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Abstract. A general procedure is presented for analyzing dynamic response measurements from complex multi-degree-of-
freedom nonlinear systems incorporating arbitrary types of nonlinear elements. The analysis procedure develops a reduced-order,
nonlinear model whose format is convenient for numerical simulation studies. No information about the system’s mass properties
is needed, and only the applied excitations and corresponding response are needed to develop the model whose dimension is
compatible with the number of available sensors. The utility of the approach is demonstrated by means of a three-degree-of-
freedom system incorporating polynomial-type nonlinear features with hardening as well as softening characteristics.
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1. Introduction

1.1. MOTIVATION

There is a lot of interest in developing accurate data-based models of complex, nonlinear, multi-degree-
of-freedom (MDOF) systems whose underlying nature is not easily identified (i.e., where the model
class is not obvious). This interest stems from basic modeling needs for several application types.
For example, for a variety of simulation purposes it is important to obtain data-based models which
capture the phenomenological behavior of complex dynamic processes. Another example is the area of
vibration control and suppression which relies on having accurate process (“plant”) modeling. Lastly, for
health monitoring and damage detection of structural and mechanical systems based on their vibration
response characteristics, system change (or damage) can be inferred from changes in identified model
parameters. A few sample publications focusing on challenging issues in the modeling and identification
of nonlinear systems include the work of Mohammad et al. [1], Housner et al. [2], Ghanem and Romeo
[3], Worden and Tomlinson [4], and Vestroni and Noori [5].

The authors have previously developed a multi-stage approach for “fitting” the nonlinear system
excitations in a nonparametric form (Masri et al. [6]). The term nonparametric here distinguishes
the approach from a parametric approach where model parameters are directly related to physical or
phenomenological quantities. In the present paper, this nonparametric approach is generalized so that
no information is assumed about the system mass; the needed system inertia properties are directly
identified by the new method of this paper. Furthermore, there is a significant improvement from
the computational point of view since the nonparametric representation of the system’s accelerations
is performed for one acceleration component at a time. Furthermore, by “rotating” the reduced-order
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system coordinates in the “modal” space of each particular problem, a major reduction is achieved in the
complexity of the system components needed to represent the dominant system response nonlinearities.

1.2. SCOPE

Section 2 presents the formulation of the proposed identification approach; Section 3 applies the ap-
proach to a generic nonlinear three-degree-of-freedom (3DOF) system under un-correlated stationary
random excitation, and Section 4 validates the modeling results by predicting the nonlinear system
response under the action of a single, mass-proportional, non-stationary excitation. Section 5 presents a
discussion of pertinent issues such as effects of measurements noise pollution, trade-offs in model-order
reduction and complexity, and effects of memory-type (hysteretic) nonlinearities.

2. Formulation

2.1. EQUATION OF MOTION

Consider a discrete MDOF system which is subjected to directly applied excitation forces f (t). The
motion of this multi-input/multi-output nonlinear system is assumed to be governed by the set of
equations

Mẍ(t) + Cẋ(t) + K x(t) + f
N

(t) = f (t), (1)

where, f (t) = an n column vector of directly applied forces, x(t) = displacement vector of order n,
M, C, K = constant matrices that characterize the inertia, linearized damping, and linearized stiffness
forces, f

N
(t) = vector of nonlinear nonconservative forces.

In the method under discussion, the linear parametric part of the class of models defined above is first
identified by using a time-domain method for the identification of the equivalent linear system matrices
appearing in Equation (1). This can be accomplished by expressing the acceleration vector in the form

ẍ(t) = −M−1Cẋ(t) − M−1 K x(t) + M−1 f (t), (2)

in which the i th component of ẍ is given by:

ẍi (t) =
n∑

j=1

ai j ẋ j (t) +
n∑

j=1

bi j x j (t) +
n∑

j=1

ci j f j (t), (i = 1, 2, . . . , n). (3)

Using standard least-squares techniques, the algebraic coefficients (elements of the unknown system
matrices) can be identified.

