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Abstract. The Karhunen–Loève Transform was established to find structures in random process data. Nonlinear dynamical
systems often appear to have uncorrelated output in case of chaotic behavior. This analogy leads to the idea of analyzing
nonlinear dynamical systems with methods developed for random processes. The Karhunen–Loève Transform provides a basis
for different approaches to the investigation of these systems. This paper gives an introduction to the mathematical concept
and an overview of popular Karhunen–Loève Transform applications. It focuses on approaches to state monitoring of nonlinear
dynamical systems based on experimental data.
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1. Introduction

In scientific research or technical development there is a strong demand for model order reduction and
data compression. Models shall be as simple as possible, but still display all system properties of interest.
The question arising in this context is: What is the minimum number of state variables/eigenforms that
have to be considered? Of course the answer depends on the goal of the investigation as well as on the
type of system itself. While for special problems there may be a trivial solution, very often researchers
have to rely on their experience for the choice of state variables/eigenforms.

The Karhunen–Loève Transform (KLT), also known as proper orthogonal decomposition or principle
component analysis, was initially designed to analyze random process data by introducing new coor-
dinate systems based on the statistical properties of the processes. It does not only provide structures
within random data, but also leads to more efficient ways of coordinate description. These characteristics
make the KLT a suitable tool for various tasks ranging from data analysis and compression to model
order reduction. Depending on the individual application, the KLT helps to find the minimum number
of state variables and eigenforms based on the structure of the system-dynamics.

For the purpose of system analysis, the KLT has been applied to stationary state systems only. We
will show that the KLT also helps to investigate nonlinear dynamical systems during states of non-
stationary behavior. After a brief introduction of the mathematical concept in Section 2, an overview of
current Karhunen–Loève Transform applications is given in Section 3. Approaches to state monitoring
of nonlinear dynamical systems based on experimental data are discussed in Section 4, where the results
of the analysis are also presented.

2. Karhunen–Loève Transform

The KLT is the linear transform, that best approximates a stochastic process in least squares sense [1].
It can be formulated for both continuous- and discrete-time. This paper focuses on the discrete KLT to
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process sampled measurement data. The derivation of the continuous KLT is similar and can be found
in typical textbooks for signal analysis.

The mathematical theory of the KLT relies upon the properties of Hilbert Spaces. A Hilbert Space
H is a vector space in R

n or C
n , that is complete as a metric space and has a scalar product 〈·, ·〉. The

norm is defined as ‖φ‖ = √〈φ,φ〉 for φ ∈ H and the metric is defined as d(φ,ψ) = ‖φ − ψ‖ for
φ,ψ ∈ H. Without loss of generality we will regard Hilbert Spaces in R in this paper, only.

The concept of orthogonality and orthonormality is crucial for the derivation of the KLT: Two vectors
φi ,φ j ∈ H are orthogonal if 〈φi ,φ j 〉 = 0 ∀ i, j with i �= j ∧ 〈φi ,φ j 〉 �= 0 for i = j . A basis Φ of
vectors in a Hilbert Space is an orthonormal basis if any two distinct vectors φi ,φ j ∈ Φ are orthogonal
and in addition ‖φ‖ = 1 ∀φ ∈ Φ.

Let y be a real-valued zero-mean random process, that can be expressed as a vector function

y =




y1

...

yn


 , y ∈ R

n, t ∈ R. (1)

The restriction to zero-mean process does not imply any limitation of generality, since any process z
with mean mz can be translated into a zero-mean process y by

y = z − mz . (2)

The choice of a basis for the vector function is arbitrary as long as it spans the correct embedding
dimension. With an orthonormal basis Ψ = {ψ1, . . . ,ψn} the process can be written as

y = Ψα, (3)

where α is the representation

α = [α1, . . . , αn]T. (4)

It is given by

α = ΨTy. (5)

We derive the KLT by demanding uncorrelated coefficients

E{αiα j } = λ jδi j , i, j = 1, . . . , n, (6)

where the scalars λ j with j = 1, . . . , n are yet unknown real numbers with λ j ≥ 0 and Kronecker-
symbol δi j .1 Substituting Equation (5) into Equation (6) we obtain

E
{
ψT

i yyTψ j

} = λ jδi j , i, j = 1, . . . , n. (7)

1 δi j =
{

1 for i = j

0 else
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We then can factor out bothψ of the expectance value in Equation (7) since they are no random variables,
but the unknown basis vectors of the KLT. Treating y as the realization of a random process, we can
formulate

Ryy = E{yyT} (8)

which allows us to write Equation (7) as

ψT
i Ryyψ j = λ jδi j , i, j = 1, . . . , n. (9)

It is obvious that because of ψT
i ψ j = δi j , Equation (9) is satisfied if the vectors ψi , i = 1, . . . , n, are

solutions of the eigenvalue problem

Ryyψi = λiψi , i = 1, . . . , n. (10)

