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Abstract. An analytical–numerical method involving a small number of generalized coordinates is presented for the analysis
of the nonlinear vibration and dynamic stability behaviour of imperfect anisotropic cylindrical shells. Donnell-type governing
equations are used and classical lamination theory is employed. The assumed deflection modes approximately satisfy ‘simply
supported’ boundary conditions. The axisymmetric mode satisfying a relevant coupling condition with the linear, asymmetric
mode is included in the assumed deflection function. The shell is statically loaded by axial compression, radial pressure and
torsion. A two-mode imperfection model, consisting of an axisymmetric and an asymmetric mode, is used. The static-state
response is assumed to be affine to the given imperfection. In order to find approximate solutions for the dynamic-state equations,
Hamilton’s principle is applied to derive a set of modal amplitude equations. The dynamic response is obtained via numerical
time-integration of the set of nonlinear ordinary differential equations. The nonlinear behaviour under axial parametric excitation
and the dynamic buckling under axial step loading of specific imperfect isotropic and anisotropic shells are simulated using this
approach. Characteristic results are discussed. The softening behaviour of shells under parametric excitation and the decrease of
the buckling load under step loading, as compared with the static case, are illustrated.
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1. Introduction

The stability of structures under dynamic loading constitutes an important research area. Parametric
excitation and dynamic buckling are two important fields in the dynamic stability of shell structures [1].
Cylindrical shells are important both from a theoretical and from a practical viewpoint. They are widely
used in various branches of engineering. In aerospace, cylindrical shells form the primary structure of
missiles and launch vehicles. Thin-walled shell structures are prone to buckling instabilities under static
and dynamic compressive loading and they may be directly or parametrically excited into resonance at
their natural frequencies by dynamic loads.

A relatively well-defined class of dynamic stability problems is often referred to as parametric ex-
citation problems, i.e. the vibration buckling problem under pulsating loading [2, 3]. The essential
ideas for shell problems are discussed by Hsu [4]. The parametric excitation of cylindrical shells
was studied by Yao, both in a linear and in a nonlinear context [5, 6], and by Vijayaraghavan and
Evan-Iwanowski [7]. Nagai and Yamaki [8] included the effect of boundary conditions and the ef-
fect of axisymmetric bending vibrations in the fundamental state in their analysis. The use of lam-
inated structures requires an analysis that takes into account the various couplings in the constitu-
tive equations. Studies in this direction have been carried out by Argento [9] and Argento and Scott
[10, 11].

Another important class of dynamic stability problems is the dynamic buckling behaviour under step
loading or impulsive loading [12, 13]. For imperfection-sensitive structures the dynamic buckling under
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step loading is particularly important, since buckling may occur at lower values than the corresponding
static load. In the present study, the term ‘dynamic buckling’ refers to this specific load case. Several
criteria that can be used to estimate the critical load in the dynamic buckling case are discussed in [13].
The dynamic buckling of discrete systems was investigated by Kounadis [14]. Important early studies
on dynamic buckling of shells were done by Budiansky and Roth [15] and Roth and Klosner [16].
Tamura and Babcock [17] included parametric excitation effects in their study of dynamic buckling of
cylindrical shells under axial step loading. Schokker et al. [18] studied dynamic buckling of composite
shells under sudden dynamic pressure.

Both classes of dynamic stability problems (nonlinear parametric excitation and dynamic buckling)
are strongly related with the nonlinear (i.e. large amplitude) vibration problem of structures. Research in
the field of dynamic stability and nonlinear vibrations has been shifting towards using Finite Elements
for the spatial discretization in combination with a transient dynamic analysis, e.g. [19–22]. However, it
has been recognized that essential information about the nonlinear dynamic behaviour of structures can
be obtained by means of analytical–numerical, low-dimensional models, i.e. models with a small number
of degrees of freedom. Within this context the parametric excitation and nonlinear vibration problem
of cylindrical shells recently has received considerable attention. Popov et al. [23] used continuation
techniques in order to trace the branches of periodic solutions under parametric excitation. Gonçalves
and Del Prado [24] used numerical integration to study parametric excitation and escape from the
prebuckling potential well. The work in the field of analytical–numerical approaches for shells has been
extended towards multi-mode analyses by Pellicano et al. [25] and Pellicano and Amabili [26], who also
included the effect of companion mode participation in the parametric excitation problem of cylindrical
shells. A recent review of research in the field of nonlinear vibrations of cylindrical shells can be found
in [27].

The present paper extends earlier work on nonlinear vibrations of shells [28, 29] and focuses on a
simple low-dimensional model presented earlier [29] that is believed to capture important characteristics
of the nonlinear dynamic behaviour of an anisotropic cylindrical shell. Donnell-type nonlinear shell
equations are used. The effect of the anisotropy of the material, three fundamental loads, imperfections
and a nonlinear static state is included. In [29] this model was used to study the nonstationary vibrations
of cylindrical shells. In the present paper, both the nonlinear parametric excitation and the dynamic
buckling under step loading of thin-walled anisotropic cylindrical shells are analysed. The nonlinear
dynamic behaviour is simulated using numerical time-integration. In the case of dynamic buckling,
following Budiansky and Roth [15], in the present work the critical load is defined as the load level at
which a distinct jump in the maximum response occurs when the load is increased.

