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Abstract. In this investigation, four nonlinear dynamic formulations that can be used in the analysis of the wheel/rail contact
are presented, compared and their performance is evaluated. Two of these formulations employ nonlinear algebraic kinematic
constraint equations to describe the contact between the wheel and the rail (constraint approach), while in the other two formulations
the contact force is modeled using a compliant force element (elastic approach). The goal of the four formulations is to provide
accurate nonlinear modeling of the contact between the wheel and the rail, which is crucial to the success of any computational
algorithm used in the dynamic analysis of railroad vehicle systems. In the formulations based on the elastic approach, the wheel
has six degrees of freedom with respect to the rail, and the normal contact forces are defined as function of the penetration using
Hertz’s contact theory or using assumed stiffness and damping coefficients. The first elastic method is based on a search for the
contact locations using discrete nodal points. As previously presented in the literature, this method can lead to impulsive forces
due to the abrupt change in the location of the contact point from one time step to the next. This difficulty is avoided in the second
elastic approach in which the contact points are determined by solving a set of algebraic equations. In the formulations based
on the constraint approach, on the other hand, the case of a non-conformal contact is assumed, and nonlinear kinematic contact
constraint equations are used to impose the contact conditions at the position, velocity and acceleration levels. This approach
leads to a model, in which the wheel has five degrees of freedom with respect to the rail. In the constraint approach, the wheel
penetration and lift are not permitted, and the normal contact forces are calculated using the technique of Lagrange multipliers
and the augmented form of the system dynamic equations. Two equivalent constraint formulations that employ two different
solution procedures are discussed in this investigation. The first method leads to a larger system of equations by augmenting all
the contact constraint equations to the dynamic equations of motion, while in the second method an embedding procedure is used
to obtain a reduced system of equations from which the surface parameter accelerations are systematically eliminated. Numerical
results are presented in order to examine the performance of various methods discussed in this study.
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1. Introduction

In railroad vehicle dynamics, accurate prediction of the location of the contact point is crucial in any
algorithm developed to solve the dynamics of wheel/rail contact problems [1–7]. There are, in general,
two different approaches used to solve the wheel/rail contact problems. The first approach is the contact
constraint approach in which the contact between the wheel and rail surfaces is described using nonlinear
algebraic kinematic constraint equations. These equations can be solved with the equations of motion
using the techniques of Lagrange multipliers and the augmented form of the dynamic equations. The
normal contact forces are determined in this formulation as constraint forces associated with the contact
constraints. Since the wheel and rail are assumed in this constraint formulation to remain in contact, the
wheel has five degrees of freedom with respect to the rail and the wheel lift is not, in general, allowed
[8]. The second approach used is the elastic contact formulation. In this formulation, the normal contact
forces are modeled using compliant forces based on the Hertzian contact theory or using an assumed
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compliant force model. Small local deformations in the contact area are used to define the normal
contact force.

The constraint and elastic contact formulations lead to different forms of the equations of motion
that require the use of different numerical solution procedures. In the case of the constraint formu-
lation, the equations of motion are expressed in terms of a set of surface parameters that describe
the geometry of the surfaces of the wheel and rail in contact as will be discussed in Section 2. For
this reason, the system equations are solved for the wheel and rail coordinates and the surface pa-
rameters as well as the vector of Lagrange multipliers that is used to determine the normal contact
forces. On the other hand, in the elastic contact formulation, the equations of motion for the wheel/rail
contact problem are expressed in terms of wheel and rail coordinates only, and the contact forces are
treated as generalized external forces defined at the contact point. Since no kinematic contact con-
straints are imposed in this formulation, accurate prediction of the location of the contact point is
crucial and some geometrical problems need to be addressed. A general search procedure to solve
the general three dimensional wheel/rail contact problems has been recently proposed [9]. The idea
of the search method is to use a set of discrete nodal points on the wheel and rail surfaces to check
whether or not penetration occurs between the two bodies. This procedure that does not require a
certain degree of smoothness of the contact surfaces can be applied to any profile of body surfaces.
Despite the generality of the method, a large number of nodal points is required in order to accu-
rately predict the location of the contact points. Another problem encountered in using this method
is due to the fact that the change in the location of the contact points is not continuous as the result
of using discrete nodal points. Such an abrupt change can, in some examples, lead to discontinu-
ities in the velocities at the contact points which in turns lead to discontinuity in the creepages and
significant jump discontinuities in the creep forces as the result of the high values of the creepage
coefficients.