Matrix Ryy is the covariance matrix of process y and provides the eigenvalue problem with the following
properties:
– The covariance matrix is diagonal, which implies that Ryy is positive (semi-)definite; that is, only real

eigenvalues exist and all λi ≥ 0.
– Eigenvectors that belong to different eigenvalues are orthogonal to each other.
– If multiple eigenvalues exist, their eigenvectors are linearly independent and can be chosen orthonor-

mal.
The solution of (10) leads to a basis of n linearly independent eigenvectors that span the ‘sample space’,
this is the space embedded in R

n that contains all possible realizations of the n-dimensional process
y. The orthonormal KLT-basis is obtained by normalization (e.g. by Gram-Schmidt-Procedure). Basis
vectors ψi are referred to as ‘Characteristic Functions’ and representations αi , with λi = E{αiαi }, are
called ‘Weighing Factors’.

Geometrically, the KLT can be interpreted as a change of coordinate systems to describe any set in
H. Figure 1 displays the transformation in R

2: the KLT basis vectors ψ1 and ψ2 lie on the principal
axes of the sample data, with the new coordinates α1 and α2.

Among all properties of the Karhunen–Loève-Transform the following three are the most striking
for its application in dimension reduction:

Figure 1. KLT coordinate transform.
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1. It can be proven (ref. e.g. to [1]) that among all orthonormal linear transforms the KLT yields the
smallest possible error.

2. The Parseval’s Relation2 holds. This means that the sum over all α2
i equals the signal power of

process y.
3. According to (3) process y can be expressed by the sum over the products of the Characteristic

Functions and the Weighing Factors. Whereas each eigenvalue determines the importance (energy
content) of the corresponding Characteristic Function to the process signal.

As the different forms of application are discussed, we will refer to these properties and display their
contribution to the individual KLT usage.

3. Popular Applications of KLT

Due to the fact that the Characteristic Functions of the KLT are not predetermined, but are calculated in
dependence on the processed data, the Karhunen–Loève-Transform is extremely adaptive. This makes
the KLT a universal tool for various tasks. In this section the following most popular applications of
KLT are discussed:
– Signal analysis (Section 3.1),
– Model reduction (Section 3.2),
– Optimal control (Section 3.3),
– Template matching (Section 3.4),
– Compressive image encoding (Section 3.5).

For the investigation of nonlinear dynamical systems, the KLT has been mainly used to reduce the
order of applied mathematical models. In Section 4, we introduce a new approach to nonlinear dynamical
system analysis via KLT.

We will allow process y to characterize any engineering system, even those that cannot be described
by differential equation. We will allow y to depend on two different variables: Time t ∈ R and position
x ∈ R

3. In order to analyze multi-dimensional systems, we will define the n-dimensional process y(x, t).
Regarding discrete-time processes only, the time variable t turns into k ∈ N; where t = kδt with the
fixed sampling interval δt . Now the realizations of process y at discrete time form a k × n-matrix.

3.1. SIGNAL ANALYSIS

In system analysis, the Discrete-Fourier-Transform (DFT) is a means to decompose a sampled signal into
harmonic functions and to determine the frequency coefficients. Let us consider the one-dimensional
process signal y(k) as a function of discrete time k. Then, this process can be expressed by Fourier-series
expansion as

y(k) = 1

N

N−1∑
�=0

α�W −�k
N , (11)

where α� are the Weighing Factors, W −�k
N are the Characteristic Functions. The abbreviation WN denotes

the complex exponential functions

WN = e−i 2π
N . (12)

2The inner product of two vectors equals the inner product of their representations with respect to an orthonormal basis.
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These depend on the total number N of available data points, that also determines the evaluated discrete
frequencies ω� = �/N .

The KLT is not only a means for random data analysis, but is also capable of decomposing determin-
istic signals. The process y(k) also may be expressed by Karhunen–Loève series expansion of Weighing
Factors α� and Characteristic Functions ψ�(k) as

y(k) =
N∑

�=1

α�ψ�(k). (13)

Let us compare the Discrete Fourier with the Karhunen–Loève-Transform. There are some special
properties that both share. The DFT and the KLT are linear transforms, that
– decompose a signal into a set of Characteristic Functions together with their Weighing Factors,
– operate in bidirectional order,
– have an orthogonal basis, and
– obey the Parseval’s Relation [1].

The major difference between the DFT and KLT stems from their sets of bases, the Characteristic
Functions. While for the DFT this is the predetermined set of harmonic functions, for the KLT the basis
depends upon the stochastic properties of the observed process. The KLT just gives the algorithm to
derive an individual orthonormal basis for each signal.