Subsequently, the contribution of the unknown nonlinear forces can be found from

M−1 f
N

(t) = −ẍ(t) − M−1Cẋ(t) − M−1 K x(t) + M−1 f (t). (4)

Notice that the terms appearing on the left-hand-side of Equation (4) represent the residual (nonlinear)
acceleration components that could not be expressed as a linear functions of the system state variables
and the corresponding excitations.
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2.2. NONLINEAR NONPARAMETRIC TERMS

Rather than attempt to determine an approximating analytical expression for each component of
M−1 f

N
(t), experience has shown that a much more efficient approach (especially when there is a

large number of degrees of freedom to consider), is to “rotate” the system coordinates by using the
eigenvectors corresponding to the linearized system matrices, in order to obtain the transformed non-
linear accelerations:

h(t) = �T M−1 f
N

(t), (5)

where φ is the eigenvector matrix associated with M−1 K .
Let hi (t) represent the i th component of the transformed nonlinear residual acceleration vector as

defined by Equation (5). In general, vector h depends simultaneously on all the components of the
system’s velocity and displacement vectors:

h(t) = h(x, ẋ). (6)

The central idea of the present method (Masri and Caughey, 1979) is that, in the case of nonlinear
dynamic systems commonly encountered in the structural mechanics field, a judicious assumption is
that each component of h can be expressed in terms of a series of the form:

hi (x, ẋ) ≈
Jmaxi∑
j=1

ĥ( j)
i

(
q ( j)

1i
, q ( j)

2i

)
(7)

where the q1’s and q2’s are suitable generalized coordinates which, in turn, are linear combinations
of the physical displacements, velocities. The approximation indicated in Equation (7) is that each
component hi of the transformed nonlinear (residual) acceleration vector h can be adequately estimated
by a collection of terms ĥ( j)

i each one of which involves a pair of generalized coordinates. The particular
choice of combinations and permutations of the generalized coordinates and the number of terms Jmaxi

needed for a given hi depends on the nature and extent of the nonlinearity of the system and its effects
on the specific DOF i .

If hi (t) is chosen as the i th component of f
N

(t), then the procedure expressed by Equation (7) will
directly estimate the corresponding component of the unknown nonlinear force. For certain structural
configurations (e.g., localized nonlinearities) and/or relatively low-order systems, the choice of suitable
generalized coordinates for the series in Equation (7) is a relatively straightforward task. However, in
many practical cases involving distributed nonlinearities coupled with a relatively high-order system,
an improved rate of convergence of the series in Equation (7) can be achieved by performing the
least-squares fit of the nonlinear accelerations in the “modal” domain as outlined below.

Using the identification results for the linear part, the eigenvalue problem associated with M−1 K
is solved resulting in the eigenvector or modal matrix � and the corresponding vector of generalized
coordinates u:

h(u, u̇) = �T M−1 f
N

(t) (8)

with

u(t) = �−1x(t) (9)
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With this formulation in mind, Equation (7) can be viewed as allowing for “modal” interaction between
all generalized coordinates, taken two at a time. Note that the formulation in Equation (7) allows for
“modal” interaction between all “modal” displacements, velocities and accelerations.

3. Application

3.1. EXAMPLE NONLINEAR 3DOF MODEL CHARACTERISTICS

To illustrate the application of the method under discussion, consider the example of finite element
model shown in Figure 1. This one-dimensional structure (rectlinear horizontal motion) consists of three
nearly equal masses mi , i = 1, 2, 3 that are interconnected by means of six truss elements anchored
to an interface at three locations, thus resulting in a redundant system with three degrees of freedom.
Notice that the structure of the system is not chain-like, consequently, the linearized system stiffness
matrix is not banded.

The absolute displacement of each mi is designated by xi while the three excitation forces that directly
act on this system are denoted by fi (t), i = 1, 2, 3. Thus

x(t) = {x1, x2, x3}T, (10)

f (t) = { f1, f2, f3}T. (11)

The arbitrary nonlinear elements, denoted by gi , that are interposed between the masses and between
the support points are dependent on the relative displacement y and the velocity ẏ across the terminals
of each element. In the case of polynomial nonlinearities, the elements assume the form,

gi (y, ẏ) = p(i)
1 y + p(i)

2 ẏ + p(i)
3 y3, (12)

where p(i)
1 is the linear stiffness component, p(i)

2 is the linear viscous damping term, and p(i)
3 corresponds

to the coefficient of the nonlinear (cubic) displacement term. Thus, depending on the sign of p(i)
3 , the

form of gi in Equation (12) can be made to represent restoring forces with hardening or softening
nonlinearities – a commonly encountered type of nonlinearity in physical systems.

