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Abstract. To accurately model the nonlinear behavior of the pantograph/catenary systems, it is necessary to take into consideration
the effect of the large deformation of the catenary and its interaction with the nonlinear pantograph system dynamics. The large
deformation of the catenary is modeled in this investigation using the three-dimensional finite element absolute nodal coordinate
formulation. To model the interaction between the pantograph and the catenary, a sliding joint that allows for the motion of
the pan-head on the catenary cable is formulated. To this end, a non-generalized arc-length parameter is introduced in order to
be able to accurately predict the location of the point of contact between the pan-head and the catenary. The resulting system
of differential and algebraic equations formulated in terms of reference coordinates, finite element absolute nodal coordinates,
and non-generalized arc-length and contact surface parameters are solved using computational multibody system algorithms. A
detailed three-dimensional multibody railroad vehicle model is developed to demonstrate the use of the formulation presented in
this paper. In this model, the interaction between the wheel and the rail is considered. For future research, a method is proposed
to deal with the problem of the loss of contact between the pan-head and the catenary cable.
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1. Introduction

In the analysis of the pantograph/catenary interactions in railroad vehicle systems, accurate predictions
of the contact forces are crucial to accurately determine the stability and dynamic characteristics of
the system and to evaluate the effect of the loss of contact and wear of catenary cables. Despite
the fact that general multibody algorithms that are based on accurate wheel/rail contact formulations
[1–8] have been successfully used in the nonlinear dynamic analysis of railroad vehicle systems, the
use of these algorithms in the dynamic analysis of the pantograph/catenary systems have been very
limited. The limited use and success of existing multibody system approaches in the analysis of the
pantograph/catenary systems can be attributed to two main reasons. The first is due to the fact that most
general-purpose multibody computer programs employ the floating frame of reference formulation
which was developed to solve small deformation problems, and therefore, these programs cannot be
used to systematically and efficiently solve the pantograph/catenary problem because of the catenary
large deformation. The second reason for the limited use of multibody system algorithms in the analysis
of the pantograph/catenary system is the lack of an accurate formulation for a sliding joint in which
one body slides on another very flexible body. This is a problem of moving boundary conditions that
cannot be efficiently formulated in computational multibody system algorithms using approaches that
are based on linear or component modes.

It is, therefore, the objective of this investigation to address these two difficulties by adopting a
large deformation finite element formulation that can be systematically used to develop the sliding
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joints between two components; one of them can be very flexible. In existing approaches used for
the dynamic analysis of the pantograph/catenary interactions, three different methods are often used to
model the deformation of the catenary cables. In the first method, springs are used to model the dynamic
interactions between the catenary and the pantograph [9–11]. While this simple method provides an
insight into the dynamics and stability of the pantograph/catenary system, this approach is too simple
to accurately account for the effect of the nonlinear deformation of the cable and the high frequency
vibrations arising from the pantograph/catenary interactions. Furthermore, there is no general procedure
that can be used to determine the lumped parameters of the model. In the second approach, the catenary
is modeled as a continuous string or beam using partial differential equations [12–14]. While the partial
differential equations can be used to study the wave propagations in the catenary cables, the use of this
approach is not suited for implementation in computational multibody computer algorithms [12]. In
the third approach, the catenary cables are modeled using a linear finite element formulation [15]. In
these models, the moving contact load acting on the catenary is applied as an external force [9, 15].
Such models, therefore, do not account for many of the coupling effects and nonlinearities due to the
pantograph/catenary contact.