In this paper, several constraint and elastic contact formulations for multibody railroad vehicle appli-
cations are discussed and suggestions to improve accuracy and efficiency of existing formulations are
proposed. In particular, a solution procedure for the constraint formulation that systematically elimi-
nates all the surface parameter accelerations from the equations of motion is developed. In the case of
the elastic contact formulations, a procedure that can be used to determine the location of the contact
point is proposed. In this procedure, a set of algebraic equations instead of discrete nodal points is
used in order to avoid the use of discrete nodal search that leads to impulsive creep forces. The use of
algebraic equations leads to a smoother and more efficient solution in the case of smooth wheel and rail
profiles.

The work presented in this study can be considered as an extension of the analysis and comparative
study presented in [9]. The work presented in this study, however, differs from previously published
work since it discusses two contact formulations that were not discussed in [9]. One of these formulations
is the embedded contact constraint formulation (ECCF) and the other is an elastic contact formulation
referred to as ECF-A. Numerical experimentation showed that these two formulations can be used to
develop accurate and robust computer algorithms and provide alternatives for the two constraint and
elastic formulations discussed in [9]. This paper is organized as follows: The parameterization of the
wheel and rail surfaces is briefly discussed in Section 2. Two different contact constraint formulations
are introduced in Section 3, while the elastic formulations are presented in Section 4. Numerical results
obtained using a full vehicle model are presented in Section 5 in order to demonstrate the use of the
formulations discussed in this paper. The results of the two-point contact and curving analysis obtained
using the constraint and elastic approaches are compared in Section 6. Summary and conclusions drawn
from this study are presented in Section 7.
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Figure 1. Schematic representation of two bodies in contact.

2. Parameterization of Wheel and Rail Surfaces

In order to determine the location of the point of contact between two bodies, a complete parameterization
of the surfaces must be used [8, 10]. In general, a set of four surface parameters is used to describe the
geometry of the two surfaces in contact as shown in Figure 1. The surface parameters can be written in
a vector form as

s = [
si

1 si
2 s j

1 s j
2
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(1)

where superscripts i and j denotes body i and body j, respectively. Using these parameters, the location
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The tangents to the surface at the contact point are defined in the body coordinate system as
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and the normal vector as

n̄i = t̄i
1 × t̄i

2 (4)

This parameterization can be used to describe the wheel and rail surfaces.
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Figure 2. Surface parameters.

2.1. TRACK GEOMETRY

The surface geometry of the rail r can be described in the most general form using the two surface
parameters sr

1 and sr
2, where sr

1 represents the rail arc length and sr
2 is the surface parameter that

defines the rail profile, as shown in Figure 2. The surface parameters sr
1 and sr

2 are defined in a profile
coordinate system XrpY rp Zrp shown in Figure 3. The location of the origin and the orientation of the
profile coordinate system, defined respectively by the vector Rrp and the transformation matrix Arp,
can be uniquely determined using the surface parameter sr

1 [8–10]. Using this description, the global
position vector of an arbitrary point on the surface of the rail r can be written as follows:

rr = Rr + Ar (Rrp + Arpūrp) (5)

where Rr is the global position vector of the origin of the rail coordinate system Xr Y r Zr , Ar is the
transformation matrix that defines the orientation of the rail coordinate system, and ūrp is the local
position vector that defines the location of the arbitrary point on the rail surface with respect to the
profile coordinate system. The location and orientation of the rail profile coordinate system depends
only on the distance traveled along the track sr

1, while the local position of an arbitrary point on the rail

Figure 3. Track geometry.
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Figure 4. Wheel geometry.

surface at any section depends on the value of sr
2, that

Rrp = Rrp
(
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)
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where f is the function that defines the rail profile.

2.2. WHEEL GEOMETRY

The geometry of the wheel surface can be described using the two surface parameters sw
1 and sw

2 . These
surface parameters are defined in a wheel set coordinate system XwY w Zw. The surface parameter sw

1

defines the wheel profile and sw
2 represents the rotation of the contact point, as shown in Figure 2. The

location of the origin and the orientation of the wheel set coordinate system are defined, respectively,
by the vector Rw and the transformation matrix Aw. Using this description, the global position vector
of an arbitrary point on the surface of the wheel w can be written as follows:

rw = Rw + Awūw (7)

where ūw is the local position vector that defines the location of the arbitrary point on the wheel surface
with respect to the wheel set coordinate system. In the case of the right wheel, this vector is defined as

ūw = [
g
(
sw

1

)
sin sw
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1 g
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1

)
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2

]T
(8)

where g is the function that defines the wheel profile, and L is the distance between the origin of the
wheel set coordinate system and point Q of the wheel, as shown in Figures 2 and 4.