The bases of DFT and KLT determine their approximation performance. Due to its basis, the DFT
is most efficient for decomposing sine functions, thus possibly leading to ineffective transforms of
non-harmonic signals. The KLT algorithm is adaptive, it provides the optimal linear transform (ref.
Section 2) of any kind of signal. In the special case of periodic signals, the bases of KLT and DFT are
similar, differing only in amplitude.

For KLT signal analysis we have to assume, that process y(k) is short-time stationary for the duration
of the longest time-structure, that we wish to observe. Data sets are gathered to form the process’
covariance matrix Cyy . This is done by the ‘method of snapshots’3: we treat signal y(k) as a spatially
expanded one-dimensional process and read the entire data set

y(k) =




y1(k)

y2(k − 1)
...

yn(k − (n − 1))




∈ R
n (14)

with finite time-history of n − 1 data samples at each time k. Then, the time-index k is increased and
the next data set y(k + 1) is stored. After n consecutive readings, the covariance matrix is formed. We
now can solve (10) for the Characteristic Functions and then can project y(k) onto this basis to derive
the Weighing Factors.

3.2. MODEL REDUCTION

The idea to reduce complexity of system models by KLT was initiated by the investigation of fluid flow
dynamics. In 1967, Lumley introduced the concept of extracting dominant structures from turbulent

3This method was introduced by Sirovich [2] for fluid flow analysis (see Section 3.2).
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flow by proper orthogonal decomposition [3]. This approach is discussed in detail by Dellnitz et al. [4],
Holmes et al. [5], Newman [6] and Steindl et al. [7], to name just a few. The general idea is to expand
the Partial Differential Equation (PDE) in a Galerkin-ansatz:

y(x, k) =
N∑

�=1

α�(k)ψ�(x). (15)

Let y(x, k) be the function of a PDE, describing the spatial expansion of a dynamical system. For sepa-
ration of time-dependent from space-dependent differential equations, the series (15) can be interpreted
as the projection of y(x, k) onto the basis Ψ of Characteristic Functions. Model reduction is achieved,
if the expansion (15) is truncated at a fixed number M < N ; with M, N ∈ N (for examples we refer to
[8, 9]).

As mentioned in Section 2, the KLT does not only provide an orthonormal basis. For dynamical
systems, the Weighing Factors display the mean importance of the corresponding Characteristic Func-
tions to the KLT-series expansion. In the case of velocity, the square of the Weighing Factors can be
interpreted as the kinetic energy of the individual mode. Due to this characteristic, the KLT is well suited
for model dimension reduction: The series expansion (15) is truncated to contain an arbitrarily chosen
portion of system energy; this is Ekin = ∑M

� α2
� and only the first corresponding M Characteristic

Functions are considered. The error (neglected energy) can be calculated by the sum over the remaining
weights; where e(M) = ∑N−M

� α2
� .

Due to the nature of KLT, the basis Ψ cannot be determined a priori, but can only be derived
from existing data. To form the covariance matrix, the spatially expanded, dynamical system y(x,k) is
simulated and data is collected from discrete points x at times k (method of snapshots [2, 6]). Each
snapshot is treated as the kth realization of process y(x).

3.3. OPTIMAL CONTROL

For linear controllers of multi-dimensional systems with a single control variable u, a weighing function
kR is used in the feedback-branch of the control loop. Stability and performance of the controlled system
depend upon the choice of kR . The KLT provides a straight forward method to derive its components
based on the system dynamics. For the dynamical behavior of engineering systems, one wants to keep
the kinetic energy at minimum to avoid dispensable wear. Kreuzer, Kust and Struck [10–12] have applied
the KLT to drill strings in simulation and small-scale experiment to determine kR for optimal control.
The equations for a typical controller can be written as

ẏ = f(y) + bu,

z = kT
R(ys − y), (16)

u = w + kP z + kI

∫
z dt,

where y and ys ∈ R
n are the state vector and reference state, respectively, b ∈ R

n is the mapping vector,
w ∈ R is the desired movement and kP and kI ∈ R are the controller’s proportional and integral gain
factors [13].

If all system states4 are observable, the weighing function kR can be determined by KLT: The
state vector is interpreted as the realization of a random process. First data sets of y(k) are collected.

4In case of the drill-string, the number of states is m = 2 × n (n: system dimension).
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Remember, that the KLT provides the optimal least square approximation for mean time, only. Therefore,
we have to consider transient states apart from states of stationary motion. We also have to differentiate
between displacements and velocities within the state vector y.

Focusing on kinetic energy, we form the covariance matrix solely from the deviations in displacement.
The KLT provides a set of eigenvalues and Characteristic Functions. As discussed in the previous
section, these can be interpreted as eigenforms of the system dynamics. Eigenvalues λ� describe the
kinetic energy of the Characteristic Functionsψ�. To minimize the kinetic energy, we form the weighing
function as

kR =




ψ1(1)
...