As previously pointed out, accurate modeling of the contact between the flexible catenary cable and
the pantograph is one of the challenging problems since the locations of the contact point on the catenary
cable is time and space dependant. Modeling this contact requires the use and computer implementation
of the non-incremental large deformation finite element absolute nodal coordinate formulation [16–19].
In addition to the absolute position and gradient nodal coordinates used in this formulation, an arc-
length parameter needs to be introduced to determine the exact location of the contact point on line.
This arc-length parameter enters in the formulation of the sliding joint between the pan-head and the
very flexible catenary cable [16, 20]. Two other sets of coordinates need to be introduced to be able to
analyze a detailed railroad vehicle model including the pantograph/catenary system. A set of reference-
generalized coordinates is used in the multibody system formulations to define the system configuration,
and a second set of non-generalized surface parameters is used to describe the wheel/rail contact
conditions. Therefore, in this investigation, the kinematic and dynamic equations of the multibody
railroad vehicle model that includes the pantograph/catenary system are formulated using four different
sets of coordinates; reference coordinates that describe the rigid body motion of the system components,
absolute nodal coordinates that describe the large deformation of the catenary system, non-generalized
surface parameters that define the wheel and rail profile geometry and non-generalized arc-length
parameters that enter in the formulation of the sliding joint between the pan-head and the catenary system.
These coupled sets of coordinates are used in this study to formulate the nonlinear dynamic equations
of railroad vehicle systems that include the pantograph/catenary mechanism. The use of the formulation
introduced in this paper is demonstrated using a detailed three-dimensional railroad vehicle model. It
is important to point out that in the finite element absolute nodal coordinate formulation used in this
investigation to model the large deformation of the catenary cable, there is no restriction on the amount
of rotation or deformation within the element and as a result a non-incremental solution procedure that
is suited for the use in multibody system computational algorithms can be adopted. In Section 8, it will
be explained how the sliding joint formulation presented in this section can be modified in order to
account for the loss of contact, a problem that will be the subject of future investigations.

2. Generalized and Non-Generalized Coordinates

Detailed multibody vehicle models can consist of a large number of components connected by joints
and force elements such as springs, dampers and friction elements. Some of these components can be
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modeled as rigid bodies; some as flexible bodies; and the others, such as the catenary cables, as very
flexible bodies. Efficient computer implementation of an algorithm that is used to solve railroad vehicle
problems requires the use of different sets of generalized coordinates to model bodies with different
degrees of flexibility. For rigid bodies, a set of reference coordinate qi

r is used to describe the location
of the origin and the orientation of the selected body coordinate system. For flexible bodies two sets of
coordinates are used; qi

r and qi
f , where the vector qi

r describes the motion of the flexible body coordinate
system, and the vector qi

f describes the small deformation of the body with respect to its coordinate
system [18]. Using the floating frame of reference formulation, the location of an arbitrary point on the
flexible body can be written as:

ri = Ri + Ai ūi (1)

where Ri is the vector that defines the location of the origin of the body coordinate system, Ai is the
transformation matrix that defines the orientation of the body coordinate system, and ūi is the local
position vector of the arbitrary point with respect to the body coordinate system. In the case of rigid
bodies, the vector ūi is constant, whereas in the case of flexible bodies ūi depends on the vector of elastic
coordinates qi

f . The transformation matrix Ai can be defined in terms of a selected set of orientation

parameters θi . In this case, the vector of reference coordinates is defined as qi
r = [RiT

θiT
]T.

In the case of very flexible bodies, such as the catenary cables, the configuration of the body is
described using the absolute nodal coordinate formulation [19]. In this formulation, the vector of
absolute nodal coordinates ei is used. In the absolute nodal coordinate formulation, the global position
vector of an arbitrary point on element e of beam i as shown in Figure 1 can be defined in a global
coordinate system XYZ as

rie = Sie(xie, yie, zie) eie (2)

where Sie(xie, yie, zie) is the element shape function matrix, xie, yie and zie are the spatial coordinates
defined in the element coordinate system, and eie is the vector of nodal coordinates of element e on
beam i. The element shape function matrix and the element nodal coordinates used in this investigation

Figure 1. Absolute nodal coordinates.
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for a three-dimensional beam element are presented in the literature [19]. The nodal coordinate vector
eiek at node k can be defined using 12 nodal coordinates as follows:

eiek =
[

(riek)T

(
∂riek

∂xie

)T (
∂riek

∂yie

)T (
∂riek

∂zie

)T]T

(3)

where riek is the global position vector at node k and ∂riek/∂xie, ∂riek/∂yie and ∂riek/∂zie define the
gradients of the global position vector at node k. This representation ensures inter-element continuity
of the global displacement gradients at the nodal points without making any assumptions regarding the
magnitude of the rotation or deformation within the element [19].