3. Contact Constraint Formulations

In this investigation, two contact constraint formulations and two elastic contact formulations are dis-
cussed. As described in Section 2, the geometry of the surfaces of the wheel and rail are parameterized
using the surface parameters that can be used to define the location of the contact point. In the constraint
formulations, the contact between two surfaces can be described using a set of nonlinear algebraic
equations that must be imposed at the position, velocity, and acceleration levels. One may choose not to
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eliminate the surface parameters, leading to an augmented form of the equations of motion expressed
in terms of Lagrange multipliers associated with the kinematic contact constraint equations. This aug-
mented contact constraint formulation will be referred to in this study as ACCF. Alternatively, one may
choose to systematically eliminate the surface parameters using the contact constraints, leading to an
embedding formulation of the equations of motion that does not explicitly include the surface parameter
accelerations. This embedded contact constraint formulation will be referred to in this study as ECCF.
Both ACCF and ECCF, which are conceptually equivalent but employ different solution algorithms and
numerical procedures, will be discussed in this section.

3.1. CONTACT CONSTRAINTS

When two rigid bodies come in contact as schematically represented by Figure 1, two non-conformal
kinematic contact conditions need to be satisfied [8]. First, two points (contact points) on the two
surfaces coincides; and second, the two surfaces must have the same tangent planes at the contact point.
These two conditions define the following five constraint equations that are required to describe the
non-conformal contact between the wheel and rail:
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where superscript k denotes the contact number, superscript r and w denote rail and wheel, respectively,
qw and qr are, respectively, the generalized coordinates of wheel and rail, and t1, t2 and n are the two
tangents and normal to the surface at the contact point. In Equation (10), the three relative displacement
constraints (point constraints) are defined in a rail coordinate system at the contact point. The first three
point constraints of Equation (9), on the other hand, are defined in the global coordinate system.

Using the principle of virtual work in dynamics, the following variational equation of motion can be
obtained [8]:

δqT
(
Mq̈ + CT

q λ − Q
) + δsT CT

s λ = 0 (11)

where the vectors q and s are, respectively, the system generalized coordinates and the system surface
parameters, M is a system mass matrix, Q is a system generalized force vector, Cq and Cs are, respec-
tively, the constraint Jacobian matrices resulting from the differentiation with respect to the vectors q
and s, and λ is the vector of Lagrange multipliers associated with joint and contact constraints. It is
important to note that there are no inertia and generalized forces associated with the surface parameters
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used to describe the surface geometry; and for this reason these parameters are treated as non-generalized
coordinates [8].

Differentiating all the constraint equations twice with respect to time, the constraint equations at the
acceleration level can be written as

Cqq̈ + Css̈ = Qc (12)

where Qc is a quadratic velocity vector resulting from the differentiation of the constraint equations
twice with respect to time.

3.2. AUGMENTED CONTACT CONSTRAINT FORMULATION (ACCF)

In the contact constraint formulation, the system differential equations of motion and the wheel/rail
contact constraint equations are solved simultaneously for the system generalized coordinates and
the system surface parameters in order to correctly account for the kinematic and dynamic coupling
between the wheel/rail generalized coordinates and the non generalized surface parameters. To this end,
Equations (11) and (12) can be used to obtain the following augmented matrix form using the techniques
of Lagrange multipliers [8]:
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As can be seen from Equation (13), the solution vector contains not only the generalized accelerations
and the Lagrange multipliers, but also the second time derivatives of the non-generalized surface pa-
rameters. These augmented equations of motion are solved for the generalized and non-generalized
accelerations and the Lagrange multipliers [8]. Equation (13) ensures that the generalized and non-
generalized accelerations automatically satisfy the contact constraints at the acceleration level. Having
obtained the acceleration vectors, the independent accelerations that may include the generalized and/or
non-generalized variables are identified using the constraint Jacobian matrix. These independent accel-
erations are integrated forward in time in order to determine the independent coordinates and velocities,
and the dependent generalized and non-generalized coordinates can be determined by solving the
constraint equations at the position level using a Newton–Raphson iterative solution procedure. The
constraint equations at the velocity level are solved to determine the dependent generalized and non-
generalized velocities. It is important to point out again that in this method (ACCF), generalized and/or
non-generalized coordinates (surface parameters) can be selected as the independent variables, and the
state equations associated with these independent variables are integrated forward in time. This is one
of the important differences between this method (ACCF) and the method discussed below.