ψ1(n)

0




. (17)

Of all Characteristic Functions the first one covers the greatest portion of kinetic energy. Therefore,
we choose ψ1 for the first n entries in kR . We do not consider the velocity-variables, therefore the last
n entries in (17) are set to zero.

3.4. TEMPLATE MATCHING

Coherent structures are not only of interest in the analysis of complex system dynamics. The challenge
to find and identify characteristic properties appears in pattern recognition problems, also. Template
matching finds a pattern in the obtained data set y(x, k) that is similar to a given reference ŷ(x, k). The
variety of KLT-applications ranges from image recognition (see e.g. [14, 15]) via speech analysis (e.g.
[16]) to applications in medicine (e.g. [17]).

For template matching we arrange the data in vectorial form, were each data point has a certain position
and property y(x, k). We form the ‘template’ from a collection of ‘training vectors’, where all tolerable
deviations from the ideal template have to be covered. These training vectors are normalized to zero
mean values and unit standard deviation. From the normalized vectors we form the covariance matrix
and determine eigenvalues together with Characteristic Functions ψ�. The normalized ideal template ŷ
then is projected onto the KLT-basis Ψ̂ and its representing Weighing Factors α̂. The recognition process
can be accelerated, if the KLT-series expansion of the ideal template ŷ = ∑N

�=1 α̂�ψ̂� is truncated at
� = M(M < N ) and only the remaining α̂M and Ψ̂M are stored.

We perform template matching of new, normalized data vectors ỹ by projecting them onto the reduced
KLT-basis Ψ̂M . We can determine the similarity of the new data vector with the template by calculating
the deviation e = ‖α̃ − α̂M‖.

3.5. COMPRESSIVE IMAGE ENCODING

In electronic form, pictures consist of pixel-matrices, where each pixel has a position and a color. In
principle, the data compression is performed by truncating the KLT-series expansion of the image data
(for a detailed description, see e.g. ref. [18]).

The pixel-matrix is divided into a set of adjacent ‘range blocks’ of uniform dimension. The content of
each range block is mapped into a vector yk and is interpreted as one realization of y(x, k), where position
x is a scalar. The realizations are used to form the covariance matrix: The range blocks are normalized
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to zero mean and unit standard deviation. From the covariance matrix the Characteristic Functions are
calculated to form a basis. Each range block is projected onto this basis and its representation (vector
of Weighing Factors) is truncated at a predetermined length. The resulting image encoding consists
basically of the Characteristic Functions for the truncated KLT-series expansion and then for each
range block of the normalization parameters and the Weighing Factors.

The KLT seems to be best suited for data compression, since the color information of each pixel can be
regarded as deviation from a mean value. Thus the KLT provides the optimal basis for a truncated series
expansion, since a large portion of the color information is covered within the first few Characteristic
Functions. However, due to its complex derivation, there is a threshold in picture-size beyond which
other algorithms, such as Discrete Cosine or Wavelet Transform, lead to more efficient data processing
[19].

4. State Analysis

In the previous section we have discussed various applications of KLT. In the case of dynamical processes
y(k) (Sections 3.2 and 3.3) the mathematical models were known and the systems were investigated at
stationary states.

In this section we want to introduce an approach to utilize the KLT for state monitoring. A poorly
observable nonlinear dynamical system, a rolling railway wheelset, is investigated by means of KLT.
We want to characterize the system-state and observe state changes.

4.1. RAILWAY WHEELSET ROLLING STATE

Riding comfort and safety of trains predominantly depend upon the dynamics of its wheelsets. The
rail-wheel contact is essential for the behavior of the wheelset, since any distortion or defect of the rail
surface excites vibration. In literature (e.g. [20, 21]) the condition of wheelset vibration is referred to as
its ‘rolling state’. One goal of a joint research project,5 is to monitor and characterize the wheelset rolling
states on an objective basis. At present, there exist expressions ‘healthy’ for a smooth railway-ride and
‘unhealthy’ for a bumpy one, to describe the wheelset dynamics. This characterization is merely based
upon rather subjective criteria such as the noise emitted.

The wheelset dynamics excited by the rail–wheel contact are highly nonlinear. Significant progress
has been made in this area during recent years (e.g. ref. [22, 23]), most models of wheel-rail contact
are based on the approach introduced by Kalker [24]. However, the problem of determining the correct
friction coefficient, that is subject to major changes, due to moisture and lubricants, persists. A model-
based analysis seems to be too complicated for the on-line analysis of the wheelset rolling state. For this
reason we apply the KLT to measurement data, gathered from railway wheelset experiment in order to
monitor the wheelset dynamics.