The configuration of the multibody railroad vehicle system can, therefore, be described using the
generalized coordinates qr , q f and e which describe, respectively, the reference motion, the small defor-
mation, and the large deformation. In addition to these generalized coordinates, surface and arc-length
parameters s need to be introduced to describe the wheel/rail contact [2, 5–7] and the pantograph/catenary
contact. Therefore, the vector of system generalized and non-generalized coordinates can be written as

q = [
qT

r qT
f eT sT

]T
(4)

The components of this vector will be used in the following sections to formulate the kinematic and
dynamic equations of multibody railroad vehicle systems.

3. Kinematics of Pantograph/Catenary Contact

The contact between the pantograph and catenary requires a formulation that involves a very flexible
body. In this section, the formulation of the sliding joint between the pan-head and the very flexible
catenary is discussed. In Section 8, it is explained how the sliding joint formulation presented in this
section can be modified to account for the loss of contact between the pan-head and the catenary cable.
The sliding joint used in this study allows relative motion of two bodies; one body moves along a
deformable joint axis defined on the other flexible body, as shown in Figure 2. The constraints of a
simple sliding joint defined at contact point P can be written as follows [16]:

Ci j (eie, q j , sie) = rie
P − r j

P = 0 (5)

where body i is assumed to be a very flexible body that can represent the catenary cable modeled using
the absolute nodal coordinate formulation, and body j is assumed to be a rigid, flexible or very flexible
body defined by the generalized coordinates q j = [q jT

r q jT

f ]Tor e j . The location of the contact point can
be defined using the arc-length parameter sie defined on element e of body i as shown in Figure 2. In
the preceding equation, rie

P and r j
P are, respectively, the global position vectors of the contact point on

the catenary cable and the pan-head. If body j slides on the cable centerline, the global position vector
of point P of body i can be defined as

rie
P = Sie(sie, 0, 0) eie (6)

It is important to point out that if the cable is straight in the undeformed configuration, sie = xie

which is the assumption made in this investigation. Note that Equation (5) has three scalar constraint
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Figure 2. Sliding joint on the flexible cable.

equations that can be used to eliminate two degrees of freedom since the arc-length parameter sie is
also an unknown variable. Consequently, Equation (5) leads to only two independent constraint forces
that prevent the relative motion between the two bodies in a plane perpendicular to the cable centerline.
The sliding joint constraint equations of Equation (5) can also be written in the following form:

Ci j (eie, q j , sie) =




iiet · ri j
P

jie
t · ri j

P

kie
t · ri j

P


 (7)

where ri j
P = rie

P −r j
P and iiet , jie

t and kie
t are unit vectors that define a tangent frame [16] whose iiet axis is

tangent to the space curve of the catenary cable. The transformation matrix that defines the orientation
of the tangent frame is given by [16].

Aie
t (eie, sie) = [

iiet jie
t kie

t

]
(8)

where the orthogonal unit vectors iiet , jie
t and kie

t are defined using the following equations:

iiet = rie
s∣∣rie
s

∣∣ = r̂ie
s , kie

t = iiet × rie
y∣∣iiet × rie
y

∣∣ , jie
t = kie

t × iiet (9)

where rie
s = ∂rie

P /∂sie, and rie
y = ∂rie

P /∂yie. Here rie
s is not, in general, a unit vector since sie = xie

is assumed to be the arc length in the undeformed straight configuration. The sliding joint constraints
of Equation (7) must be imposed at the position, velocity and acceleration levels. To this end, these
constraints must be differentiated twice with respect to time. To illustrate the procedure for obtaining
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these derivatives, we consider the first time derivative of the first constraint in Equation (7). This
derivative is defined as follows:

Ċ i j
1 = iiet · ṙi j

P + ri j
P · i̇iet = Ci j

1qq̇i j + Ci j
1s ṡie (10)

where qi j = [eieT
q jT

]T and

Ci j
1q = iie

T

t

∂ri j
P

∂qi j
+ ri jT

P

∂iiet
∂qi j

, Ci j
1s = iieT

t

∂ri j
P

∂sie
+ ri jT

P

∂iiet
∂sie

(11)

Using the definition given in Equation (9), the derivative of the vector iiet with respect to the generalized
coordinates qi j and the non-generalized arc-length parameter sie can be obtained as

∂iiet
∂qi j

= ∂ r̂ie
s

∂rie
s

∂rie
s

∂qi j
,

∂iiet
∂sie

= ∂ r̂ie
s

∂rie
s

∂rie
s

∂sie
(12)

Since rie
s = Sie′

eie, one has ∂rie
s /∂eie = Sie′

and ∂rie
s /∂sie = Sie′′

eie, where a′ denotes the differentiation
of a with respect to s. Note that

∂ri j
P

∂qi j
=

[
∂rie

P

∂eie

∂r j
P

∂q j

]
,

∂ri j
P

∂sie
= ∂rie

P

∂sie
(13)

where ∂rie
P /∂sie = Sie′

eie.
Differentiating Equation (10) once more with respect to time, one obtains

C̈ i j
1 = iiet · r̈i j

P + ri j
P · ïiet + 2i̇iet · ṙi j

P = Ci j
1qq̈i j + Ci j

1s s̈ie + Qi j
d = 0 (14)

where Qi j
d includes all the quadratic velocity terms that result from the second differentiation of the

constraint with respect to time. A similar procedure can be used to obtain the first and second derivatives
of the second and third constraints of Equation (7). In Section 5, two methods will be discussed to impose
the sliding joint constraints at the position, velocity and acceleration levels. In the first method, the non-
generalized arc-length parameter is not eliminated from the final form of the equations of motion, while
in the second method this parameter is systematically eliminated using an embedding technique.

4. Wheel/Rail Contact

The wheel/rail contact forces have a significant effect on the railroad vehicle stability [1–7]. These
forces depend on the location of the contact points, material properties of the wheel and rail, vehicle
speed, and the geometric properties of the contact surfaces. The geometry of the surfaces of the wheel
and rail are described using surface parameters that can be used to determine the location of the contact
points. In the constraint formulations, the contact between two surfaces can be described using a set of
nonlinear algebraic equations that must be imposed at the position, velocity, and acceleration levels. One
may choose not to eliminate the surface parameters, leading to an augmented form of the equations of
motion expressed in terms of the Lagrange multipliers associated with the kinematic contact constraint
equations. Alternatively, one may choose to systematically eliminate the surface parameters using the
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Figure 3. Surface parameters of the wheel and rail.

contact constraints, leading to an embedding formulation of the equations of motion that does not
explicitly include the surface parameter accelerations.

4.1. TRACK AND WHEEL GEOMETRIES

To determine the location of the point of contact between two bodies, a complete parameterization of the
surfaces must be used [2]. In general, a set of four surface parameters is used to describe the geometry
of the two surfaces in contact as shown in Figure 3. The surface parameters can be written in a vector
form as

s = [
sw

1 sw
2 sr

1 sr
2

]T
(15)

where superscripts r and w denote wheel and rail, respectively. Using these parameters, the location of
the contact point P can be defined in the body coordinate systems as

ūw
P

(
sw

1 , sw
2

) =




x̄w
(
sw

1 , sw
2

)
ȳw

(
sw

1 , sw
2

)
z̄w

(
sw

1 , sw
2

)


 , ūr

P

(
sr

1, sr
2

) =




x̄ r
(
sr

1, sr
2

)
ȳr

(
sr

1, sr
2

)
z̄r

(
sr

1, sr
2

)


 (16)

The tangents to the rail surface at the contact point are defined in the body coordinate system as

t̄r
1 = ∂ūr

P

∂sr
1

, t̄r
2 = ∂ūr

P

∂sr
2

(17)

and the normal vector as

n̄r = t̄r
1 × t̄r

2 (18)