2. Governing Equations

The cylindrical shell geometry and the applied loading are defined in Figure 1. The geometry of the shell
is characterized by the length L , radius R and (reference) thickness h. The strain energy expression for
a cylindrical shell is given by

V0 = 1

2

∫ 2π R

0

∫ L

0

{
Nxεx + Nyεy + Nxyγxy + Mxκx + Myκy + Mxy + Myx

2
κxy

}
dx dy (1)

where Nx , Ny, . . . , Myx are the usual stress and moment resultants, and εx , εy, . . . , κxy the usual strains
and curvatures (see e.g. [30]). Using Donnell-type strain–displacement relations and the constitutive
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Figure 1. Shell geometry, coordinate system and applied loading.

equations for a general anisotropic shell, the equations governing the nonlinear dynamic behaviour can
be derived. The constitutive equations for a laminated shell can be written as
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where the stiffness coefficients Ai j , Bi j and Di j (i, j = 1, 2, 6) from classical lamination theory are
used. The definition of the layer orientation θk can be found in Figure 1. The constitutive equations,
Equations (2) and (3), can be written in matrix form as

{N } = A{ε} + B{κ} (4)

{M} = B{ε} + D{κ} (5)

and after partial inversion as

{ε} = A∗{N } + B∗{κ} (6)

{M} = C∗{N } + D∗{κ} (7)

where

A∗ = A−1

B∗ = −A−1 B

C∗ = B A−1 = −B∗T

D∗ = D − B A−1 B
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Assuming that the radial displacement W is positive inward (see Figure 1) and introducing an Airy
stress function F as Nx = F,yy , Ny = F,xx and Nxy = −F,xy , then the Donnell-type nonlinear imperfect
shell equations for a general anisotropic material can be written as

L A∗ (F) − L B∗ (W ) = − 1

R
W,xx −1

2
LNL(W, W + 2W̄ ) (8)

L B∗ (F) + L D∗ (W ) = 1

R
F,xx +LNL(F, W + W̄ ) + p − ρ̄hW,t t (9)

where the variables W and F depend on the time t , ρ̄hW,t t is the radial inertia term, ρ̄ the (averaged)
specific mass of the laminate, and p the (effective) radial pressure (positive inward). In the following,
the partial differential equations will be reduced to a system with a finite number of degrees of freedom.
Damping will be introduced in that stage via viscous modal damping terms in the equations of motion
of the discretized system. It should be noted that in-plane inertia of the (predominantly) radial modes
is neglected in the analysis. However, in the analysis presented in the next section the in-plane inertia
of both the fundamental axial and the fundamental torsional mode will be taken into account. The
fourth-order linear differential operators

L A∗ () = A∗
22(),xxxx −2A∗

26(),xxxy +(2A∗
12 + A∗

66)(),xxyy −2A∗
16(),xyyy +A∗

11(),yyyy (10)

L B∗ () = B∗
21(),xxxx +(2B∗

26 − B∗
61)(),xxxy +(B∗

11 + B∗
22 − 2B∗

66)(),xxyy

+ (2B∗
16 − B∗

62)(),xyyy +B∗
12(),yyyy (11)

L D∗ () = D∗
11(),xxxx +4D∗

16(),xxxy +2(D∗
12 + 2D∗

66)(),xxyy +4D∗
26(),xyyy +D∗

22(),yyyy (12)

depend on the stiffness properties of the laminate, and the nonlinear operator defined by

LNL(S, T ) = S,xx T,yy −2S,xy T,xy +S,yy T,xx (13)

reflects the geometric nonlinearity. Equation (8) guarantees the compatibility of the strains and the radial
displacement field. Equation (9) is the equation of motion in the radial direction.

The shell can be loaded by axial compression P , radial pressure p and counter-clockwise torsion T
(Figure 1), both statically (P̃ , p̃, T̃ ) and dynamically (P̂ , p̂, T̂ ). The equations governing the nonlinear
dynamic behaviour of a cylindrical shell vibrating about a nonlinear static state will be derived, by
expressing both the displacement W and the stress function F as a superposition of two states,

W = W̃ + Ŵ (14)

F = F̃ + F̂ (15)

where F̃ and W̃ are the stress function and radial displacement of the static, geometrically nonlinear
state which develops under the application of a static load on the imperfect shell, while F̂ and Ŵ are
the stress function and radial displacement of the dynamic state corresponding to the large amplitude
vibration about the static state. Substituting Equations (14) and (15) into the governing equations,
Equations (8) and (9), and regrouping gives sets of equations both for the nonlinear static state and
for the nonlinear dynamic state. The Donnell-type equations governing the nonlinear static state of an
imperfect anisotropic cylindrical shell become