Naturally, the monitoring of dynamics is limited to the degrees of freedom (DOF) that are observable.
A wheelset considered as a rigid body has six DOF. Accounting also for structural vibrations of its axle
in first flexural and torsional modes, we would need a minimum of 12 coordinates for completely
defining the system: There are six coordinates necessary for description of the rigid-body-motion and
additional three coordinates each, for the monitoring of the first torsional and bending modes (e.g.
ref. [25]).

5Laufzustandsmonitoring von Eisenbahnradsätzen, Bundesministerium für Bildung und Forschung.
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Figure 2. Wheel/rail-roller test-rig.

In order to create a simple test set-up, the sensors have to be placed outside any rotating parts of
the railway wheelset. This is part of a trade-off, since in return for this inexpensive mock-up, the
observability of the wheelset is limited: a 3D-accelerometer is attached to the wheelset suspension (see
Figure 2) measuring the accelerations along the body-fixed wheelset-axis. As a consequence the bending
and torsional deflections of the axle are not observable. However, these vibrations will contribute to the
acceleration measurements as periodic oscillations, if excited.

4.2. EXPERIMENTAL TEST SET-UP

Experimental tests were performed at the wheel/rail-roller test-rig of Deutsche Bahn AG.6 Figure 2
displays the test set-up in principle: a standard wheelset, suspended at the ends of its axle, is driven
by a rotating rail-roller. As a kinematic linkage, the wheel-rail contact-curve couples the roll angle
(rotation about xw-axis) and the position in yw-zw-plane of the wheelset. Hydraulic cylinders act as
the spring-mounted car load on the wheelset in zw-direction and also control its x-/y-position and its
yaw angle (rotation about zw-axis). A 3D-acceleration sensor, attached to the left unsprung suspension,
measures the wheelset dynamics.

During the tests stationary conditions such as constant rotating speeds, constant applied loads were
provided, and the x-position of the wheelset was fixed. All experiments were conducted with a controlled
wheelset y-position. The rotating speed of the rail-roller was varied from 50 to 80 km/h for similar test
series. We found the results discussed in this section to be typical for the yaw angle changes at the test
site and that within the given limits, the speed does not change the wheelset dynamics qualitatively.

Table 1 displays the parameter settings for the experiments analyzed in this section: the wheelset
is placed in a ‘neutral’ position: The y-axes of the wheelset and the rail-roller are aligned in parallel
and the wheelset is situated vertically on top of the rail-roller. The y-position of the wheelset is chosen
to eliminate any lateral force, such that the rolling wheelset will keep this position without guidance.
An electric motor drives the rail-roller with a constant speed and the upper hydraulic cylinders apply a
constant load to the wheelset. For each test series the yaw angle between the wheelset and the rail-roller

6DB Systemtechnik, TFZ 95, Brandenburg-Kirchmöser.
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Table 1. Parameter set for wheel/rail-roller experiments.

Experiment Speed (km/h) Yaw angle (mrad) Load (tons)

W110 80 0 12

W120 80 1.5 12

W130 80 2.5 12

W140 80 3.5 12

W150 80 2.5 12

W160 80 1.5 12

W170 80 0 12

was increased within three steps from 0 to 3.5 mrad. During the experiment with the largest yaw angle,
the test members emitted a well noticeable noise.

4.3. KLT-APPROACH

The wheelset dynamics are highly nonlinear, that we might regard any set of measurement data at
discrete time k as one realization of a multi-dimensional random process. Thus we may apply KLT and
treat the sensor signals as random processes. As proposed in Sections 3.2 and 3.3, the measurement
data y(k) is arranged as spacial components of the time-dependent process

y(k) =




y1(k)
...

yn(k)


 , y ∈ R

n, k ∈ R. (18)

The measurement vector y contains the data of all sensor signals.
The KLT-approach to the wheelset rolling state analysis is to use correlations in the measurement data

collected from rolling wheelsets. Since the wheelsets are physical devices and obey laws of nature, one
expects an order behind the data sets. The KLT emphasizes correlation of the different sensor signals
thus helping to find some structure in the measured dynamics.

If there are characteristic wheelset dynamics during certain different rolling states, then the KLT
will help to display these. But before we apply the KLT in our analysis, some requirements have to be
checked.

4.3.1. Requirements for KLT-Application
Let us assume that occurrences and qualities of the railway irregularities and surface defects are dis-
tributed randomly along the track length. Then the wheelset is subject to random excitation. As long
as the train car moves at subcritical speeds7 and the disturbances are somewhat moderate, the wheelset
is an asymptotically stable system. The motion of a single wheelset is well investigated. Its state tra-
jectories are known to lie on attracting limit cycles. Each excitation means a deviation of the current
wheelset rolling state from its present trajectory. It follows any trajectory only piecewise up to the next

7The dynamical stability of a wheelset depends upon its velocity as one bifurcation parameter. At subcritical speed, the rail-
wheelset system is asymptotically stable in sense of Lyapunov. At the critical speed, this systems undergoes a Hopf-bifurcation
and becomes unstable (for a detailed discussion refer to [26]).
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excitation. Since these occur on a random basis, each new initial trajectory position is the outcome of
a random experiment. In between two excitations the wheelset motion can be regarded as ‘stationary’.
Depending upon the measure one takes, these distances can become infinitely small. For the wheelset
rolling state characterization, we will differentiate between negligible distortions, that we will accredit
to the regular wheelset dynamics as major disturbances, that will alter the wheelset rolling state.