Figure 1. Model of nonlinear 3DOF system used to generate synthetic data.
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Table 1. Nonlinear element properties.

Element index i p(i)
1 p(i)

2 p(i)
3

1 39.478 0.628 +19.739

2 39.478 0.628 −19.739

3 39.478 0.628 −19.739

4 39.478 0.628 −19.739

5 39.478 0.628 +19.739

6 39.478 0.628 +19.739

The magnitude of the system masses were: m1 = 0.8, m2 = 2.0, and m3 = 1.2. The material
properties of the nonlinear model elements are shown in Table 1.

3.2. NONLINEAR SYSTEM RESPONSE UNDER RANDOM FORCE EXCITATION

The method under consideration imposes no restrictions on the nature of the excitation source to be
used as a probing signal. It will be assumed in the present example that three uncorrelated broad-
band random excitations are applied to the three system masses, with each force corresponding to a
stationary random process having zero mean and a standard deviation σi , with σ1 = 20.0, σ2 = 20.0 and
σ3 = 20.0.

Figure 2 shows the excitation forces over a time period covering approximately 20 fundamental
periods of the linearized system. Notice that the excitations are indeed uncorrelated and are relatively
broad-band in nature.

The response of this system over a period of about 10T is shown in Figure 3, in which the left-
hand-side (LHS) column shows the time history of the system displacements x1, x2, and x3, the middle
column shows the corresponding system velocities, and the RHS column shows the corresponding
system accelerations, all covering a time period of about 20T1.

The time histories of the six nonlinear element forces gi (t) are shown in Figure 4.
Phase-plane plots of all the elements’ force-deformation curves are shown in Figure 5, where it is

clear that elements g1, g5 and g6 have a hardening–spring characteristic, while elements g2, g3 and g4

have a softening–spring characteristic. It is worth noting that while the individual element deformation
characteristics are “measured” and plotted in this example, such quantities in general are not accessible
for measurements, due to the non-chain nature of arbitrary systems where interaction forces between
oscillating masses have simultaneous contributions from multiple (redundant) structural members. In
the method under discussion, no information about the nature of element forces is utilized in the analysis.
The member forces are being shown here to demonstrate that the system is indeed undergoing significant
nonlinear deformations.

3.3. IDENTIFICATION OF LINEAR ACCELERATION TERMS

Using the identification method under discussion, and selecting as basis vectors a linear combinations
of all the degrees-of-freedom in the system’s displacement, velocity, and excitation

basis = {d1, d2, d3, v1, v2, v3, f1, f2, f3} (13)
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Figure 2. Nonlinear 3DOF system uncorrolated random excitations used for identification.

Figure 3. Nonlinear 3DOF system response data used for identification; the LHS column shows xi (t), the middle column shows
ẋ i (t) and the RHS column shows ẍ i (t).
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Figure 4. Nonlinear element force time histories.

results in the acceleration response of m1 being estimated by:

ˆ̈x1 = −144.554 d1 + 44.5965 d2 + 42.3514 d3

+ 1.21716 f1 + 0.0156361 f2 + 0.00813426 f3

− 2.27221 v1 + 0.839124 v2 + 0.665058 v3 (14)

Similarly, the least squares fit yields for the estimated acceleration ˆ̈x2 for mass m2:

ˆ̈x2 = 17.5801 d1 − 57.7158 d2 + 16.1263 d3

− 0.00421075 f1 + 0.500484 f2 − 0.0087248 f3

+ 0.306268 v1 − 0.965233 v2 + 0.315172 v3 (15)
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Figure 5. Phase diagram of nonlinear elements.

and the estimated acceleration for ˆ̈x3 for m3:

ˆ̈x3 = 28.6254 d1 + 28.9007 d2 − 96.9454 d3

− 0.00556618 f1 + 0.00524687 f2 + 0.793694 f3

+ 0.571428 v1 + 0.435982 v2 − 1.50858 v3 (16)