L A∗ (F̃) − L B∗ (W̃ ) = − 1

R
W̃ ,xx −1

2
LNL(W̃ , W̃ + 2W̄ ) (16)

L B∗ (F̃) + L D∗ (W̃ ) = 1

R
F̃,xx +LNL(F̃, W̃ + W̄ ) + p̃ (17)
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where p̃ is the static radial loading, and the equations governing the nonlinear dynamic state can be
written as

L A∗ (F̂) − L B∗ (Ŵ ) = − 1

R
Ŵ ,xx −1

2
LNL(W̃ , Ŵ ) − 1

2
LNL(Ŵ , W̃ + 2W̄ ) − 1

2
LNL(Ŵ , Ŵ ) (18)

L B∗ (F̂) + L D∗ (Ŵ ) = 1

R
F̂,xx + LNL(F̃, Ŵ ) + LNL(F̂, W̃ + W̄ ) + LNL(F̂, Ŵ ) − ρ̄hŴ ,t t + p̂ (19)

where p̂ is the dynamic radial loading.

3. Analysis

Approximate solutions for the equations governing the nonlinear static state are obtained via a Galerkin
procedure using a limited number of assumed deflection modes. A two-mode imperfection model,
consisting of an axisymmetric and an asymmetric mode, is used. The static-state response is assumed
to be affine to the given imperfection. In the case that the imperfection and response mode correspond
to the lowest buckling mode, this model is expected to capture important characteristics of the static
behaviour. A set of three nonlinear equations is obtained that can be solved for the unknown displacement
amplitudes. Details of this method can be found in [31].

To find approximate solutions for the equations governing the dynamic state, based on a small
number of assumed deflection modes, the energy expressions corresponding to the governing differential
equations are used as a starting point for the dynamic analysis [31]. Using the splitting of variables given
in Equations (14) and (15) one obtains the energy expressions for both the static state (corresponding to
Equations (16) and (17)) and the dynamic state (corresponding to Equations (18) and (19)). Hamilton’s
(extended) variational principle corresponding to Equations (18) and (19) can be stated as

∫ t2

t1

δ(T − V̂ )dt +
∫ t2

t1

δ(Wnc)dt = 0 (20)

where T is the total kinetic energy, V̂ the potential energy of the dynamic state, and Wnc the work done
by nonconservative forces. It should be noted that the coefficients of the dynamic-state problem depend
on the solution of the static-state problem, Equations (16) and (17).

For the dynamic state, the radial pressure is split into a conservative part and a nonconservative part.
The in-plane loads (axial compressive load and counter-clockwise torque) are applied at x = L and
correspond to averaged stress resultants. They are also split into a conservative part and a nonconservative
part:

p̂ = p̂c + p̂nc; N̂ x |x=L = N̂ c
x + N̂ nc

x ; N̂ xy |x=L = N̂ c
xy + N̂ nc

xy (21)

where the superscript c denotes the conservative part, and superscript nc the nonconservative part.
The conservative parts of the loading correspond to an applied step loading. At x = 0 the in-plane
displacements u and v (averaged in the circumferential direction) are assumed to be zero.

The potential energy for the dynamic state then becomes

V̂ = V̂ 0 + V̂ 1 (22)
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where V̂ 0 is the strain energy and V̂ 1 the potential energy of the applied conservative loads. The potential
energy of the applied conservative loads can be written as

V̂ 1 = −
∫ 2π R

0
N̂ c

x

∫ L

0
û,x dx dy −

∫ 2π R

0

∫ L

0
p̂cŴ dx dy −

∫ 2π R

0
N̂ c

xy

∫ L

0
v̂,x dx dy (23)

where N̂ c
x = −N̂ 0uH(t) is the applied axial step load, p̂c = p̂0uH(t) the applied external pressure step

load, and N̂ c
x = T̂ 0uH(t) the applied counter-clockwise torsional step load. Here, uH(t) denotes the

Heaviside unit step function.
The virtual work done by the nonconservative forces is

δWnc =
∫ 2π R

0
N̂ nc

x

∫ L

0
δû,x dx dy +

∫ 2π R

0

∫ L

0
p̂ncδŴ dx dy +

∫ 2π R

0
N̂ nc

xy

∫ L

0
δv̂,x dx dy (24)

where N̂ nc
x , p̂nc and N̂ nc

xy are the axial, radial, and torsional nonconservative load, respectively.
The kinetic energy of the shell is given by

Ts = To + Ti (25)

where the out-of-plane inertia contribution To is given by

To = 1

2
ρ̄h

∫ 2π R

0

∫ L

0

(
∂Ŵ

∂t

)2

dx dy (26)

and the in-plane inertia contribution Ti is given by

Ti = 1

2
ρ̄h

∫ 2π R

0

∫ L

0

{ (
∂ û

∂t

)2

+
(

∂v̂

∂t

)2 }
dx dy (27)

For a discretized system with N generalized coordinates (degrees of freedom) qi , application of Hamil-
ton’s principle leads to the Lagrange’s equations of motion:

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+ ∂V

∂qi
= Qi , i = 1, 2, . . . , N (28)

where the generalized forces Qi , corresponding to the generalized coordinates qi , are defined by δWnc =∑
i Qiδqi .
Assuming a radial displacement Ŵ = Ŵ (ξi ), depending on the generalized coordinates ξi (i =

