions, some differences were still observed between
analysis and experiment. Additional steps were taken to investigate these differences by relaxing the
assumption for the switching function, gp(t), through numerical simulation. However, this did not change
the outcome of the predictions and it is believed the primary differences between experiment and analysis
are related to: (1) relative motions from frictional and/or thermoplastic effects; (2) the assumption that
measured cutting coefficients are unaffected by changes in spindle speed; or (3) neglecting the helix
angle of the cutting tool.
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