A graphical representation of the accuracy of the identification results is shown in Figure 6, in which
the left-hand-side column of plots shows the time history of the three identified system accelerations ˆ̈x1,
ˆ̈x2, and ˆ̈x3, while the RHS panel of plots corresponds to the residual accelerations ri found by subtracting
the linearized term from the “measured” signals: ri = ˆ̈xi − ẍ i . For ease of comparison, identical time and
amplitude scales are used for all the plots displayed in Figure 6. It should be noted that the least-squares
approximations of the three acceleration responses here were obtained using time-histories containing
1000 time samples.
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Figure 6. Comparison of estimated accelerations ˆ̈xi and residual accelerations ri = ˆ̈xi − ẍ i . For convenience, identical scales
are used for all plotted quantities.

3.4. IDENTIFICATION OF LINEARIZED SYSTEM MATRICES

Noting that the identified coefficients of the excitation components correspond to the elements of the
inverse mass matrix, then the identified matrix M−1 is found to be (rounded to three significant digits):

M−1 =




1.217 0.016 0.008

−0.004 0.500 −0.009

−0.006 0.005 0.794


 (17)

from which the identified system mass matrix can be determined:

M =




0.821 −0.026 −0.009

0.007 1.998 0.022

0.006 −0.013 1.260


 (18)

Based on the system parameters used in the example problem, the exact system mass matrix should
be:

Mexact =




0.80 0.0 0.0

0.0 2.0 0.0

0.0 0.0 1.2


 (19)

Clearly, the identified system matrix M is very close to the exact one.
By using the identified system accelerations in Equations (14)–(16), and recognizing that the coef-

ficients of the velocity to the first power terms are elements of M−1C , leads to the identified system
(equivalent linear) damping matrix:

C =




1.879 −0.710 −0.551

−0.608 1.913 −0.601

−0.703 −0.567 1.900


 (20)
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Similarly, by using the identified system accelerations in Equations (14–16), and recognizing that the
coefficients of the displacement to the first power terms are elements of M−1 K , leads to the identified
system (equivalent linear) stiffness matrix:

K =




119.444 −37.858 −35.221

−34.731 114.349 −30.389

−34.999 −37.434 122.098


 (21)

Notice that, even though no assumptions were made in the formulation of the data processing scheme
concerning the nature of the system matrices, the identified (equivalent linear) damping and stiffness
matrices are nearly symmetric.

3.5. IDENTIFICATION OF LINEARIZED SYSTEM “MODAL” MATRIX

Now using the identified system matrices listed above, yields an estimate of the linearized system
“modal” properties. The normalized eigenvectors obtained from solving the eigenvalue matrix associated
with M−1 K is

� =




1. 1. 1.

−0.107 −1.312 1.446

−0.374 2.415 1.105


 (22)

with the three identified frequencies (in Hz) being ω = {2.045, 1.598, 0.917}.
Furthermore, with the identified system mass, damping and stiffness matrices having been found, the

damped system frequencies and corresponding ratios of critical damping can be directly computed by
determining the eigenvalues of the system state matrix. The ability to construct the equivalent linear
system matrices is a useful by-product of the data processing approach under discussion. In some cases,
this may be the end result that is desired, and no further identification tasks need be implemented.

3.6. TRANSFORMED NONLINEAR RESIDUAL ACCELERATIONS

Using the modal matrix � to “rotate” the coordinates from configuration space to modal space, and
applying the transformations indicated in Equation (5) and Equation (9) yields the time history of
the transformed generalized coordinates ui (t) and the corresponding transformed nonlinear residual
accelerations hi (t).

The left-hand-side panel of plots shown in Figure 7 corresponds to the time histories of u1(t), u2(t),
and u3(t), using the same time segment, but having different amplitude scales for each plot. Note that, not
surprisingly, mode number 3 (the one associated with the lowest frequency) has the largest magnitude.

On the RHS panel of Figure 7 is shown individual phase-plots of each transformed nonlinear acceler-
ation versus the corresponding generalized displacement. For better resolution, different scales are used
for the abscissas and ordinates of the indicated phase diagrams. The complex (nonlinear) dependence
of the residual accelerations on the corresponding state variable is clearly evident from inspection of
the phase plots.
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Figure 7. Transformed generalized coordinates and phase diagram of transformed nonlinear acceleration.