3.3. EMBEDDED CONTACT CONSTRAINT FORMULATION (ECCF)

In the embedded contact constraint formulations (ECCF), the surface parameters (the non-generalized
coordinates) are systematically eliminated from the equations of motion. This leads to a smaller system of
equations from which the contact constraint forces (except for the normal contact force) are eliminated.
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Before providing the details of this elimination, it is important to comment on Equation (13) that includes
for each contact the following four algebraic equations in the five unknown Lagrange multipliers [8]:

CkT

s λk = 0; (14)
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Equation (14) shows that the five Lagrange multipliers associated with each contact are not totally
independent, but only one Lagrange multiplier is independent. This result is consistent with the fact that
the contact constraints eliminate one degree of freedom and the normal contact force can be expressed
in terms of one Lagrange multiplier only.

In order to systematically eliminate the four surface parameters of each contact, four contact con-
straints are selected from the five contact constraints such that their Jacobian matrix associated with
the four surface parameters leads to a non-singular square matrix. Since the degree of freedom elim-
inated by the contact constraints can be in general the relative motion along the normal to the surface
at the contact point, we choose the four constraint equations from Equation (10) by excluding the third
equation that defines the relative motion along the normal. This third equation will be augmented to the
system differential equations in order to determine the normal force. To this end, the vector of constraint
equations associated with contact k is written in the following partitioned form:
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It should be noted that since the Jacobian matrix associated with the constraints of Equation (16) is non-
singular, as can be verified, all the four surface parameters can be expressed in terms of the wheel/rail
generalized coordinates. However, since the wheel/rail generalized coordinates must satisfy the fifth
contact constraint (Equation (17)) as well as other kinematic constraints imposed on the motion of the
multibody vehicle system, the position analysis involves two coupled stages, each of which requires the
use of the iterative Newton–Raphson procedure. For a given set of wheel/rail generalized coordinates,
Equation (16) is solved iteratively using a Newton–Raphson algorithm in order to determine the surface
parameters that enter into the formulations of Equation (17). For these calculated surface parameters,
Equation (17) and other nonlinear kinematic constraints imposed on the motion of the multibody system
are iteratively solved using a Newton–Raphson algorithm in order to determine the system generalized
coordinates. This iterative process continues until convergence is achieved for both stages.
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Since the four contact constraints of Equation (16) do not prevent the penetration along the normal
to the surfaces at the contact point, the fifth constraint of Equation (17) ensures that such a penetration
does not occur. Substituting Equation (15) into Equation (11), the variational equations of motion can
now be rewritten as

δqT
(
Mq̈ + CdT

q λd + CnT

q λn − Q
) + δsT

(
CdT

s λd + CnT

s λn) = 0 (18)

where Cd
s and Cn

s are the Jacobian matrices associated with the contact constraints of the types presented
in Equations (16) and (17) respectively; andλd andλn are the Lagrange multipliers associated with these
constraint equations. Note that the virtual change in the system surface parameters can be expressed in
terms of the virtual change in the wheel/rail coordinates as follows:

δs = Bδq (19)

where B = −(Cd
s )−1Cd

q is the velocity transformation matrix associated with the contact constraints.
Substituting Equation (19) into Equation (18), the variational equations of motion can then be written
in terms of the virtual changes in the generalized coordinates only as
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It is important to note in Equation (20) that the generalized contact forces associated with the contact
constraints of Equation (16), are systematically eliminated from the equations of motion using the
following identity:
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Furthermore, the acceleration kinematic equation

s̈ = Bq̈ + Ḃq̇ (22)

which is the result of Equation (19), can be used to eliminate s̈ from the second derivative of the
constraint of Equation (17) with respect to time. Using this procedure, one can show that the system
equations of motion, after eliminating the non-generalized surface parameters, can be written as

[
M HT

H 0

] [
q̈

λ

]

=
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Q
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]

(23)

where H, an implicit function of s, is the Jacobian matrix of the constraint of Equation (17) and other
constraints imposed in the motion of the multibody system, λ is the vector of the system Lagrange
multipliers that include only Lagrange multipliers associated with the constraints of Equation (17) and
other non-contact constraints imposed on the motion of the system, and Qcn is a quadratic velocity
vector that results from the differentiation of the constraint equations twice with respect to time. This
vector is a function of the surface parameters s and their first time derivatives.