The surface parameters sr
1 and sr

2 are defined in a rail profile coordinate system. The location of the
origin and the orientation of the profile coordinate system, defined respectively by the vector Rr p and
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the transformation matrix Ar p, can be uniquely determined using the surface parameter sr
1 [5]. Using

this description, the global position vector of an arbitrary point on the surface of the rail r can be written
as follows [5]:

rr = Rr + Ar (Rr p + Ar pūr p) (19)

where Rr is the global position vector of the origin of the rail coordinate system, Ar is the transformation
matrix that defines the orientation of the rail coordinate system, and ūr p is the local position vector that
defines the location of the arbitrary point on the rail surface with respect to the profile coordinate
system.

Similarly, the geometry of the wheel surface can be described using the two surface parameters sw
1 and

sw
2 shown in Figure 3. The location of the origin and the orientation of the wheel set coordinate system

are defined, respectively, by the vector Rw and the transformation matrix Aw. Using this description,
the global position vector of an arbitrary point on the surface of the wheel w can be written as follows
[5]:

rw = Rw + Awūw (20)

where ūw is the local position vector that defines the location of the arbitrary point on the wheel surface
with respect to the wheel set coordinate system.

4.2. WHEEL/RAIL CONTACT CONSTRAINTS

There are, in general, two different approaches used to solve the wheel/rail contact problems. The
first approach is the contact constraint approach in which the contact between the wheel and rail
surfaces is described using nonlinear algebraic kinematic constraint equations [1, 2]. These equations
can be solved along with the equations of motion using the technique of Lagrange multipliers and the
augmented form of the dynamic equations. The normal contact forces are determined in this formulation
as constraint forces associated with the contact constraints. The second approach used is the elastic
contact formulation [3–6]. In this formulation, the normal contact forces are modeled using compliant
forces based on the Hertzian contact theory or using an assumed compliant force model. Small local
deformations in the contact area are used to define the normal contact force. In this investigation, the
constraint contact formulation is used. Comparison between the two different contact formulations can
be found in the literature [7].

When the wheel and rail come into contact, two sets of non-conformal kinematic contact conditions
need to be satisfied [2]. First, two points (contact points) on the two surfaces coincide; and second, the
two surfaces must have the same tangent plane at the contact point. These two conditions define the
following five constraint equations that are required to describe the non-conformal contact between the
wheel and rail:

Ck(qw, qr , swk, srk) =




rw
P − rr

P

tw1 · nr

tw2 · nr




k

= 0 (21)
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or equivalently [7],

Ck(qw, qr , swk, srk) =




tr
1 · (

rw
P − rr

P

)
tr
2 · (

rw
P − rr

P

)
nr · (

rw
P − rr

P

)
tw1 · nr

tw2 · nr




k

= 0 (22)

where superscript k denotes the contact number, superscript r and w denote rail and wheel, respectively,
qw and qr are, respectively, the generalized coordinates of wheel and rail, and t1, t2 and n are the two
tangents and normal to the surface at the contact point. In Equation (22), the three relative displacement
constraints (point constraints) are defined in a rail coordinate system at the contact point. The first three
point constraints of Equation (21), on the other hand, are defined in the global coordinate system. Note
that the preceding contact constraint equations, as in the case of the pantograph/catenary contact, are
expressed in terms of the generalized coordinates and non-generalized surface parameters.

5. Multibody Equations of Motion

The pantograph/catenary and wheel/rail contact constraints, as shown in the preceding two sections,
are expressed in terms of the system component generalized coordinates as well as the non-generalized
surface parameters that must be introduced to accurately determine the location of the contact points.
As previously pointed out, the generalized coordinates include reference and elastic coordinates used in
the floating frame of reference formulation to solve rigid body and small deformation problems [18] as
well as absolute nodal coordinates used in the absolute nodal coordinate formulation to solve the large
deformation problem encountered when modeling the pantograph/catenary system. In this section, the
equations of motion used in this investigation to study the dynamics of railroad vehicle models that
include the pantograph/catenary system are discussed.