1, 2, . . . , N −2), a particular solution for the stress function F̂p = F̂p(ξi ) can be obtained directly from
the dynamic-state compatibility equation, Equation (18) [31]. The solution for F̂ becomes

F̂ = F̂p + F̂∗ (29)

where the complementary solution F̂∗, corresponding to stress resultants which are constant over the
shell, can be written as

F̂∗ = 1

2
N̂ ∗

x y2 + 1

2
N̂ ∗

y x2 − N̂ ∗
xy xy (30)
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while the corresponding complementary in-plane displacements û∗ and v̂∗ are assumed, for a fixed end
at x = 0, as

û∗ = −
(

Cah

L

)
x ; v̂∗ = −

(
Ct h

L

)
x (31)

The two additional generalized coordinates Ca and Ct introduced here can be related to the spatially
constant stress resultants N̂ ∗

x , N̂ ∗
y and N̂ ∗

xy , and to the generalized coordinates ξi via the boundary
conditions for averaged in-plane stress resultants and via the circumferential periodicity condition:

∫ 2π R

0

∫ L

0
û,x dx dy = −2π RhCa = f1,lin(N̂ ∗

x , N̂ ∗
y, N̂ ∗

xy) + f1,nl(ξi ) (32)

∫ 2π R

0
v̂,y dy = 0 = f2,lin(N̂ ∗

x , N̂ ∗
y, N̂ ∗

xy) + f2,nl(ξi ) (33)

∫ 2π R

0

∫ L

0
v̂,x dx dy = −2π RhCt = f3,lin(N̂ ∗

x , N̂ ∗
y, N̂ ∗

xy) + f3,nl(ξi ) (34)

where f j,lin ( j = 1, 2, 3) are linear functions of the constant stresses, and f j,nl are nonlinear functions
of the generalized coordinates ξi (i = 1, 2, . . . , N − 2). The functions are obtained by using the strain–
displacement relations in combination with the partially inverted constitutive equations, Equation (7).

Inverting the relations in Equations (32)–(34) we can obtain the unknown (spatially) constant stress
resultants as functions of Ca , Ct and ξi ,

N̂ ∗
x = g1(Ca, Ct , ξi ); N̂ ∗

y = g2(Ca, Ct , ξi ); N̂ ∗
xy = g3(Ca, Ct , ξi ) (35)

These expressions can be found in [31]. In the present approach, the averaged stress resultants are
prescribed.

The shell inertia forces are obtained from the kinetic energy expressions for To and Ti, Equations (26)
and (27). The in-plane inertia of the radial modes is neglected, but the in-plane inertia of both the
fundamental axial and the fundamental torsional mode will be taken into account approximately by
including the complementary in-plane displacements u = û∗ and v = v̂∗ in Ti. The kinetic energy due
to a ring or disk at the loaded end of the shell is given by

Tm = 1

2
m

(
∂ û∗

∂t

)2 ∣∣∣∣
x=L

+ 1

2

Ip

R2

(
∂v̂∗

∂t

)2 ∣∣∣∣
x=L

= 1

2
m(Cah)2 + 1

2
Ip(Ct

h

R
)2 (36)

where m is the mass and Ip the polar moment of inertia of the ring or disk. The total kinetic energy of
the system is then given by

T = Ts + Tm (37)

Substitution of the given imperfection mode W̄ , the assumed radial deflections of the static state
W̃ and dynamic state Ŵ , and the particular solutions for the stress functions F̃ and F̂ into the energy
expression, leads to a coupled set of nonlinear ordinary differential equations in the unknown time-
dependent generalized coordinates Ca, Ct , ξi (i = 1, 2, . . . , N − 2), or qi (i = 1, 2, . . . , N ). For
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normal coordinates the equations can be written in the following form:

q̈i + ki qi +
N∑

j=1

N∑
k=1

ai jkq j qk +
N∑

j=1

N∑
k=1

N∑
l=1

bi jklq j qkql = gi (38)

where ki , ai jk and bi jkl are coefficients which can in general depend on time, and gi is the forcing term.
The coefficients can be found in [31]. Modal viscous damping is introduced in the analysis by adding
terms of the form ci q̇i (ζi = ci

2
√

ki
) in Equation (38).

4. Application to Parametric Excitation and Dynamic Buckling

The procedure described in the previous section can be applied to nonlinear flexural vibrations [29],
to dynamic buckling (buckling under step loading), and to parametric excitation (vibration buckling
under pulsating loads) of anisotropic cylindrical shells. In the present paper, results for parametric
excitation and dynamic buckling of specific isotropic and anisotropic shells will be presented. The
essential axisymmetric modes and the companion mode are included in the formulation. Further, the
effect of the inertia of the fundamental axial and torsional mode is taken into account.