It is clear that in the ECCF, the surface parameters are treated as dependent variables and are sys-
tematically eliminated from the equations of motion. For this reason, only wheel/rail accelerations
are integrated forward in time. It should also be noted that only one Lagrange multiplier associated
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with the contact constraint of Equation (17) is used in Equation (23) This Lagrange multiplier defines
the normal contact force used to define the longitudinal, lateral and spin creep forces. Furthermore,
since the surface parameters and the dependent Lagrange multipliers are systematically eliminated
without making any assumptions, the ECCF as defined by Equation (23) and the augmented con-
tact constraint formulation (ACCF) as defined by Equation (13) are in principle equivalent despite
the fact that these two formulations require the use of different solution procedures and numerical
algorithms.

3.4. COMPARISON BETWEEN THE TWO METHODS

While as previously pointed out the two methods ACCF and ECCF are in principle the same, the use
of the surface parameters as degrees of freedom in the ACCF method requires the use of different
solution algorithm as compared to the ECCF method. In order to compare between the two methods,
the suspended wheel set shown in Figures 5 and 6 is used. The data for this wheel set are shown in
Table 1. The wheels are profiled with approximate conicity of 1/40. Cubic splines are used to interpolate
the profile data. The wheel set is assumed to have a constant forward velocity of 40 m/s. The left rail
is assumed to be perfectly straight, while the right rail has a deviation that defines a sinusoidal gage
reduction of 10 mm between two points located at a distance 20 and 30 m on the rail. Figures 7 and
8 show the lateral and yaw displacement of the wheel set as a function of the distance traveled. The
results presented in these two figures show that the motion of the wheel set is stable and the lateral and
yaw displacements approach zero as the distance traveled increases. Figure 9 shows the normal contact
force acting on the right wheel, while Figure 10 shows the normal force acting on the left wheel. While
the results presented in these figures show a very good agreement between the solutions obtained using
the ACCF and ECCF methods, it is important to point out that numerical experimentation showed that
the ECCF method is more robust and less sensitive to changes in the numerical tolerances, while the
ACCF method is more sensitive to numerical tolerances. The elimination of the surface parameters in
the ECCF method seems to provide a numerical advantage since these parameters cannot be in this

Figure 5. Top view of the suspended wheel set.
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Table 1. Data used in the suspended wheel set model.

Variable Description Value

mw Wheel set mass 1568 kg

Ixx Inertia moment 656 kg · m2

Iyy Inertia moment 168 kg · m2

Izz Inertia moment 656 kg · m2

W Applied vertical load 98000 N

kx Stiffness for longitudinal springs 1.35 × 105 N/m

ky Stiffness for lateral springs 2.5 × 105 N/m

cx Damping coefficient for longitudinal spring 1.0 × 105 N/m·s
cy Damping coefficient for lateral spring 0 N/m · s

b Distance between longitudinal springs 0.9 m

2s Gage value 1432 mm

Figure 6. Geometry of wheel set and rails.

case selected by the multibody computer code as independent variables. Furthermore, the size of the
coefficient matrices used in solving for the positions, velocities, and accelerations of the wheel set is
reduced; thereby minimize the possibility of ill-conditionings and other numerical problems that arise
from the use of a large system that combines both generalized and non-generalized variables.

4. Elastic Contact Formulations

The constraint approach does not allow penetration between the two bodies in contact, and imposing
the contact conditions eliminates one degree of relative motion between the wheel and the rail. In the
elastic approach, on the other hand, no kinematic contact constraints are imposed, the wheel has six
degrees of freedom with respect to the rail, and small penetrations at the contact points are allowed. In
the elastic contact formulations, a compliant force element that consists of stiffness and damping forces
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Figure 7. Lateral displacement of the wheel set.

Figure 8. Yaw angle of the wheel set.

is used to determine the normal contact force. The location of the points of contact can be determined
using look-up tables, discrete nodal search, or by solving a set of algebraic equations. In this section,
two elastic contact formulations are discussed. In the first, called ECF-A, the locations of the contact
points are determined by solving a set of algebraic equations. In the second elastic contact method,
called ECF-N, the locations of the contact points are determined using the nodal search.
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Figure 9. Normal contact forces of the right wheel.

Figure 10. Normal contact forces of the left wheel.

4.1. USE OF ALGEBRAIC EQUATIONS (ECF-A)

In the first elastic method discussed in this section, the locations of the contact points are determined by
first solving a set of algebraic equations. For each contact four algebraic equations are solved in order
to determine the four surface parameters that describe the geometry of the wheel and the rail surfaces.
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After determining the four surface parameters that satisfy the algebraic nonlinear equations, the distance
between the surfaces along the normal is evaluated using a fifth equation to determine whether or not
there is a contact. The method presented in this section allows for the definition of the wheel and rail
surfaces using spline function representations, thereby enabling the use of measured profile data for the
wheel and the rail.