It can be shown that the use of the fact that the mass matrix associated with absolute nodal coordinates
e is constant, one can construct a constant transformation and use it to write e in term of a new set of
coordinates, called the Cholesky coordinates qch . The use of the Cholesky coordinates qch leads to
an identity mass matrix associated with the Cholesky coordinates [21]. Using this transformation, the
vector of system generalized and non-generalized coordinates can be written as

q = [
qT

r qT
f qT

ch sT
]T

(23)

In this vector, the non-generalized coordinate vector s consists of the arc-length parameters used in the
formulation of the pantograph/catenary sliding joints and the surface parameters used in the formulation
of the wheel/rail contact constraints. The joint, driving and contact constraints (see Equations (7) and
(22)) can be expressed in terms of the generalized and non-generalized coordinates and time in a vector
form as follows:

C (qr , q f , qch, s, t) = 0 (24)
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Using the preceding kinematic joint constraint equations that include sliding and wheel/rail contact
conditions and the principle of virtual work in dynamics, one can show that the system equations of
motion can be written in the following form [22]:




Mrr Mr f 0 0 CT
qr

M f r M f f 0 0 CT
q f

0 0 I 0 CT
qch

0 0 0 0 CT
s

Cqr Cq f Cqch Cs 0







q̈r

q̈ f

q̈ch

s̈

λ




=




Qr

Q f

Qch

0

Qc




(25)

where subscripts r , f , ch and s refer, respectively, to reference, elastic, Cholesky and non-generalized
coordinates; M is the mass matrix, Cq is the constraint Jacobian matrix associated with the generalized
coordinates, Cs is the constraint Jacobian matrix associated with the non-generalized coordinates, λ is
the vector of Lagrange multipliers, Qr , Q f and Qch are the generalized force vectors associated with
the reference, elastic and Cholesky coordinates, and Qc is a quadratic velocity vector that results from
the differentiation of the kinematic constraint equations twice with respect to time.

In an alternate approach, one can systematically eliminate the non-generalized coordinates that rep-
resent the arc-length and contact surface parameters from the equations of motion. To this end, a set of
constraint equations equal to the number of non-generalized coordinates is identified. These constraint
equations can be used to write the non-generalized coordinates and their derivatives in terms of the
generalized coordinates, velocities and accelerations. This procedure which is explained in details in
the literature [7] leads to the following reduced system of equations:




Mrr Mr f 0 HT
r

M f r M f f 0 HT
f

0 0 I HT
ch

Hr H f Hch 0







q̈r

q̈ f

q̈ch

λn


 =




Qr

Q f

Qch

Qcn


 (26)

where H, an implicit function of s, is the Jacobian matrix of the constraint equations that is obtained
by eliminating the non-generalized coordinates, λn is the vector of the system Lagrange multipliers
that include only independent Lagrange multipliers associated with the sliding joint and wheel/rail
contact conditions and other Lagrange multipliers associated with non-contact constraints, and Qcn is
a quadratic velocity vector that results from the differentiation of the constraint equations twice with
respect to time. This vector is a function of the surface parameters s and their first time derivatives. Note
that the inertia and generalized forces are not changed as the result of eliminating the non-generalized
coordinates.

Equation (25) or (26) can be solved for the accelerations and Lagrange multipliers. Using the accel-
erations, the independent state equations can be identified and integrated forward in time to determine
the coordinates and velocities using multibody system algorithms [18].

6. Pantograph/Catenary Systems

The stability of the pantograph/catenary system is crucial in keeping continuous electric power supply
to trains. For this reason, the computer-aided analysis of the pantograph/catenary system is important
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to achieve the maximum operating speed of trains. In this section, the components of the catenary cable
and pantograph systems used in high-speed trains are briefly discussed.