In order to investigate the nonlinear dynamic behaviour of statically loaded imperfect anisotropic
cylindrical shells, for the imperfection and static response the following deflection functions are used:

Imperfection:

W̄/h = ξ̄1 cos
2mπx

L
+ ξ̄2 sin

mπx

L
cos

n

R
(y − τK x) (39)

Static state:

W̃/h = ξ̃0 + ξ̃1 cos
2mπx

L
+ ξ̃2 sin

mπx

L
cos

n

R
(y − τK x) (40)

where m denotes the number of half waves in axial direction, n is the number of full waves in the
circumferential direction of the imperfection and static response mode, and τK is Khot’s skewedness
parameter [32], introduced to account for the skewedness of the asymmetric modes which appears under
torsional loading and which may occur due to torsion-bending coupling in the constitutive equations.
Further, ξ̄1 and ξ̄2 are the imperfection amplitudes and ξ̃0, ξ̃1, and ξ̃2 are the static response amplitudes.

The following displacement is assumed for the dynamic state:

Ŵ/h = C0(t) + C1(t) cos
2mπx

L
+ A(t) sin

mπx

L
cos

�

R
(y − τK x)

+ B(t) sin
mπx

L
sin

�

R
(y − τK x) (41)

where � is the number of full waves in the circumferential direction of the dynamic response mode, and
where the generalized coordinates ξi , in this case A, B, C0 and C1, depend on time.

The effect of the inertia of the fundamental in-plane (axial and torsional) modes is taken into account
via the approach discussed in Section 3. In this method, introduced in [17], the complementary in-plane
displacements, Equation (31), are included in the formulation,

û∗ = −
(

Cah

L

)
x ; v̂∗ = −

(
Ct h

L

)
x
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In this case, the kinetic energy in Equation (37) is the sum of the kinetic energy of the shell, Equation (25),
and the kinetic energy of the end ring, Equation (36).

4.1. NONLINEAR PARAMETRIC EXCITATION

The imperfection and static response modes, Equations (39) and (40), are used to describe the behaviour
of the anisotropic cylindrical shell under a static loading consisting of the three basic axisymmetric loads.
In addition, the shell is loaded by the parametric axial, torsional, and radial loading given by

N̂ nc
x = −N̂ 0 cos 
et ; N̂ nc

xy = T̂ 0 cos 
et ; p̂nc = p̂0 cos 
et (42)

where N̂ 0, T̂ 0 and p̂0 are constants, and where 
e is the frequency of the applied load. The radial
response under parametric excitation is described by the displacement function in Equation (41).

4.2. DYNAMIC BUCKLING

In order to model the dynamic buckling behaviour under step loading, the displacement functions for
the two-mode imperfection, Equation (39), and corresponding static response, Equation (40), are again
used. In the special case of dynamic buckling under step loading, the applied loads become

N̂ c
x = −N̂ 0uH(t); N̂ c

xy = T̂ 0uH(t); p̂c = p̂0uH(t) (43)

where uH(t) is the unit step function, N̂ 0, T̂ 0 and p̂0 denote the (constant) amplitudes. It is assumed that
the radial displacement of the dynamic state can be described by the deflection function in Equation (41).

5. Results and Discussion

The detailed derivations of the analysis described in the previous section have been carried out using
the symbolic manipulation program REDUCE [33] and can be found in [31]. The results were coded
in a FORTRAN computer program. The Adams–Moulton method with adaptive step size is used for
the numerical integration of the ordinary differential equations. In principle, general loading conditions
(axial compression, radial pressure and torsion) can be considered. In this paper, characteristic results
will be shown for specific isotropic and anisotropic shells under axial parametric excitation, and for the
dynamic buckling behaviour under axial step loading. The data of the shells that have been used in the
calculations are as follows (E is Young’s modulus, G is the shear modulus, and ν is Poisson’s ratio).
Booton’s shell: An anisotropic shell used earlier in static stability investigations [34]. The data are given

in Table 1. For this anisotropic shell, E = E11 and ν = ν12 will be used as reference values.
Bogdanovich’ shell: Isotropic shell [35]: R = 1 m, R/h = 100, L/R = 2, E = 4×1010 N/m2, ν = 0.3,

ρ̄ = 2.5 × 103 kg/m3.
Popov’s shell: Isotropic shell [23]: R = 0.2 m, h = 0.002 m, L = 0.4 m, E = 2.1 × 1011 N/m2,

ν = 0.3, ρ̄ = 7.85 × 103 kg/m3.
Tamura’s shell: Isotropic shell [17]: R = 101.6 mm, h = 0.1016 mm, L = 203.2 mm, ν = 0.3.
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Table 1. Booton’s anisotropic shell.