3.7. POWER SERIES FIT OF TRANSFORMED NONLINEAR ACCELERATIONS

Selecting values for the order jmax = 3 of the basis functions in Equation (7) results in the following
basis:

basis = {1, v, v2, v3, d, d v, d v2, d v3, d2, d2 v, d2 v2, d2 v3, d3, d3 v, d3 v2, d3 v3} (23)

By fitting the transformed nonlinear residual acceleration term h3(t) as indicated in Equation (7),
results in the following expression, where for convenience, the term d corresponds to the modal dis-
placement u3, and the term v corresponds to the modal velocity u̇3:

ĥ3(d, v) = 0.667763 − 5891.21 d − 199327.0 d2 + 2.28625 × 106 d3 + 48.3641 v

− 10302.6 d v + 1.48498 × 106 d2 v − 1.31112 × 107 d3 v + 1140.54 v2 + 14578.3 d v2

− 2.58127 × 106 d2 v2 + 2.24354 × 107 d3 v2 − 1123.1 v3 + 1191.81 d v3

+ 1.36468 × 106 d2 v3 − 1.22186 × 107 d3 v3 (24)
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Figure 8. Phase comparison of transformed nonlinear residual acceleration h3.

The plots shown in Figure 8 compare the adequacy of the analytical expression in Equation (24)
to estimate the nonlinear residual terms associated with “mode” number three. The LHS of Figure 8
shows a phase diagram of h3 versus u3, while the RHS phase plot is a corresponding phase plot of
ĥ3 versus u3, using identical scales as used in the LHS plot. Notice the obvious cubic dependence of
the “modal” acceleration term on the corresponding modal displacement. It is obvious from Figure 8
that the expression of Equation (24) provides a reasonably accurate estimate of the exact force, both
qualitatively as well as quantitatively.

4. Validation

4.1. GENERATION OF VALIDATION MEASUREMENTS

To demonstrate the utility of the identification approach under discussion to provide fairly accurate
models of a tested article that can subsequently be used to predict the response of the test article under a
dynamic environment that differs from the signals used to identify it, a new data set was generated from
the exact nonlinear model by subjecting it to three correlated random force excitations. The same generic
random excitation was amplitude-scaled by the magnitude of the mass of each system degree of freedom.
This was meant to emulate a situation in which the test system is now subjected to a broad-band uniform
base excitation; hence, the induced inertia loads are each proportional to the corresponding mass.

The applied system excitation in this case is shown in Figure 9, where careful inspection shows that
the three forces are indeed correlated and have magnitudes that are mass-proportional.

The time histories of the exact nonlinear system displacements, velocities and accelerations under
the excitations shown in Figure 9 are presented in Figure 10, where, for added resolution, different
amplitude scales are used for the various displayed time histories.

Figure 11 shows a plot of the time histories of the nonlinear forces induced in all six members during
this validation test, while the corresponding phase diagrams of all the nonlinear member forces versus
the corresponding relative motion across each member are shown in Figure 12. Here again, the nonlinear
behavior of some of the elements is clearly evident.

4.2. COMPARISON OF VALIDATION RESULTS

Now using the approximating analytical expressions for â1, â2 and â3 shown in Equations (14)–(16),
in conjunction with the power-series fit shown in Equation (24) for estimating the contribution of a
single nonlinear “mode” ĥ3, provides a computationally convenient form to simulate the response of
the identified system when subjected to the same validation excitation shown in Figure 9.
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Figure 9. Nonlinear 3DOF system mass-proportional and correlated random excitations used for validation.

Figure 10. Nonlinear 3DOF system response data used for validation; the LHS column shows xi (t), the middle column shows
ẋ i (t) and the RHS column shows ẍ i (t).
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Figure 11. Validation nonlinear element force time histories.

Using standard time-marching techniques for the solution of initial-value problems, results in the
simulated system response. A comparison of the exact nonlinear system acceleration (shown in the
RHS panel of plots in Figure 10) with the predicted acceleration is shown in Figure 13. Note that
there are three curves shown in Figure 13: the solid line represents the “exact” acceleration ẍ2 of m2,
the superposed long-dashed line shows the combined contribution of the linear and nonlinear terms to
the estimated (predicted) ˆ̈x2, and the short-dashed line indicates the contributions of the nonlinear terms
associated with h3.