6.1. CATENARY CABLE SYSTEM

Figures 4 and 5 show a catenary system that is used for railroad vehicles. The most common catenary
system consists of contact wires and messenger wires, and these wires are connected by droppers that
allow only tensile forces. The catenary system also includes supporters, moving brackets, and steady
arms (pull-off fittings). The contact wire provides electric power to the pantograph through contact.
Repetitive running of the vehicle causes fatigue and wear of the wires and pan-head of the pantograph.

Figure 4. Railroad vehicle with the pantograph/catenary system.

Figure 5. Catenary system.
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Figure 6. Single arm pantograph.

The messenger wire prevents slanting caused by admissible loading of the contact wire. The messenger
and contact wires undergo nonlinear elastic deformations. As shown in Figure 5, the vertical droppers
connect the contact and messenger wires, providing additional stiffness and helping in maintaining the
system stability. The droppers have high tensile stiffness, but have no resistance to compressions. The
horizontal steady arm is used to maintain a shape of the catenary such that wear of the pan-head is
reduced. The steady arms are connected to the support using pin joint in order to allow for the contact
wire oscillations. The dropper tension between the contact wire and the messenger wire, the span length
of the supporter, the gap, the number of droppers, etc. have an effect on the vertical stiffness of the
catenary systems.

6.2. PANTOGRAPH SYSTEM

The pantograph is used to draw power from the catenary system during the railroad vehicle operation as
shown in Figure 6. The mechanical/electrical interface with the contact wire has an important effect on
the stability of the vehicle system. The pantograph in general is subjected to external forces that include
aerodynamic forces, static uplift forces, and friction forces caused by the contact. The pantograph model
used in the numerical investigation presented in this paper is assumed to consist of four rigid bodies;
the pan-head, the plunger, the upper arm and the lower arm. The pan-head, as shown in Figure 7, is
connected to the plunger by a spring-damper element. The plunger is connected to the upper arm by a
revolute joint, and the upper and lower arms are connected by a revolute joint as well. The lower arm
is connected to the car body by a revolute joint.

7. Numerical Example

Figure 7 shows a planar view of the three-dimensional catenary system model used in the numerical
investigation presented in this section. The dropper is modeled as a spring with nonlinear characteristics.
The dropper is assumed to produce tensile force and zero compressive force. The contact wire which is
assumed to be initially straight is discretized using eight beam elements developed using the absolute
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Figure 7. Pantograph/catenary model.

nodal coordinate formulation. For simplicity, the messenger wire is not included in the model examined
in this investigation. The density, the cross-section area, and Young’s modulus of the contact wire are
assumed to be ρ = 4200.0 kg/m3, A = 9.0 mm2, and E = 9.0E+10 N/m2, respectively, while an
initial static tension force of T = 5.0E+3 N is applied to both ends of the wire. The stiffness and
damping coefficients of the dropper are, respectively, assumed to be 2.0E+5 N/m and 1.0E+2 Ns/m.
Figure 7 also shows a model of the single arm type pantograph used in this investigation. In this
pantograph model, the lower arm is connected to the vehicle body and the upper arm by revolute joints.
The mass of the lower and upper arms are both assumed to be 8.0 kg, while the mass of the pan-head
and the plunger are, respectively, assumed to be 2.0 and 4.0 kg. The primary spring suspension is
attached between the pan-head and the cross bar to absorb high-frequency vibrations arising from the
pantograph/catenary interactions, whereas the effect of the secondary spring suspension used to absorb
low-frequency vibrations between the cross bar and the plunger is neglected in this investigation. Since a
constant static uplift force is applied to the plunger by a pneumatic actuator in order for the pantograph to
maintain continuous contact with the contact wire, a static uplift force is always applied to the plunger
as shown in Figure 7. The spring constants and damping coefficients used in the pantograph model
presented in this section are summarized in Table 1.

Figure 8 shows the detailed three-dimensional vehicle model that includes the pantograph/catenary
system, wheel/rail contact, and the bogie suspensions shown schematically in Figure 9. The vehicle
consists of two bogies and a car body. If the flexibility of the car body is considered, one can use
the floating frame of reference formulation to study the car body deformation. Each bogie consists
of two wheel sets, two equalizer bars, a frame and a bolster as shown in Figure 9. The front wheel
sets of the leading and trailing trucks are assumed to have a constant forward velocity (V = 17 m/s).
The dimensions and inertia properties of this three-dimensional railroad vehicle model are the same

Table 1. Pantograph spring and damping characteristics.