It is important to point out that while the algebraic equations used in this method are the same as the
contact constraints presented in the preceding section, the method presented in this section (ECF-A) is
not considered as a contact constraint formulation since the algebraic equations are not imposed at the
velocity and acceleration levels, allow for penetrations, and do not introduce a Lagrange multiplier that
is used in the constraint method to determine the normal contact force. In the elastic methods discussed
in this section, the normal contact force is determined using a compliant force that has stiffness and
damping coefficients.

In order to determine the location of contact point using the elastic contact approach, one may define
the following four algebraic equations ([11], J.L. Escalona, personal communication [2002]):

tr
1 · rwr = 0

tr
2 · rwr = 0

tw1 · nr = 0

tw2 · nr = 0






(24)

where tk
1 and tk

2 (k = w, r ) are, respectively, the tangents to the wheel and rail surfaces at the potential
contact point, rwr = rw−rr is the vector between two points that can come into contact, and nr is the
normal to the rail surface. Note that the first two equations in the preceding equation are the same as
the first two equations in Equation (10), while the last two equations in the preceding equation are the
same as the last two equations in Equation (10).

Since the tangent and normal vectors are functions of the surface parameters, one may rewrite the
preceding set of algebraic equations in a vector form as

E(s) = 0 (25)

where E is the vector of nonlinear algebraic equations. These nonlinear algebraic equations can be
solved for the surface parameters that define potential non-conformal contact points. To this end, a
Newton–Raphson algorithm is employed. This requires evaluating the Jacobian matrix of the algebraic
equations and iteratively solving the following system for each contact in order to determine Newton
differences associated with the surface parameters:
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Convergence is achieved when the norm of the violation of the algebraic equations or the norm of the
Newton differences is less than a specified tolerance.
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Having determined the vector of the surface parameters, the penetration can be calculated using the
third equation of Equation (10) as

δ = rwr · nr (27)

If the surfaces penetrate, normal contact forces can be calculated using Hertz’s contact theory, while
the creep forces can be calculated using Kalker’s USETAB routine [12, 13]. The generalized normal
and creep forces associated with the system generalized coordinates are determined and introduced to
the multibody system dynamic equations of motion. In the evaluation of the normal contact force, as
an alternate to the use of the Hertzian component that is a function of the indentation, a damping force
proportional to the time derivative of indentation can be included. The expression of the normal force
used in this investigation is given by [9]:

F = Fh + Fd = −Khδ
3/2 − C δ̇|δ| (28)

where δ is the indentation, Fh is the Hertzian (elastic) contact force, Fd is the damping force, Kh is the
Hertzian constant that depends on the surface curvatures and the elastic properties, and C is a damping
constant. The velocity of indentation δ̇ is evaluated as the dot product of the relative velocity vector
between the contact points on the wheel and rail and the normal vector to the surface at the contact
point. The reason for including the factor |δ| in the damping force is to guarantee that the contact force
is zero when the indentation is zero.

4.2. USE OF NODAL SEARCH (ECF-N)

An alternate for using the ECF-A method that employs algebraic equations is to define the profile of the
wheel and rail using discrete nodal points [9, 14]. The distance between those nodes can be calculated
to determine which nodes can come in contact. The use of this method has the advantage that it does
not require a certain degree of smoothness of the surfaces. It has, however, the disadvantage that the
change in the lateral surface parameters of wheel and rail is not smooth since the contact is assumed to
occur at discrete nodal points. When the contact jumps from one node to the neighboring one, a small
jump in the relative velocity between the wheel and the rail at the contact point is expected. This small
jump leads, in some examples, to discontinuity of the creepages. Since the creepage coefficients that
enter into the calculation of the creep forces are very high, the change in the contact locations resulting
from the use of the nodal search leads to high impulsive forces. As discussed in [9], the nodal search
for the contact points consists of the following three steps:
1. Calculation of the rail arc length sr

1 traveled by the wheel. The parameter sr
1 defines the rail cross

section in which the points of contact are located.
2. Calculation of the wheel angular parameter sw

2 . The parameter sw
2 defines the wheel diametric section

in which the points of contact are located.
3. Search for the contact points. In this phase the rail parameter sr

2 and the wheel parameter sw
1 of the

points of contact are determined. This phase of the search starts once the sections of the wheel and
rail in which the contact points are located are determined. The exact position of the contact points
is determined in this phase of the search.
In order to determine the arc length traveled by the wheel, a selected point Q on the center of the

wheel is used first to determine the rail space curve parameter sr
1. It is assumed that the rate of change

of the rail parameter sr
1 is equal to the projection of the velocity of this point on the tangent along the
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Figure 11. The surface nodal points.