Shell geometry R = 67.8 mm

L = 135.6 mm

Laminate geometry Three layers

(numbering from outside)

h1 = h2 = h3 = 0.226 mm

θ1 = 30◦, θ2 = 0◦, θ3 = −30◦

(Figure 1)

Layer properties Glass-epoxy

E11 = 4.02 × 104 MPa

E22 = 1.67 × 104 MPa

ν12 = 0.363

G12 = 4.61 × 103 MPa

5.1. PARAMETRIC EXCITATION

The first example for parametric excitation concerns the type of nonlinearity for moderately large
amplitudes. To analyse the ‘single’ mode vibrations, i.e. assuming a single primary mode, it is necessary
to include axisymmetric modes in the assumed response [23, 24, 26]. The shell is subjected to a
parametric axial loading,

N̂ nc
x = −N̂ 0 cos 
et ; N̂ nc

xy = 0; p̂nc = 0

The amplitude of the excitation is λ̂ = N̂ 0/Ncl = 0.35, where Ncl = (Eh2)/(cR), N0 = −Nx (x = L),
and c =

√
3(1 − ν2). In addition, the shell is subjected to static axial pre-vibration loading λ̃ = Ñ0/Ncl.

The shell has an asymmetric imperfection

W̄/h = 0.01 sin
πx

L
cos

5

R
y

It is noted that for this imperfect shell, the applied axial load will induce the static deformations

W̃/h = ξ̃0 + ξ̃1 cos
2πx

L
+ ξ̃2 sin

πx

L
cos

5

R
y (44)

and the corresponding stresses.
The dynamic response mode is assumed to be

Ŵ/h = C0(t) + C1(t) cos
2πx

L
+ A(t) sin

πx

L
cos

5

R
y (45)

which, in addition to the asymmetric mode, includes the corresponding axisymmetric modes. For the
‘single’ mode vibration of this isotropic shell vibrating with m = 1 and � = 5, in [35] a hardening
behaviour is obtained, whereas the present model predicts a softening behaviour. This is illustrated in
Figure 2, which shows the response of Bogdanovich’ shell under parametric axial loading.

Frequency–response curves have been obtained via numerical time-integration. Damping was ne-
glected (damping parameter ζA = cA

2
√

kA
= 0). The response amplitude increases in time, and after a
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Figure 2. Frequency-response curves for ‘single’ mode vibration under parametric excitation and different static axial loads λ̃

for Bogdanovich’ isotropic shell. Forcing frequency 
 = 
e/ωlin.

rapid build-up has occurred it reaches a maximum. An integration time of 50 forcing periods T = 2π/
e

was sufficient to capture this maximum. The maximum response during the integration interval has been
plotted as a function of the forcing frequency in Figure 2. The forcing frequency is normalized with
respect to ωlin, the linear frequency of the statically loaded imperfect shell (for λ̃ = 0.5, ωlin = 346.92
rad/s, for λ̃ = 0.25, ωlin = 424.26 rad/s, for λ̃ = 0.1, ωlin = 464.56 rad/s, and for λ̃ = 0, ωlin = 489.59
rad/s).

It is well known that for perfect shells [4] for certain values of the frequency of the applied load, a
Mathieu-type instability occurs. The trivial axisymmetric solution with period T becomes unstable and
a period-doubling bifurcation occurs. Periodic vibrations in an, initially quiescent, asymmetric mode
are possible with period 2T . In the case of an unloaded or loaded shell with asymmetric imperfection,
the parametrically excited asymmetric mode will already respond from the outset.

Varying the excitation frequency, response curves are obtained that are typical of a softening be-
haviour. The response curves ‘bend backwards’, resulting in upward jumps for the upward frequency
sweep and downward jumps for the downward sweep. At the static axial load level λ̃ = 0.5, the response
jumps to a remote static response branch. Both the softening behaviour observed and the escape from
the prebuckling state potential well [24] are captured by the present model because of the inclusion of
axisymmetric modes in the assumed deflection function, Equation (45). If the axisymmetric modes are
not included, one misses these phenomena [23, 24].

The second case that will be discussed deals with the parametric excitation problem of an isotropic
perfect shell, earlier studied by other investigators [23, 24, 26]. Continuation techniques have been
used in [23] and [26] in order to trace the branches of periodic solutions. This approach is efficient in
particular in the case of zero or low damping. To obtain the nonstationary responses one has to resort
to numerical integration.

In the present study the response was obtained using numerical integration. Load increments in
λ̂ = N̂ 0/Ncl of 0.001 were used, and numerical integration over 1000 forcing periods was performed
for each load level. The end conditions at each load level were used as initial conditions for the next level.
The critical dynamic loads under parametric excitation are given in Table 2 where they are compared
with results from Pellicano and Amabili [26]. In the present case the critical load is defined as the load
at which for small perturbations in the asymmetric mode, a growing solution of the asymmetric mode,
or a jump of the asymmetric mode to a remote branch, occurs. Results including the effect of in-plane
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Table 2. Critical dynamic load under parametric excitation.

ω/ω1,5 ζi N̂ 0/Ncl

Equation (41) Equations (41) and (31) [26]

1.9 0.089 0.473 0.439 0.448

2.0 0.089 0.434 0.400 0.416

2.1 0.089 0.524 0.479 0.492

1.9 0.016 0.253 0.235 0.24

1.9 0.089 (Kelvin–Voight) 0.484 0.449 0.46

Popov’s shell. Kelvin–Voight: ζA = ζB = 0.089, ζ = 0.001 for all other modes. In other
cases ζi has the same value for all modes.

inertia are also included in the table. A small amount of damping (ζ = 0.001) was added for the other
modes in the Kelvin–Voight case.