The KLT requires a single monitored process to be ergodic (see e.g. [5]) for the derivation of the
covariance matrix. We assume the mechanical parts of the wheelset and its suspension to deteriorate
gradually. Thus, we can regard the experimental setup to remain unchanged for each realization and
the wheelset dynamics to be an ergodic process. Now we can calculate the covariance matrix for each
interval of stationary wheelset rolling state between two excitations. For practical reason, we predefine
a constant time interval �T = [a, b] for which we calculate the covariance matrix. It is obvious that
the length of �T has a great influence on the matrices and on the KLT outcome as well.

4.3.2. KLT-Results
Solving the eigenvalue problem (10), the KLT provides us with one k × n matrix of Weighing Factors,
one set of n eigenvalues and one basis of n Characteristic Functions for each �T . Since we assume the
wheelset dynamics to be short-time stationary for the duration of �T , the wheelset rolling state can be
characterized by these three sets of KLT-results:
1. The Weighing Factors are the coordinates of the projection of y(k) onto the KLT-basis. They contain

the time-dependent information of the transformed wheelset dynamics and can be interpreted as the
amplitude of the wheelset dynamics in the direction of the corresponding Characteristic Function.

2. The eigenvalues are the squares of the Weighing Factors (6). Each eigenvalue determines the contri-
bution of the corresponding Characteristic Function to the process’ y(k) signal power. We we will
thus interpret the eigenvalues as the wheelset’s ‘surrogate8 kinetic power’ in the direction of the
corresponding Characteristic Function.

3. The Characteristic Functions span the signal space and lie in direction of its principal axes. As in
mechanical system analysis, we will interpret them as the eigenforms of the system dynamics. In
case of the railway wheelset we get a set of n decoupled Characteristic Functions, the ‘surrogate
eigenforms’.

Stationary motion of nonlinear dynamical systems will lead to fixpoints, limit cycles or tori in state space
description. As the wheelset is periodically driven, its trajectories in state space will describe limit cycles
or fixpoints. State trajectories derived from the vector of sensor signals y(k) display the superposition
of all eigenforms. The transformed state vector, consisting of the Weighing Factors and their integral
over time, shows trajectories whose components are decoupled. These decoupled components can be
analyzed separately. Similar to the eigenvalues the Weighing Factors display the amplitude/power of
the system motion in the direction of the Characteristic Functions. In the case of negligible power
content of these (indicated by small eigenvalues), the limit cycles degenerate to fixpoints. Additionally,
we could investigate the Weighing Factors for dominant frequencies, e.g. by Wavelet Transform.

For nonlinear dynamics, especially for mechanical systems, kinetic energy is a major bifurcation
parameter. While at low energies, these systems tend to be asymptotically stable, they bifurcate and turn
unstable if their kinetic energy increases. Therefore, in a first approach we will analyze the eigenvalues,
surrogate power to differentiate between wheelset rolling states. This approach complies with the idea
that a wheelset’s kinetic energy is minimum for smooth rolling and increases upon excitation. Due to the

8The expression ‘surrogate’ is chosen, because instead of displacements or velocities the sensors measure forces and acceler-
ations.
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small dimension of y(k), the Karhunen–Loève dimension,9 as suggested by [27, 28], is not considered
suitable to characterize wheelset rolling states.

To limit the KLT-analysis to the eigenvalues, surrogate power, fails short. Although the Charac-
teristic Functions are constant for each interval of short-time stationary wheelset rolling state, they
change according to wheelset dynamics. If different eigenforms are excited within two consecutive
time intervals, the Characteristic Functions of the sensor signals will respond. Making use of the good
approximation properties of KLT, we only need to consider a limited number of surrogate eigenforms
to describe the wheelset dynamics adequately. Thus we can characterize the wheelset rolling state by
the Characteristic Functions of the largest one or two eigenvalues.