longitudinal rail direction, that is

ṡr
1 = ṙwT

Q · tr
1 (29)

where ṙw
Q is the global velocity vector of point Q, and tr

1 is the longitudinal tangent to the rail. The
preceding differential equation is solved simultaneously with the differential and algebraic equations of
the multibody system in order to determine sr

1 that is used for the search for the point of contact between
the wheel and the rail. Clearly, one needs to introduce a number of arc length first order differential
equations equal to the number of wheels in the dynamic model. Note that the ECF-A method does not
require introducing these first order differential equations since the arc length traveled by the wheel is
readily available from the solution of the algebraic equations.

In order to determine the points of contact between the wheel and the rail, the global position vectors
of the nodal points that define the wheel and rail profiles are determined [9]. The distance between the
points on the wheel and the points on the rail, as shown in Figure 11, are calculated and used with a
user specified tolerance criterion to determine the points of contact. Since this search for the contact
points can lead to a very large number of contact points, an optimized procedure that improves the
computational efficiency is adopted. The contact points are grouped in batches. A batch is a collection
of sequence of pairs of points on the wheel and rail that have non-zero penetration. While the algorithm
developed allows for an arbitrary number of contact batches, a limit of two contact batches is assumed
in the numerical investigation presented in this paper. The two points (one on the wheel and one on
the rail) that lead to the maximum indentation are selected as the points of contact for any given batch.
The number of points of contact between the wheel and the rail is equal to the number of the contact
batches. That is, the algorithm used to search for the contact points allows for multiple contacts between
the wheel and the rail. Once the contact points are determined, an elastic force model similar to the one
presented for the ECF-A method can be used.

4.3. COMPARISON BETWEEN THE TWO ELASTIC CONTACT FORMULATIONS

Once the normal and creep contact forces are determined, the augmented form of the equation of motion
of the multibody system can be written as [12]:

[
M Ct

q

Cq 0

][
q̈

λ

]
=

[
Q

Qc

]
(30)
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where M is the system mass matrix, Cq is the Jacobian matrix of the non-contact kinematic constraints,
q is the vector of the system generalized coordinates, λ is the vector of Lagrange multipliers, Q is a
vector that includes external, applied contact, creep, and centrifugal and Coriolis forces, and Qc is the
vector that results from the differentiation of the constraint equations twice with respect to time, that is

Cqq̈ = Qc (31)

The vector of the kinematic constraint equations C(q, t) = 0 describes mechanical joints as well
as specified motion trajectories that include driving constraints. Such driving constraints include the
specified forward velocity of the wheel sets. In the elastic contact formulations, the vector C does not
include any contact constraints.

Crucial to the success of any elastic force model used in the dynamic simulation of the interaction
between the wheel and the rail is the accurate prediction of the rail arc length traveled by the wheel. As
previously pointed out, in the ECF-A method this arc length is determined by solving algebraic equations,
while the ECF-N method allows for such an accurate prediction by introducing an arc length first order
differential equation that depends nonlinearly on the wheel generalized coordinates and the rail geometry.
This first order differential equation, which is defined by Equation (29), is integrated simultaneously with
the state equations obtained for the wheel/rail system using Equation (30). The numerical integration
of this new combined system of equations defines the system generalized coordinates and velocities as
well as the rail arc length sr

1 traveled by the wheel.
In order to compare between the results obtained in the two methods (ECF-A and ECF-N) discussed

in this section, we consider the suspended wheel set example examined in the preceding section. This
example is solved again using the two elastic contact formulations ECF-A and ECF-N. Figures 12
and 13 show the lateral and yaw displacements of the wheel set; while Figure 14 Shows the normal
component of the normal force acting on the right wheel. The results presented in these figures show a
good agreement between the solutions obtained using the two different elastic methods.

Figure 12. Lateral displacement of the wheel set.
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Figure 13. Yaw angle of the wheel set.

Figure 14. Normal contact forces of the wheel set.

5. Vehicle Model

In this section, we consider a complete vehicle model shown in Figure 15 in order to compare between
the results obtained using the embedded contact constraint method (ECCF) and the elastic contact
formulations (ECF-A) that employs algebraic equations to determine the location of the contact point.
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Figure 15. Vehicle model.

Figure 16. The components of the truck.