As one would expect, the nonlinear component of the response increases in magnitude with the
system response level. Furthermore, while the contribution of the nonlinear terms is small relative to
the linear ones, the nonlinear components do have a significant (beneficial) effect on the accuracy of the
predicted solution. Note again, that because one of the goals of this study is model order reduction, that
the nonlinearity in the validation model stems from only one (the most dominant) of the three nonlinear
“modal” contributions. Increased accuracy could be obtained by including models of the additional
transformed nonlinear residual modal contributions.
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Figure 12. Validation phase diagrams of nonlinear elements.

Figure 13. Validation contributions to ẍ2 of linear and nonlinear terms.

A comparison between the exact and estimated velocity and displacement of mass m2 are shown in
Figures 14 and 15, respectively. In each case, the solid line represents the exact response, while the
dashed curve corresponds to the predicted response. Similar results are achieved for the response of m1

and m3.
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Figure 14. Comparison of exact (solid line) and predicted (dashed line) velocity ẋ2 corresponding to the validation case.

Figure 15. Comparison of exact (solid line) and predicted (dashed line) displacement x2 corresponding to the validation case.

5. Discussion

In the present study, the “measurements” used for identification and validation were assumed noise-
free; this is clearly an idealization of real-life situations. However, due to the least-squares nature of
the identification scheme, broad-band noise effects tend to be “averaged out.” Assuming that direct
measurements are obtained of the state variables needed for identification, then the approach under
discussion should be quite robust in the presence of noise pollution. However, if acceleration signals
are to be used to obtain through integration the corresponding velocities and displacements, care should
be taken in processing the measurements. The integration sequence of noisy signals introduces noise
amplification effects (particularly low-frequency noise amplification), which distort the velocity and
displacement estimates. This effect causes parameter bias and error in the associated coefficients in the
model (see, for example, Worden [7]; Smyth and Pei [8]).

While the illustrative example shown in this paper was not of a large enough order to show the strong
potential of the proposed modeling scheme for model-order reduction, it is worth pointing out that
the more complex that the underlying nonlinear system becomes, the more useful would the approach
become in developing a low-order, low-complexity nonlinear model that captures the dominant features
of the exact nonlinear system behavior over the range of test excitations used as probing signals. While
a higher-order of the nonlinear power-series fit of the residual nonlinear accelerations may lead to
improved accuracy, this should be balanced with the accompanying added complexity (and numerical
simulation additional cost).
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It is also worth pointing out that the basis functions used in the fit of the residual nonlinear forces
were based on using combinations of power-series terms (see Equation (24)). Since the nonlinear
members used in this study had polynomial-like nonlinearities, the power-series used in the identification
procedure would have some terms that are directly related to the nature of the presumably unknown
nonlinearities. However, if the underlying system nonlinearities involve hysteretic type behavior with
“memory” effects, then such nonlinearities could not be correctly represented by combinations of
polynomials. In such situations, the proposed method would give an average mean-square fit of the
response over the observation period used to model the system behavior.

Lastly, it should be noted that one could approach the system modeling using a slightly different
sequence of approximation steps. Namely, one could use the same linear system estimation to obtain the
modal data, and then rather than fitting the transformed nonlinear residual, one could fit the transformed
version of the entire acceleration response. Although less conceptually appealing, because the response
does not clearly consist of a nonlinear and a linear component, it might be slightly more efficient
because the bases being used in the linear and the nonlinear fitting steps are not orthogonal to one
another.

6. Summary and Conclusions

A general time-domain, least-squares based procedure is presented for analyzing dynamic response
measurements from complex multi-degree-of-freedom nonlinear systems incorporating arbitrary types
of nonlinear elements. The analysis procedure develops a reduced-order, nonlinear model whose format
is convenient for numerical simulation studies. No information about the system’s mass properties is
needed, and only the applied excitations and corresponding response are needed to develop the model
whose dimension is compatible with the number of available sensors. The utility of the approach is
demonstrated by means of a three-degree-of-freedom system incorporating polynomial-type nonlinear
features with hardening as well as softening characteristics.
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