4.3.3. Sensitivity of KLT-Analysis
We want to investigate the sensitivity of the proposed KLT-analysis to changes in signal properties from
the previous interval �T̂ = [â, b̂] to the following �T = [a, b]. Without limitation on generality, for the
following analytical investigation we will consider a two-dimensional signal vector y(k)T = [x(k) z(k)].
Let x(k) and z(k) be the signals of two time-dependent processes that are stationary for k ∈ [a, b]. The
auto-covariances are determined by

cxx (m) = 1

N

N∑
k=1

(x(k) − xm)(x(k + m) − xm) (19)

and

czz(m) = 1

N

N∑
k=1

(z(k) − zm)(z(k + m) − zm). (20)

The cross-covariance can be calculated by

cxz(m) = 1

N

N∑
k=1

(x(k) − xm)(z(k + m) − zm), (21)

with xm, ym mean signal values, m, k ∈ [a, b], N ∈ N, where m + N ≤ b − a. For the cause of
KLT-analysis we set the shift factor to m = 0.

Although wheelset and suspension dynamics are nonlinear, we assume the sensor signals to be
coupled in the sense that additional excitation of the system will either lead to an increase in all sensor
signal amplitudes or will increase some and will leave all others unchanged. We assume, that additional
excitation will not lead to the increase and decrease of different sensor signal amplitudes at the same
time. We will also assume, that mean signal values remain unchanged.

Then we may denote the changes of signals x(k), z(k) due to additional excitation by multiplication
of the previous signals x̂(k), ẑ(k) with scaling factors α(k), β(k), resulting in

x(k) = α(k) · x̂(k) (22)

and

z(k) = β(k) · ẑ(k), (23)

9The Karhunen–Loève dimension is defined by the number of Characteristic Functions from KLT, necessary to capture a
given fraction of the total energy or surrogate kinetic power in case of the railway wheelset, respectively.
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respectively. We allow α and β to vary with k. For k ∈ [a, b] there will be lower and upper bounds of
α(k) and β(k). Let us consider an increase in signal amplitude. Then we can find

1 ≤ αmin ≤ α(k) ≤ αmax < ∞ (24)

and

1 ≤ βmin ≤ β(k) ≤ βmax < ∞. (25)

Applying Equations (22) and (23), the current cross-covariances can be calculated by

cxz = 1

N

N∑
k=1

(α(k)x̂(k) − xm)(β(k)ẑ(k) − zm) (26)

for which we can find upper and lower limits for cxz , such that cxz min ≤ cxz(k) ≤ cxz max. Solving (26)
for the minimal change in cross-covariance and considering only zero mean signals10 gives

cxz min = αminβmin
1

N

N∑
k=1

x̂(k)ẑ(k)

= αminβminĉxz . (27)

The cross-covariance cxz of signals x(k) and z(k) of the excited system exceeds the cross-covariance
ĉxz of the previous time interval by at least the factor αmin · βmin:

ĉxz ≤ cxz min = αminβminĉxz ≤ cxz(k) ≤ cxz max = αmaxβmaxĉxz . (28)

Similar approximations can be obtained for the auto-covariances

ĉxx ≤ cxx min = α2
minĉxx ≤ cxx (k) ≤ cxx max = α2

maxĉxx (29)

and

ĉzz ≤ czz min = β2
minĉzz ≤ czz(k) ≤ czz max = β2

maxĉzz . (30)

The covariance matrices become

Ĉxz =
(

ĉxx ĉxz

ĉxz ĉzz

)
(31)

for the previous interval and

Cxz min =
(

α2
minĉxx αminβminĉxz

αminβminĉxz β2
minĉzz

)
(32)

10 This does not impose any limitation on generality, since we can always apply Equation (2). In addition, the sensors utilized
for the experimental setup where scaled to zero mean.
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for the additional excited system. Solving the eigenvalue problem (10) for Cxz min, we obtain

λ1,2 min = 1

2

(
α2

minĉxx + β2
minĉzz

) ±
√

(αminβmin)2 A + 1

4
B, (33)

with A = (ĉ2
xz − 1

2 ĉxx ĉzz) and B = (α4
minĉ2

xx + β4
minĉ2

zz ).
Let αmin < βmin, then we derive the lower limit for λ1,2

λ1,2 min > α2
minλ̂1,2. (34)

An upper bound for the maximal eigenvalue λ1,2 max can be derived in the same way for the increase
of signal amplitudes. Also, a similar calculation can be performed to find minimal and maximal values
for the eigenvalue in case of a decrease in signal amplitudes.

If the amplitudes of the sensor signals rise due to an increased excitation, the KLT-eigenvalues (λi ) of
the current time-interval will differ from those (λ̂i ) of the previous. An increase in the signal amplitudes
αi leads to an increase in the λi . From (34) we can observe, that all current eigenvalues λi will at
least increase by the square of the minimal signal amplitude rising factor αmin. This means for the state
observation of the railway wheelset dynamics:
– Minor disturbances, that do not qualitatively change the wheelset rolling state, lead to small increases

in signal amplitudes. These will lead to negligible changes in the eigenvalues.
– Major additional excitations, that drastically change the wheelset rolling state, lead to larger increases

in signal amplitudes. Due to (34) one can detect these qualitative changes by monitoring the eigenval-
ues. Since these will change at least by the square of the smallest rising factor αmin, major additional
excitations will be accentuated by KLT.