As in [26], the axisymmetric response follows from a dynamic analysis, but the ‘simply supported’
boundary conditions are not taken into account rigorously in the present approach. The present critical
loads are 5–7% higher than the results from the more extensive model used in [26] (Table 2). Pellicano
et al. [25] presented a careful study of the convergence characteristics of their modal expansion method
in the case of nonlinear vibrations. The results of the present analysis including the effect of in-plane
inertia of the in-plane modes, Equations (31), show a moderate decrease as compared with the case in
which in-plane inertia is not taken into account.

In [26] companion mode response was observed. The companion mode, the ‘B-mode’ in Equation
(41), is also included in the present formulation, and is given a small disturbance in the numerical
simulations. In the present work companion mode participation is defined as the situation in which the
‘B-mode’ is parametrically excited due to the (nonlinear) contribution of the axisymmetric modes. In the
cases investigated companion mode participation in this sense, where the ‘B-mode’ and the ‘A-mode’
are (approximately) 90◦ out-of-phase, has not been found.

A characteristic result for the parametric vibrations of Booton’s anisotropic shell is depicted in
Figure 3. The figure shows the frequency–response curve of the vibration mode

Ŵ (t)/h = C0(t) + C1(t) cos
2πx

L
+ A(t) sin

πx

L
cos

6

R
(y − τK x)

with τK = −0.002.
The shell is subjected to a pulsating axial load,

N̂ nc
x = −N̂ 0 cos 
et ; N̂ nc

xy = 0; p̂nc = 0

with amplitude λ̂ = N̂ 0/Ncl = 0.1. The following two-mode imperfection is assumed:

W̄/h = −0.04 cos
2πx

L
+ 0.05 sin

πx

L
cos

6

R
(y − τK x)

with τK = −0.002. Damping is neglected (ζA = ζC0 = ζC1 = 0). The effect of the inertia of the
fundamental in-plane modes is not taken into account. The maximum response during the integration
time of 200 forcing periods T (where T = 2π/
e) is plotted as a function of the forcing frequency.
The forcing frequency is normalized with respect to ωlin, the linear frequency of the imperfect shell.
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Figure 3. Parametric excitation of Booton’s anisotropic shell: (a) frequency–response curve, (b) time history at 
 = 
e/ωlin =
1.95. Forcing frequency 
 = 
e/ωlin.

The response in time is shown for a forcing frequency 
 = 
e/ωlin = 1.95. The initial conditions
were A(t = 0) = Ȧ(t = 0) = 0. Initially, the response amplitude remains small for several forcing
periods, until between τ = (1/R)

√
(E/ρ̄)t = 2000 and τ = 3000 a rapid build-up occurs. It is noted

that if damping is present, depending on the value of the damping parameter, gradually the beating
character of the response disappears with time, and the amplitude tends to go to a constant value, cf.
[6].

5.2. DYNAMIC BUCKLING UNDER STEP LOADING

Characteristics of the analysis will first be discussed briefly for Tamura’s shell. In Figure 4, results for
the dynamic buckling of this shell under axial step loading are depicted,

N̂ c
x = −N̂ 0uH(t); N̂ c

xy = 0; p̂c = 0

The inertia of the axial mode

û∗ = −
(

Cah

L

)
x

is included (see Equation (31)). The damping parameter corresponding to the fundamental axial mode
ζCa = 0.2.

Under axial step loading, the vibration in the axial mode can parametrically induce buckling. In [17]
it was shown that bending modes with a high axial wave number can be sensitive to this type of buckling.
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Figure 4. Maximum response under axial step loading for Tamura’s isotropic shell.

In the present example, the shell is assumed to buckle in the mode (m, �) = (20, 29),

Ŵ (t)/h = C0(t) + C1(t) cos
40πx

L
+ A(t) sin

20πx

L
cos

29

R
y (46)

For this case dynamic buckling is induced by the parametric axial loading that corresponds to the
vibration in the axial mode. The maximum response of the asymmetric mode during an integration time
τfin of 400 (τ = (1/R)

√
(E/ρ̄)t) has been used to plot the load–response curve, which shows a clear

jump when the load is increased from λ̂ = N̂ 0/Ncl = 0.80 to λ̂ = 0.805. The latter load level can be
defined as the dynamic buckling load, corresponding to the well-known Budiansky–Roth criterion [15].

For all load values λ̂ greater than 0.825, the applied step load will result in an escape to a remote
static equilibrium path. Due to interactions of the different modes involved, it is possible that for certain
load values between λ̂ = 0.805 and λ̂ = 0.825 the shell buckles dynamically, i.e. the shell escapes
from the prebuckling state potential well to the remote branch, while for a slightly different load value
the response remains small during the integration time considered. This is illustrated in Figure 4, where
for λ̂ = 0.810 and λ̂ = 0.820 the response remains small, while for λ̂ = 0.815 dynamic buckling does
occur. This type of behaviour was also found earlier [17]. Another example of this phenomenon will be
shown later for Booton’s shell (Figure 8). Time histories (to τ = (1/R)

√
(E/ρ̄)t = 200) of the different

displacement components for two characteristic values of the loading near the dynamic buckling load
are shown in Figure 5.