The vehicle that consists of two trucks and a car body is assumed to travel on a tangent track. Each
truck consists of two wheel sets, two equalizer bars, a frame and a bolster as shown in Figure 16.
The front wheel sets of the leading and trailing truck are assumed to have a constant forward velocity
(V = 20 m/s). The track is assumed perfectly tangent with two vertical bumps as shown in Figure 17.
The dimensions and inertia properties of this model are the same as presented in [15]. Figure 18 shows
the lateral displacement of the rear trailing wheel set, while Figure 19 shows the vertical displacement.
Figure 20 shows the normal forces acting on the right wheel of the leading wheel set of the leading
truck. It can be seen that there is in general a good agreement between the constraint and the elastic
formulations.
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Figure 17. Track with vertical bump.

Figure 18. Lateral displacement of the rear wheel set of the trailing truck.

6. Curving Behavior and Two-Point Contact

The results presented in the preceding section were obtained using a tangent track. In this section,
the results obtained using the constraint and elastic formulations (ECCF and ECF-A) are compared
when the vehicle negotiates a curved track. In the analysis of the curving behavior, the effect of the
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Figure 19. Vertical displacement of the rear wheel set of the trailing truck.

Figure 20. Normal contact force of the right wheel of the front wheel set of the leading truck.

forces due to flange contact is important and must be taken into consideration. The procedure used
in this investigation to determine the second point of contact on the flange of the wheel is based on
determining two points on the rail profile and the wheel flange that have the shortest distance. The
distance between the two points along the normal at the point of contact on the rail is calculated to
determine whether or not penetration occurs. The procedure also allows for checking the lead and lag
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Figure 21. Curved track.

Figure 22. Car body lateral displacement.

contact using information on the wheel lateral displacement and orientation. If penetration occurs, a
compliant force element similar to the one used for the elastic methods is used to define the normal
contact force; that is, an elastic approach is always used to model the flange contact regardless of the
method used to model the tread contact. In order to compare between the ECCF and the ECF-A methods
when a vehicle negotiates a curved track, the track shown in Figure 21 is used. The data for this track are
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Figure 23. Normal contact force of the tread contact.

Figure 24. Normal contact force of the flange contact.

presented in Table 2. Figure 22 shows the lateral displacement of the vehicle described in the previous
section when it travels on the curved track shown in Figure 21. Figures 23 and 24 show the components
of the tread and flange normal contact force acting on the right wheel of the front axle of the leading
truck.
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Table 2. Track node data.

Distance Curvature Superelevation Grade
Node (ft.) (deg.) (in) (%)

1 0 0 0 0

2 100 0 0 0

3 200 3 −3 0

4 350 3 −3 0

7. Summary and Conclusions

In this investigation, several nonlinear dynamic formulations for the analysis of the wheel/rail contact
problems are discussed. Two contact constraint formulations (ACCF and ECCF) and two elastic contact
formulations (ECF-A and ECF-N) are discussed. Each contact in the constraint formulations eliminates
one relative degree of freedom between the wheel and the rail.

In the embedded contact constraint formulations (ECCF), the surface parameters are systematically
eliminated leading to a reduced system of equations that do not explicitly include the contact constraint
forces. Numerical results presented in this investigation show that there is a good agreement between
the solution obtained using the embedded contact constraint method (ECCF) in which the surface
parameters can not be used as degrees of freedom and the solution of the augmented contact constraint
formulation (ACCF) that allows the selection of surface parameters as degrees of freedom. In the
augmented contact constraint formulations (ACCF), the kinematic contact constraint equations are
augmented to the system differential equations of motion. As demonstrated in this paper, the two
contact constraint formulations, ECCF and ACCF, are equivalent, but require the use of different solution
procedures.

The elastic formulations, on the other hand, do not impose any kinematic constraints on the motion
of the wheel with respect to the rail, and therefore, the wheel is assumed to have six degrees of freedom
with respect to the rail. The results obtained using the two elastic formulations (ECF-A and ECF-N)
are also compared. Numerical experimentation showed that the ECF-A method that determines the
location of the contact points by solving algebraic equations leads, in general, to smoother results as
compared to the ECF-N method that uses nodal search to determine the contact points. As explained
in the paper, the use of the nodal search in the ECF-N method can lead, in some examples, to non-
smooth change in the lateral surface parameters, and as a consequence, the contact and creep forces
can be impulsive as the results of very high creepage coefficients. It is important, however, to point
out that the ECF-A method requires a certain degree of surface smoothness which is not required by
the ECF-N method. The results of the constraint ECCF method and the elastic ECF-A method are
compared using a full vehicle model traveling on tangent and curved tracks. In the case of the curved
track, the effect of the forces of the second point of contact is taken into consideration. The results
obtained show a good agreement between the solutions obtained using the constraint and the elastic
methods.
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