4.4. ANALYSIS RESULTS

For the investigation of the wheelset rolling state, the signals of all three accelerometers (see Figure 2)
were analyzed. Due to Parseval’s Relation, the magnitude of the eigenvalues equals the mean signal
power projected onto the Characteristic Functions. Figure 3 shows the three eigenvalues for each
experiment. It can be observed, that there is a correlation between the yaw angles and the obtained
eigenvalues. However, we are not interested in determining the yaw angle this way, but to measure the
intensity of the wheelset dynamics. Obviously this does not increase linearly with the yaw angle. At
small yaw angles (1.5 mrad), the eigenvalues are equal to those for zero yaw. This result coincides with
observations during the experiments. Changes in wheelset rolling state could not be seen or heard. At
larger yaw angles (2.5 mrad), vibrations at the wheel/rail-roller test-rig increased and at yaw angles of
3.5 mrad the vibrations increased drastically and an additional noise could be heard. This experiment
produced metal powder on the floor. An obvious sign for the deterioration of the wheels.

Figure 4 show the projection of the Characteristic Functions onto the sensors ‘X ’, ‘Y ’ and ‘Z ’ for
each experiment. The Characteristic Functions have three components. Since the accelerometers are
oriented along the three body-fixed wheelset-axes (Figure 2), the Characteristic Functions describe the
principal directions of the wheelset vibration. The first Characteristic Function (black line) resembles
the direction of wheelset vibration with the largest kinetic energy. Its projection shows, that this motion
occurs mainly in z-direction, for any yaw angle. However, as the yaw angle increases, vibration in
y-direction becomes more powerful. This can be observed by the increase of the y-component of the
principal motion (first Characteristic Function).
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Figure 3. KLT-surrogate power.

Figure 4. KLT characteristic function.

4.5. APPLICATION FOR MODEL ORDER REDUCTION

Although the discussion in Section 4 focuses on the state analysis of complex non-linear dynamical
systems, there are two ways to apply this approach for model order reduction as well:

On the one hand, the system order can be reduced before modeling by KLT decomposition, if the
system of interest physically exists and its dynamics are measurable. The state analysis by means of KLT
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can be used to determine the surrogate eigenforms,11 Characteristic Functions of the system, that can
be defined as the new, ‘effective DOF’. Then, the system can be modeled based on these new DOF. For
this purpose, tests are performed and the dynamics of the system are measured. The KLT decomposes
the dynamics into the surrogate eigenforms and the corresponding Weighing Factors. For modeling
purposes, only those surrogate eigenforms that have a comparable large eigenvalue are considered.
Thus, the number of DOF is limited forehand to the number of DOF that are necessary to capture a
given fraction of the kinetic system energy.

Alternatively, the system order can also be reduced within the modeling process. Therefor, the PDEs
are expanded in a truncated Galerkin-ansatz, as discussed in Section 3.2. In this case, the state analysis
introduced in Section 4 can be regarded as an extension of previous approaches: The state analysis
by means of KLT accounts for parameter changes of the investigated system. The model reduction
technique discussed in Section 3.2 requires the system dynamics to be stationary. Parameter changes
may qualitatively alter the system dynamics, thus leading to different surrogate eigenforms. The state
analysis by means of KLT can be used to detect these changes and to distinguish between different
‘states of system dynamics’ or different parameter settings, respectively. After the simulation of the
complete set of PDEs with varying parameters, the model order can be reduced for each state of system
dynamics individually, as discussed in Section 3.2.

5. Conclusion

A variety of applications for the KLT have been reported ranging from data compression to template
matching and model order reduction. Some popular applications of the KLT have been discussed in
this paper. In addition to the current list, we have introduced the KLT as a powerful tool to monitor the
transient dynamics of railway wheelsets. The underlying investigation of Section 4 aims at characterizing
the rolling state of railway wheelsets. For this purpose, the accelerations at a wheelset suspension are
measured and analyzed by means of KLT. Mathematical proof is provided, showing that the eigenvalues
emphasize changes in the wheelset rolling state. Analysis results show that the Characteristic Functions
describe the principal directions of wheelset vibration. For the experimental set-up, the wheelset motion
occurs mainly in vertical direction. Therefore, the Characteristic Functions do not display changes in
the wheelset rolling state as distinct as the eigenvalues. However, if more sensors are applied and more
accelerations are measured, the resolution of the surrogate eigenforms of the wheelset dynamics will
improve. Thus, the Characteristic Functions will become more important for the characterization of the
wheelset rolling state. Currently, the authors are investigating the benefit of an increase in the number
of acceleration sensors.
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