The second example of dynamic buckling concerns the behaviour of Booton’s anisotropic shell under
axial step loading. In Figure 6, static response curves of Booton’s shell are shown for the mode (3, 5,
−1.56),

W̃/h = ξ̃0 + ξ̃1 cos
6πx

L
+ ξ̃2 sin

3πx

L
cos

5

R
(y − τK x)

with τK = −1.56, the mode corresponding to the lowest static bifurcation buckling load λm�τ =
0.407. The response curve corresponding to the mode with the same m and � but without skewedness,
(m, �, τK ) = (3, 5, 0), is also shown in this figure. The static bifurcation buckling load of this mode
occurs at λ = 0.829. The buckling load of the corresponding axisymmetric mode (2m, 0) = (6,
0) occurs at λ = 0.501. In both cases, the imperfection amplitudes assumed are ξ̄1 = −0.04 and
ξ̄2 = 0.05. Static response curves for the mode corresponding to the lowest vibration frequency,
(m, �, τK ) = (1, 6, −0.002), can be found in Figure 7.

After characterizing the static behaviour of the cases (m, �, τK ) = (3, 5, −1.56), (m, �, τK ) =
(3, 5, 0), and (m, �, τK ) = (1, 6, −0.002), results for Booton’s anisotropic shell under axial step loading
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Figure 5. Time histories of the different displacement components near the dynamic buckling load of Tamura’s isotropic
shell: (a) asymmetric mode, (b) axial mode, (c) constant axisymmetric mode and (d) double harmonic axisymmetric
mode.
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Figure 6. Static asymmetric mode response of imperfect Booton’s anisotropic shell: response mode (3,5,τK ), static buckling
modes.

Figure 7. Static asymmetric mode response of imperfect Booton’s anisotropic shell: response mode (1,6,−0.002), lowest vibration
mode of the unloaded perfect structure.

are depicted in Figure 8. The maximum response of the asymmetric mode during an integration time
τfin of 2000 (τ = (1/R)

√
(E/ρ̄)t) was used to plot the load-response curve.

In Figure 8a, the shell is assumed to buckle dynamically in the mode (m, �, τK ) = (3, 5, −1.56),

Ŵ (t)/h = C0(t) + C1(t) cos
6πx

L
+ A(t) sin

3πx

L
cos

5

R
(y − τK x)

with τK = −1.56. This mode corresponds to static buckling. The imperfection amplitudes are ξ̄1 =
−0.04 and ξ̄2 = 0.05,

W̄/h = −0.04 cos
6πx

L
+ 0.05 sin

3πx

L
cos

5

R
(y − τK x)

with τK = −1.56. The inertia of the in-plane modes has not been taken into account, and damping is
neglected (ζA = 0). The maximum response is given as a function of the applied step load. It is noted
that a clear jump in this curve does not occur in this case, since the buckling mode considered has a
stable static postbuckling behaviour.
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Figure 8. Maximum response under axial step loading of Booton’s anisotropic shell: (a) mode (3, 5, −1.56), (b) mode (1, 6,
−0.002), (c) mode (3, 5, 0).

The mode corresponding to the lowest vibration mode is imperfection sensitive and the response
curve shows a distinct jump in this case at the dynamic buckling load λ̂ = 0.445, see Figure 8b. A
distinct jump also occurs for the mode (3, 5, 0), at λ̂ = 0.415, see Figure 8c. Similar to the phenomenon
encountered in the example of Tamura’s shell (Figure 4), already at lower loads a jump to the remote
static branch may occur, corresponding to an escape through the unstable static equilibrium path to the
remote static equilibrium path. For the deflection functions chosen, at the applied step loads λ̂ = 0.385
and λ̂ = 0.388 the shell buckles dynamically.

6. Concluding Remarks

A low-dimensional model has been presented that captures main characteristics of the dynamic stability
and nonlinear flexural vibration behaviour of anisotropic cylindrical shells. The method is based on an
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energy formulation using a small number of modes in combination with numerical time-integration of
the resulting set of ordinary differential equations. The model makes it possible to perform parametrical
studies for the three basic loading conditions, axial compression, radial pressure and torsion.

Results of the analysis have been compared with results from the literature. Characteristics of the
dynamic buckling under axial step loading and vibration behaviour under axial parametric excitation
have been demonstrated using this approach. The softening behaviour of shells under parametric exci-
tation and the decrease in buckling load under step loading, as compared to the static case, have been
illustrated.

The analysis presented may be extended to multi-mode analyses, which take the coupling between
different circumferential and axial harmonics into account. This may be useful in particular for the
topics of the present paper, dynamic buckling analyses and parametric excitation problems. To obtain
an accurate simulation of the dynamic behaviour of practical shell structures it may further be necessary
to use discretization models that include the effect of the boundary conditions at the shell edges, using
a (one-dimensional or two-dimensional) finite difference or finite element scheme.
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