Element 1 Element 2 Element 3

Spring constant (N/m) k1 = 40 000 k2 = 0 k3 = 5000

Damping coefficient (Ns/m) c1 = 100 c2 = 200 c3 = 50



212 J.-H. Seo et al.

Figure 8. Simulation model of the railroad vehicle.

Figure 9. Bogie components.

as previously presented in the literature [6]. Figures 10 and 11 show the vertical displacement and
acceleration of the pan-head, while Figure 12 shows the horizontal displacement at the left end of the
catenary cable. The high oscillations observed at time t = 0.0–2.0 s are attributed to the disturbance
due to the fact that the catenary cable was not initially in its static equilibrium configuration. Note that
because the pan-head is assumed to always remain in contact with the catenary, the results of Figure 10
can be different if the formulation presented in this paper is modified to account for the loss of contact
as described in the following section.

8. Loss of Contact

The loss of contact between the pan-head and the catenary cable is one of the important problems
encountered in the operation of high-speed trains. The intermittent contact can lead to loss of continuous
power supply and can lead to deterioration in the performance and restriction on the operating speed of
the train. For this reason, computer formulations developed for the analysis of the pantograph/catenary
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Figure 10. Vertical displacement of the pan-head.

Figure 11. Vertical acceleration of the pan-head.

Figure 12. Horizontal displacement at the left end of the contact wire.
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system must be capable of addressing the important problem of the loss of contact between the pan-head
and the catenary cable.

The formulation presented in this paper can be modified to allow modeling pantograph/catenary
systems subject to loss of contact. One approach that can be used to model the loss of contact is to use
a force model instead of the sliding joint constraint to represent the contact between the pan-head and
the catenary cable. For instance, the first equation in Equation (7) given as iiet · ri j

p = 0 can be used
to solve for the arc-length parameter sie using a procedure similar to the one used in the embedding
contact constraint formulation [7]. The other two constraints in Equation (7) can be imposed using a
penalty formulation that produces a unilateral force. If the interest is to model the loss of contact in
only one direction, the first two constraints of Equation (7) can be imposed as kinematic constraints at
the position, velocity and acceleration levels, while the third constraint can be imposed using a penalty
method that again produces a unilateral contact force.

9. Summary and Conclusions

In this investigation, a computer formulation for the analysis of the pantograph/catenary interactions in
railroad vehicle systems is presented. To model the contact between the pan-head and the catenary cable,
a sliding joint formulation that allows for imposing constraints on very flexible catenary cables using the
finite element absolute nodal coordinate formulation is presented. This formulation requires the use of
non-generalized arc-length coordinates to accurately define the location of the contact point on the cable
on line. The dynamic equations of motion for the multibody railroad vehicle system are formulated in
terms of the system generalized and non-generalized coordinates. The non-generalized coordinates also
include the surface parameters used to describe the contact between the wheel and the rail. An augmented
formulation in which the pantograph/catenary sliding joint and the wheel/rail kinematic constraints are
adjoined to the differential equations of motion using Lagrange multipliers is presented. Another method
that allows for systematically eliminating the non-generalized arc-length parameter is also proposed. In
this second method, the equations of motion do not explicitly include the non-generalized accelerations
associated with the sliding joint arc-lengths. The use of the formulation presented in this paper is
demonstrated using a detailed multibody railroad vehicle model that includes the catenary/pantograph
system. This model can be used to study the coupling between the catenary/pantograph system dynamics
and the wheel/rail contact forces. Methods for modeling the loss of contact between the pan-head and the
catenary cable are also proposed. Active vibration control [23] and comparison between the numerical
and experimental data [24] using detailed flexible multibody models are also among the topics that can
be addressed in future investigations.
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